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26 Abstract 

27 Low-complexity terrain-based models are increasingly utilized for their rapid simulation time and low 
28 data requirements. The Height Above Nearest Drainage terrain index coupled with Synthetic Rating 
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29 Curves (HAND-SRC) emerges as a prominent model for mapping floods from a digital elevation model 
30 (DEM). However, the DEM requirements for its implementation remain unclear in many geographic 
31 settings. In this study, we evaluate the terrain conditions necessary for HAND-SRC flood mapping in 
32 rural low-relief terrain. This was investigated in the Ostouane River, Northern Lebanon, where an 
33 intensive field investigation was conducted to collect a high-resolution DEM (25 cm), bathymetric cross-
34 sections, and a crowdsourced dataset reconstituting the January 2019 flood event. Specifically, we 
35 scrutinize both the terrain’s geometric representation and its resolution. An adapted hydro-conditioning 
36 process was introduced to assess flood mapping performance. This process integrated surveyed and 
37 theoretical bathymetry, enforced drainage into both bathymetry and floodplain and removed levees in an 
38 unorthodox approach. The generated terrain was then tested after resampling it into coarser DEM 
39 resolutions. The hydro-conditioned terrain with integrated surveyed bathymetry demonstrated reliable 
40 flood mapping accuracy against crowdsourced data (CSI = 0.64 and RMSE = 0.54 m) and HEC-RAS 
41 extents (CSI = 0.66). Introducing a theoretical trapezoidal bathymetry based on hydraulic geometry power 
42 laws produced improved metrics due to enhanced drainage continuity between the channel and 
43 floodplains. Analysis of the resampled terrains highlights a random loss of terrain convergence and 
44 geometric accuracy, disrupting the model’s implementation and accuracy at coarser resolutions (> 1 m). 
45 Overall, the comprehensive hydro-conditioning approach allows the model to depict the full inundation 
46 extent and retain the topographic accuracy in the HAND index raster. A sufficient grid resolution that 
47 maintains terrain convergence and drainage continuity is essential to overcome the challenges of low-
48 relief topography. While the model admits limitations in cell-by-cell flood depth estimations, we suggest 
49 that it can be highly beneficial for rapid and accurate flood mapping.

50 1. Introduction 

51 Floods are one of the most threatening natural hazards, imposing significant risk on exposed populations. 
52 Every year, around 83 million humans are impacted by floods, causing billions of dollars in losses and 
53 thousands of casualties (CRED, 2022; Rentschler & Salhab, 2020). Driven by the need for comprehensive 
54 flood risk management, floods have become a major focus of scientific research aimed at improving 
55 methods that facilitate hazard modelling, inundation mapping and emergency response (Jafarzadegan et 
56 al., 2023; Teng et al., 2017).

57 The distinctive flooding problems encountered in various basins worldwide triggered the synthesis of a 
58 multitude of adapted modelling techniques during the past decades. Yet, finding an approach that best fits 
59 the modelling problem and purpose is still a challenge in the field (Jafarzadegan et al., 2023). Factors 
60 such as data availability, flood response time, computational requirements, basin characteristics and the 
61 desired level of accuracy define these problems and dictate the choice and complexity of the approach. 
62 The availability and reliability of gauged rainfall and discharge data needed for model optimization, 
63 remain a major concern in ungauged and data-scarce basins around the globe (Grimaldi et al., 2013). 
64 Nevertheless, the integration of remote sensing and crowdsourcing as alternative sources of information 
65 has contributed to improving modelling accuracy despite their constraints in temporal domains (Notti et 
66 al., 2018; Sy et al., 2019). Topographic data remain the main input in any type of flood modelling and 
67 have become highly accessible providing extensive coverage at global scale. Simultaneously, topographic 
68 surveying techniques can now provide accurate, high resolution and low-cost products (Tamminga et al., 
69 2015). This transformation and expansion in input data, be it in quality, quantity, scale or coverage 
70 presents an opportunity to assess new generations of well adapted inundation mapping approaches.

71 In general, three classifications of flood mapping methods can be identified: empirical methods, hydraulic 
72 models, and simplified conceptual methods (Teng et al., 2017).  Empirical methods directly rely on 
73 statistical approaches and on observational data (Mudashiru et al., 2021). However, they can be limited in 
74 their spatio-temporal domains and constrained by engineering, financial and environmental factors. 
75 Hydraulic models are the most utilized approach for replicating flow dynamics based on shallow water 
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76 equations. They require many inputs, including channel and floodplain geometries, surface roughness 
77 coefficients and hydraulic structures dimensions, necessitating substantial computational resources. In 
78 contrast, simplified conceptual models, also referred to as “low-complexity models”, adopt simplified 
79 physical concepts that rely mainly on topographic information for flood delineation. Many of these 
80 models are based on the manipulation and analysis of digital elevation models (DEMs) through various 
81 techniques such as filling and spilling (Lhomme et al., 2008; Jafarzadegan et al., 2023) or by integrating 
82 power laws of hydraulic geometry such as the hydro-geomorphic method and the geomorphic flood index 
83 method (Annis et al., 2019; Deiana et al., 2023; Nardi et al., 2006). These models have become more 
84 prominent driven by the advantages they offer despite lacking accurate representation of overland flow 
85 physics (Afshari et al., 2018; Dhote et al., 2023; McGrath et al., 2018). 

86 Terrain based flood mapping approaches were initially driven by the widespread availability of satellite-
87 based DEMs covering many ungauged basins around the globe. The concept behind their development 
88 asserts that floodplains can be distinguished relying on the geomorphic footprint that remains embedded 
89 in the terrain even in altered and urbanized areas (Annis et al., 2019; Nardi et al., 2006). This has led to 
90 the emergence of several terrain-based models that extract the topographic properties of rivers and 
91 floodplains in the form of synthetic and composite indices (Lioi et al., 2020) such as the geomorphic 
92 flood index (Samela et al., 2017), the topographic index (Beven & Kirkby, 1979; Manfreda et al., 2011) 
93 and slope position (Dhote et al., 2023). Because of their low-complexity, low data requirement and rapid 
94 simulation time, these methods have been adopted for flood forecasting and large-scale flood inundation 
95 mapping. Despite that, their accuracy has been hampered by the coarse resolutions of DEMs (Manfreda et 
96 al., 2014), which are unable to capture flood controlling features (Schumann et al., 2013). However, the 
97 increasing availability of high-resolution digital elevation models (HRDEM) may provide new avenues in 
98 this field as they have undeniable advantages in terms of vertical accuracy and detection of detailed 
99 features. Finer resolutions were found to improve the performance in low-complexity terrain-based 

100 approaches (Aristizabal et al., 2024; Garousi‐Nejad et al., 2019). However, such level of detail can 
101 introduce additional errors and require supplementary processing caused by artificial structures and 
102 topographic depressions that influence the flow direction and accumulation patterns especially in complex 
103 low-relief terrains (Woodrow et al., 2016; Zheng et al., 2018a). Furthermore, terrain representation within 
104 a DEM is another concern in flood modelling. Features such as bathymetry and levees are critical 
105 components that influence the performance and accuracy of various models (Afshari et al., 2018; 
106 Ghanghas et al., 2022; Wing et al., 2019a). 

107 Height Above Nearest Drainage or HAND is a terrain index defined as the height of a DEM grid cell 
108 above the nearest drainage flow line into which the cell drains. The concept of HAND was first 
109 introduced by Rennó et al. (2008) based on initial attempts by Rodda (2005) to map floods on a cell-by-
110 cell basis. The approach utilizing HAND index use a stage height representing a water level above a 
111 reference drainage line. Subsequently, all DEM grid cells hydrologically connected to the drainage line 
112 are classified as either flooded or non-flooded cells based on the HAND value of each cell. The literature 
113 on HAND highlights several developments aimed at overcoming the limitations of the method. The main 
114 novelty in the approach is the introduction of synthetic rating curves (SRCs) by Zheng et al. (2018b), 
115 which allow estimating a stage height from normalized hydraulic geometry over a river reach. HAND-
116 SRC as a parsimonious hypsometric model has shown to be reliable for flood inundation mapping when 
117 tested against established flood maps, gauged observations and remote sensing data (Aristizabal et al., 
118 2024; Garousi‐Nejad et al., 2019; Johnson et al., 2019; Zheng et al., 2018b). The National Water Center 
119 (NWC) in the US implemented the model for continental-scale flood inundation mapping and integrated it 
120 into operational forecasting (Li et al., 2023; Liu et al., 2018). Nevertheless, its applications extend to 
121 hydrological landscape classification (Gharari et al., 2011), detection of groundwater potential areas 
122 (Hamdani & Baali, 2019) and in correlating soil-water gradients (Schietti et al., 2014).
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123 Within flood modelling domain, crowdsourced data has been increasingly integrated as it has emerged as 
124 a supplementary low-cost source of information. Such data are a product of the participatory contribution 
125 of the general public in generating and developing new knowledge that can be beneficial in a scientific 
126 context (Buytaert et al., 2014). The integration usually exploits photographic records, videos, texts and 
127 measurements collected through different means such as interviews, applications and social networks. 
128 Furthermore, it relies on eyewitness accounts to characterize and extract geo-tagged information on past 
129 flood events (Paul et al., 2018; Sy et al., 2019, 2020). Such observations have also been assimilated into 
130 hydrological and hydraulic models with the objective of enhancing flood forecasting (Mazzoleni et al., 
131 2017; Songchon et al., 2023) or to calibrate and validate inundation models (Dasgupta et al., 2022; 
132 Gitundu et al., 2023; Malgwi et al., 2021). Crowdsourced data proves to be advantageous compared to 
133 satellite imagery by providing dense and detailed information of flood depths in urban settings. This data 
134 can be particularly useful in small ungauged basins whose flood response is faster than the satellite revisit 
135 interval. 

136 Most recent research on the HAND-SRC flood hazard mapping scrutinized large scale applications, 
137 where coarse satellite-based DEMs enable the operational use of the model at regional and national scales 
138 (Liu et al., 2018; Yamazaki et al., 2019). Nevertheless, a comprehensive assessment of HAND-SRC at 
139 smaller scales is still very limited (Li et al., 2023) and its adaptation in different geographies remains 
140 scarce (Wing et al., 2019b). Furthermore, combining high resolution DEMs with bathymetric surveys is 
141 absent in the literature, while crowdsourced data remain largely untested for assessing terrain-based 
142 models (Zheng et al., 2022). Despite the advancements in the HAND-SRC approach, low-relief terrains 
143 have been found to present a challenge due to the inherent problems in the DEMs and the modelling 
144 implementation (Afshari et al., 2018; Godbout et al., 2019; Hocini et al., 2020; Jafarzadegan et al., 2022; 
145 Johnson et al., 2019). A literature review on HAND-SRC in low-relief regions revealed two key aspects 
146 that could potentially enhance the model’s performance. These were: (1) the terrain setup, including 
147 feature representation and DEM preparation through hydro-conditioning and (2) the DEM resolution and 
148 accuracy.

149 The main objective of this study is to evaluate the conditions necessary for effective fluvial flood 
150 mapping using the HAND-SRC model in a low-relief setting. It also aims to assess the opportunities from 
151 using high-resolution DEM based on a series of tested configurations that scrutinize the terrain and its 
152 resolution. For this purpose, a high-resolution digital elevation model, a bathymetric survey, and a dataset 
153 of crowdsourced past flood water levels were utilized. The study was conducted in a low-relief rural 
154 floodplain with anthropogenic features, comprising a mixed urban and agricultural landscape within a 
155 small Mediterranean basin. This work encompasses an intensive field investigation to collect a detailed 
156 spatial and topographic dataset in addition to a crowdsourcing campaign of a past event. 

157 The paper is divided into four sections. The first section describes the study area and its hydrological, 
158 morphometric and physical characteristics as well as the acquisition of the topographic, spatial, 
159 hydrometric and crowdsourced datasets. The second section presents the methodology followed to 
160 develop the HAND-SRC terrain-based model and a HEC RAS hydraulic model. The proposed steps for 
161 preparing the DEM by creating terrain setups are then outlined along with the parameters, resolutions and 
162 metrics used for evaluation. In the results section, the terrain hydro-conditioning processes and parameter 
163 choices are first evaluated, followed by the flood mapping performance and finally the effect of varying 
164 DEM resolution. Thereafter, the findings are discussed in light of the tested processes and configurations. 
165 Finally, conclusions are drawn on the capabilities and limitations of the HAND-SRC with 
166 recommendations for future work.

167 2. Study area and data

168 2.1. Ostouane basin in North Lebanon



5

169 The study is conducted in the Ostouane River basin located in Northern Lebanon in the region of Akkar 
170 (Fig. 1a). The basin is one of the country’s coastal catchments along the eastern Mediterranean. The 
171 river’s headwaters originate from the northernmost section of the Mount Lebanon range near Akkar al-
172 Attika. The river drains an area of approximately 144.1 km2 and flows in a western direction down to its 
173 estuary. The maximum altitude in the basin is 1923 meters, with an average land slope of 25.6%. 

174 The basin has a Mediterranean climate, characterized by cool rainy winters and dry hot summers. The 
175 annual rainfall ranges from 667 mm/yr near the coast up to 1040 mm/yr over the high mountainous areas, 
176 with an average of 861 mm/yr. The average discharge of the river is 2.2 m3/s, with a maximum monthly 
177 flow of 7.9 m3/s during February. For a 100-year return period, a peak flow of 118.5 m3/s is estimated at 
178 Pont Halba gauge station. However, the basin lacks reliable long-term precipitation records that can 
179 capture the intensity of sub-daily rainfall events. Despite the existence of three rainfall stations, issues 
180 such as recurrent failures, non-coinciding records and the absence of sub-daily measurements prevent a 
181 comprehensive hydrological assessment. 

182 The basin’s topography can be divided into a mountainous relief with steep regions on the eastern and 
183 central parts, and a flat floodplain terrain that is most susceptible to inundation near the estuary. The 
184 river’s slope decreases from 2.09% near the headwaters to 0.08% as it flows into the Akkar Plain. Its 
185 average width varies between 8 and 12 meters along its course, widening up to 42m upstream of Kneisseh 
186 village. The river then flows into a series of meanders in a deep and narrow channel that varies between 6 
187 and 10 meters in width, with low slope and densely vegetated banks. 

188 The land cover in the basin is dominated by agricultural areas (44.2%), followed by wooded lands (26%), 
189 and urbanized areas (5%). The scrutinized rural floodplain (Fig. 1c & Figs. 2a,2b,2c) is mainly 
190 agricultural with dispersed urbanization, and is characterized by anthropogenic features such as canals, 
191 ditches and levees. These were developed to support local agricultural practices and for flood mitigation 
192 purposes. The levees present are small soil embankments individually developed by local farmers. They 
193 are not optimized or built per engineering standards, with gaps and breaches, and are scattered along 
194 different segments of the river. 

195 According to the FAO-UNESCO soil classification system, the basin is primarily covered by Cambisols 
196 (30.9%), Leptosols (22.5%), and Luvisols (21.5%) (Darwish et al., 2006). Surface formations of the 
197 Ostouane basin include the Cenomanian-Turonian (C4-C5) limestone which consists of limestone, 
198 dolomites and marly limestone. This formation outcrops in the eastern part of the basin (41.1%) and is the 
199 main contributor of spring discharge. A Pliocene basalt formation outcrops in the central and western 
200 regions of the basin (42.7%) whereas a Holocene formation of silt, sand and fluvial gravel covers the 
201 floodplain of the river (Dubertret, 1945). Moreover, several aquifer formations underly the basin, 
202 including the North Lebanon Cretaceous, Qammoua Cretaceous and the Akkar Neogene-Quaternary 
203 aquifers. The last two are separated by an unproductive Basalt aquiclude.
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204

205 Figure 1: (a) Location of the Ostouane basin on the eastern Mediterranean in northern Lebanon showing 
206 elevation, main river course and significant towns; (b) extent of the high-resolution DEM (HRDEM) 
207 where the HAND-SRC model was implemented, the extent of HEC RAS model implementation (A-B), 
208 location of the Pont Halba river gauge station, and zones Z1, Z2, Z3 and Z4; (c) test site showing 
209 crowdsourced flood depths, locations of non-flooded point, surveyed cross-section points, and cross-
210 section A-A; (d) cross-section profile A-A showing the original terrain, surveyed bathymetry and levee 
211 and (e) constructed longitudinal profile of the Ostouane river from surveyed cross-sections

212 2.2. Data acquisition
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213 An intensive field investigation was conducted along the floodplains of the study area. This section 
214 describes the methods and tools used to acquire and develop the input datasets. A summary description of 
215 the collected datasets is shown in Table 1.

216 2.2.1. High-resolution digital elevation model (HRDEM)

217 A high-resolution digital elevation model (HRDEM) was produced using a fixed-wing drone 
218 photogrammetry over an area of 21.6 km2 along the river floodplains (Fig. 1b). The process consisted in 
219 capturing a series of around 18,000 overlapping photos from which a 3D point cloud was generated. The 
220 point cloud derived from the Structure from Motion (SfM) technique was then transformed into space 
221 coordinates based on ground control points (GCPs) (Westoby et al., 2012). The digital terrain model was 
222 then processed by clearing all surfaces above the natural ground. The final resolutions of the DEM parts 
223 generated along different segments of the floodplains ranged between 10 and 20 cm. In order to 
224 standardize the resolution, all DEM parts were resampled using bilinear interpolation to a 25 cm 
225 resolution. One part of HRDEM was disregarded due to high vertical error resulting in two separate sub-
226 parts. The interpolated DEM is denoted HRDEM in this study. A vertical accuracy assessment was 
227 conducted using a set of 19 ground truth points surveyed using an RTK GPS over the HRDEM of the 
228 study zone. The assessment showed a mean absolute error (MAE) of 3.4 cm and a root mean square error 
229 (RMSE) of 21.3cm. These values fall within the reported range of error in drone photogrammetry DEMs 
230 (Greenwood et al., 2019; Siebert & Teizer, 2014). 

231 2.2.2. River bathymetry 

232 The geometric data of the river channel were extracted through a series of cross-sections surveyed using a 
233 dual frequency RTK GPS (Fig. 2d). The spacing between consecutive cross sections was 220 meters on 
234 average, with a maximum spacing of 400 meters. A total of 58 collected cross-sections were utilized 
235 within the modelling domain (Fig. 1b). Figure 1d displays an example of a surveyed cross-section 
236 compared to the bathymetry of the DEM. The longitudinal profile of the river constructed using the 
237 surveyed cross sections is shown in figure 1e. 

238 2.2.3. Land use data

239 The land cover dataset is based on digitizing GeoEye (2021) high-resolution imagery on a scale of 1/5000 
240 over the catchment and a 1/1000 scale within the floodplains (Abdallah et al., 2023). The land use/land 
241 cover corresponds to 34 different classes based on CORINE land classification adapted for Lebanon.

242 2.2.4. River stage data

243 Gauged water levels at the Pont Halba station and flow records were obtained from the Lebanese Litani 
244 River Authority. The gauge is located at an elevation of 76 masl and controls a draining area of 100 km2. 
245 The measurements are automated at a 15 or 45-minute interval. However, the flow records provided by 
246 the authority are of average daily discharge values. The stage-discharge relationship developed by LRA at 
247 the site relies on scarce in-situ flow measurements. During high flow conditions, these measurements are 
248 unavailable inducing large errors caused by the mere extrapolation of the rating curve. To address this, a 
249 theoretical rating curve was established using the topographic dataset and calibrated against the daily 
250 discharge. The rating curve was then used to convert the gauged water levels into more refined sub-daily 
251 flow estimates. The peak discharge of the January 2019 flood event was then estimated as Qp=94.1 m3/s 
252 at Pont Halba station.

253 2.2.5. Crowdsourcing data on 2019 flood event
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254 The crowdsourcing of the past flood event was conducted in a similar approach to that of Sy et al. (2020). 
255 Due to the lack of an official census on flood events, the crowdsourcing campaign was conducted in 2023 
256 to collect eyewitness accounts and observations of past events at the flood impact locations. The most 
257 intense flood within the past 5 years, namely that of the 7th of January 2019 was scrutinized. The flood 
258 resulted in the inundation of both banks and the devastation of vast agricultural land and houses. The 
259 investigation targeted the inhabitants of this flood zone.

260 The main challenge faced during crowdsourcing inquiries is the elapsed time between the survey date and 
261 the flood event. Relying on eyewitness memory retrievals in describing flood events can induce 
262 uncertainties caused by memory distortions especially when a long time has passed since the event (Lacy 
263 & Stark, 2013). To minimize the impact of such distortion, the survey consisted of two phases. The first 
264 phase involved helping eyewitnesses recall the exact event by communicating the date, time, description, 
265 impact and proceedings of that event. The second phase included extracting observations by asking about 
266 the witnessed flood levels and extent. The enquiring of flood levels was repeated in a suggestive manner, 
267 with the respondents being asked to refer to a fixed object or a body part. Two coordinate points were 
268 then collected using a high-accuracy RTK GPS device: the maximum witnessed flood water elevation and 
269 the ground elevation below. Points that showed a significant error between the measured ground level in 
270 comparison to the DEM terrain levels were filtered out. Such discrepancies emerged from measurement 
271 errors or dense vegetation cover affecting the vertical accuracy of the DEM at a given location. 

272 The final dataset comprised 33 peak flood levels and 12 non-flooded points. The average difference 
273 between the riverbed profile and the elevation of the crowdsourced flood points was 3.93 m. The vertical 
274 error between the HRDEM and the terrain elevation collected at the location of the crowdsourced flood 
275 depth measurements showed a MAE of 14.07 cm and a RMSE of 16.68 cm. The similar values of MAE 
276 and RMSE indicate a uniform distribution of error values. The majority of crowdsourced data were 
277 collected on the left bank of the Ostouane River where most houses and observations are found (Fig. 1c). 
278 Finally, a flood map was delineated using the collected extent and interpolated flood elevation points 
279 (Fig. SM1 in supplementary material).
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280

281 Figure 2: Photos from field survey at Ostouane river: (a) a small breached levee developed by locals, (b) 
282 river channel next to a non-engineered levee on one side, (c) ditches found around the agricultural lands 
283 in the floodplain, and (d) river bathymetry survey 

284 Table 1. Summary of surveyed, collected and developed datasets

Dataset Source Description/location Scale/Resolution

Digital elevation model (DEM) Drone Photogrammetry DEM of floodplain 25 cm

Cross sections Bathymetry survey 58 bathymetry        
cross sections -

Land Use and Cover (LUC) GeoEye (2020) Digitized map with     
35 classes 1/1000
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River stage Litani River Authority 
(LRA) Pont Halba station 15 min

River flow Litani River Authority 
(LRA) Pont Halba station daily

Crowdsourced flood levels Field investigation 34 water levels & 
terrain elevation -

Crowdsourced non-flooded locations Field investigation 12 non-flooded points -

285

286 3. Methodology

287 A terrain-based HAND-SRC model and a hydraulic-based HEC RAS model were developed here to 
288 assess the performance of the former. This section describes (1) the implementation of the HAND-SRC 
289 model, (2) the implementation of the HEC RAS model, (3) the approach and metrics used to evaluate 
290 flood mapping, and (4) the workflow of the study.

291 3.1. Terrain-based flood mapping: HAND-SRC 

292 The HAND-SRC model was implemented in two sub-parts of the study area, with areas of 15 and 6.6 km2 
293 of the HRDEM (Fig. 1b).

294 3.1.1. Model overview

295 The implementation of HAND-SRC for flood mapping (fig. SM2 in supplementary material) consists of 
296 three main steps: (a) calculation of the HAND raster, (b) extraction of hydraulic geometry and plotting 
297 SRCs for each catchment and (c) flood mapping. The general approach adopted for the calculation of the 
298 HAND raster and plotting of SRCs is similar to that found in previous literature (Aristizabal et al., 2023; 
299 Garousi‐Nejad et al., 2019; Zheng et al., 2018a, 2018b). 

300 a. HAND raster

301 The HAND raster represents a grid of HAND index values denoted H. The index signifies the 
302 hypsometric position of each DEM grid cell relative to a hydrologically connected reference drainage 
303 line, denoted in this work as “flowline”. The HAND index value is calculated as the elevation difference 
304 between the DEM grid cell and the flowline grid cell (Eq. 1). 

305 𝐻 = 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝐷𝐸𝑀 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 ― 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑓𝑙𝑜𝑤𝑙𝑖𝑛𝑒 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 (1)

306 The HAND raster grid is computed in five steps: (1) the river flowline is rasterized to match the grid size 
307 of the DEM, (2) the pits are removed from the DEM using the PitRemove utility of TauDEM software 
308 (Tarboton, 2024), (3) the D-infinity (D∞) multiple flow direction model and the slope raster are calculated 
309 using DinfFlowDir utility. Finally, (4) the HAND raster is generated using D-infinity distance down 
310 DinfDistDown utility which provides H values referenced to the flowline. 
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311 b. Hydraulic geometry and SRCs for a catchment 

312 A catchment is defined hereafter as an area draining into a specific river reach of length L, that is a 
313 parameter in the HAND-SRC model. The catchment's hydraulic geometry for a given L is computed from 
314 the HAND raster using predefined stage heights h. The process involves hypothetically filling the raster 
315 up to a given stage height h and comprises the following six steps: (1) the flowline is discretized into a set 
316 of reaches according to the reach length L, (2) the reaches are rasterized, (3) the catchment of each reach 
317 is delineated using GRASS GIS r.stream.basins utility, (4) attributes of each reach (ID, slope, length and 
318 area) are assigned to their corresponding catchment, (5) the reach scale hydraulic geometry (flood volume 
319 V, inundated surface area F, wetted riverbed area B, slope S) are calculated using catchhydrogeo utility of 
320 TauDEM, (6) these geometries are normalized against L to derive the wetted cross-sectional area A, top 
321 width T, wetted perimeter P, and hydraulic radius R. Finally, a discharge (Q) corresponding to a 
322 catchment of a reach length L, at a stage height h, is determined using Manning’s flow equation (Eq. 2):

323 𝑄(ℎ) = 1
𝑛𝐴(ℎ)

2/3𝑅(ℎ)
1/2 = 1

𝑛
𝑉(ℎ)

5/3𝑆1/2

𝐿𝐵(ℎ)
(2)

324 Manning’s roughness coefficient n is the other parameter of the HAND-SRC model. For a fixed value of 
325 n, the calculation of the Q is repeated for each height h using Python™ scripts, which allow to plot a 
326 synthetic rating curve (SRC) for each catchment. 

327 c. Mapping flooding areas and flood depths 

328 For a simulated discharge Q, a stage height h is extracted from the SRC at each catchment. This stage 
329 height is used to generate flood inundation maps through binary classification (inundated vs. not 
330 inundated) based on the HAND index values H. The stage height h is the HAND-SRC model variable.

331 The flood mapping is carried out by (1) denoting all grid cells with H value greater than h as non-flooded, 
332 and (2) assigning the flood inundation depth as the difference between the H value at a grid cell and h at 
333 its corresponding catchment (depth=h-H). This procedure was performed using ArcHydro tools.

334 3.1.2. Model assumptions

335 The implementation of the HAND-SRC model requires conforming to five key assumptions. These are: 
336 (A1) All DEM grid cells susceptible to inundation must drain into the flowline. (A2) Within a processing 
337 region the drainage must flow into a unique outlet. (A3) The stage height h is uniformly applied across 
338 each catchment. (A4) Catchments are independent meaning no flow or volume exchange occurs at the 
339 catchment boundaries. (A5) The filling volume is infinite. The first two assumptions (A1 and A2) 
340 necessitate a hydro-conditioning process of the underlying terrain to: (a) enforce the drainage of flood-
341 prone areas into the river channel and (b) ensure a continuous decrease in elevations along the drainage 
342 network and the flowline toward the outlet. Since DEMs do not necessarily adhere to these assumptions, 
343 errors may arise from these processes depending on the region and methods used. The last three 
344 assumptions (A3, A4 and A5) govern the application of stage height h, which may introduce errors and 
345 limitations in the model.

346 3.1.3. Hydro-conditioning and definition of terrain setups

347 Hydro-conditioning of the HRDEM was applied over the whole modelling domain prior to the 
348 implementation of the HAND-SRC model. The hydro-conditioning processes account for the features 
349 controlling the flooding processes while adhering to the model assumptions. Additionally, these processes 
350 aim to mitigate and limit the impact of the inaccuracies resulting from the automatic HAND raster 
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351 calculation process (section 3.1.1) on terrain accuracy. Three types of hydro-conditioning are introduced 
352 here: (a) integration of riverbed bathymetry, (b) enforcement of the floodplain drainage system, and (c) 
353 removal of levees. 

354 a. Integration of river bathymetry 

355 Riverbed bathymetry was integrated into the 25-cm HRDEM, incorporating either: (1) the surveyed 
356 bathymetry, after an interpolation process or (2) a hypothetical trapezoidal cross-sectional shaped 
357 bathymetry, based on hydraulic geometry power laws. In both cases, the bathymetric DEMs were 
358 resampled into the 25-cm resolution and superimposed onto the HRDEM using ArcGIS Pro.

359 In the first case, the surveyed bathymetry was extracted from consecutive cross-sections through a 
360 curvilinear interpolation along the river talweg. The interpolation is based on a string model that connects 
361 successive cross-sections (USACE, 2020). To overcome the model’s limitations in interpolating 
362 floodplains and discontinuities in bank boundaries (Merwade et al., 2008), the interpolation boundary was 
363 confined to the bathymetry zone delineated from drone imagery (Fig. SM3 in supplementary material). 
364 This interpolation used cross-sections at 50-meter intervals. Three major cords connected both banks and 
365 the minimum elevations of successive cross-sections, while minor cords connected the remaining points.

366 In the second case, the trapezoidal cross-section bathymetry was generated based on the local slope 
367 bounded by the river width and the upstream and downstream cross-sections. Based on channel survey, 
368 the cross-section geometry adopted a 1:2 ratio of horizontal to vertical side slopes. The top width of the 
369 riverbed was then extracted from drone imagery along the river course. The depth D of the riverbed was 
370 estimated from a power law expression of the top width W (Eq. 3) assuming a constant discharge at the 
371 capture time:  

372 𝐷 = 𝛼𝑊𝛽 (3)

373 Regression of the surveyed bathymetric data resulted in values α = 0.7609 and β = -0.386. 

374 After integrating the bathymetry into the HRDEM, an additional process was needed to ensure the 
375 HRDEM adhere to the assumptions (A1) and (A2) of the model by enforcing a flowline in the bathymetry 
376 (see section 3.1.2). The flowline is essential for HAND inundation mapping as it serves as a reference for 
377 all HAND index calculations and is highly sensitive in low-slope rivers. To achieve a monotonically 
378 decreasing flowline, the following method was applied: (1) drainage within the bathymetry DEM was 
379 delineated based on the D8 flow accumulation grid (Lindsay, 2016). (2) The extracted flowline was then 
380 burned into the original DEM using the AGREE-DEM method (Hellweger, 1997) which excavates the 
381 DEM at the location of the flowline. Finally, (3) a fill-burn approach was applied to eliminate all 
382 bathymetric inconsistencies, errors and multiple flowlines within the river bed. The “fillburn” tool of 
383 WhiteboxTools was utilized (Lindsay, 2016; Saunders, 1999). This process enforced the flowline in the 
384 bathymetry while maintaining a strictly decreasing path toward a singular outlet.

385 b. Floodplain drainage network enforcement

386 DEMs of flat terrains, as in this study, usually lack the terrain convergence necessary in HAND-SRC 
387 (Ghanghas et al., 2022; Godbout et al., 2019). Additionally, the presence of dense vegetation or artificial 
388 structures, hinders the delineation of the floodplain drainage network in high-resolution DEMs. 
389 Therefore, a hydro-conditioning process was implemented to enforce a micro-drainage network in the 
390 floodplain. It consisted of: 
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391 (1) Detecting the inherent natural drainage network from the HRDEM using GeoNet tool (Passalacqua et 
392 al., 2012). GeoNet, an open-source tool, is mainly used to extract hydrological and morphological data 
393 from high-resolution DEMs to detect a network channel, even in the presence of engineered features such 
394 as culverts. It was further tested in flat engineered landscapes and urbanized settings (Passalacqua et al., 
395 2010; Sangireddy et al., 2016). The tool detects channelized DEM grid cells based on a Laplacian 
396 curvature computation and the flow accumulation area. The drainage network is then delineated based on 
397 a geodesic least-cost path algorithm.

398 (2) Removing pits/sinks to prevent alterations in the flow direction grid.

399 (3) Enforcing the detected drainage network upon the DEM through a fill-burn tool to preserve the flow 
400 direction (Lindsay, 2016; Saunders, 1999).

401 This process is necessary to: (a) conform to the assumption A1 of the model (see section 3.1.2), (b) 
402 minimize the errors caused by the pit filling process in HAND raster calculation (see section 3.1.1) and 
403 (c) eliminate drainage discontinuities that arise in the area separating the DEM and the superimposed 
404 bathymetries. 

405 c. Removal of levees

406 In the Ostouane floodplain, levees disrupt the assumption that the floodplains should be draining into the 
407 river channel (see section 3.1.2). The existing levee system, installed by locals, is discontinuous and 
408 unregulated, failing to effectively mitigate floods. Previous studies have tried to enforce levees into 
409 DEMs where the resolution failed to represent these features (Afshari et al., 2018; Aristizabal et al., 2023) 
410 whereas here, their influence is investigated by removing the existing levees to restore the channel-
411 floodplain connection. 

412 Levees were detected using an embankment mapping tool (Lindsay, 2016) based on a search distance 
413 algorithm that requires the levee’s centerline, side slope, height and width, to identify its extent. Due to 
414 the variability of levee sizes in our DEM, a set of values covering the range of the measured dimensions 
415 of existing levees were iterated (heights between 0.3 and 1.8 m; width between 3 and 10 m). The detected 
416 embankments were then replaced by interpolated surfaces from the surrounding elevations. 

417 d. Definition of terrain setups

418 Several DEMs were developed to assess HAND raster and the HAND-SRC model. Terrain setup S1 is 
419 based on the original 25-cm HRDEM. The other terrain setups (S1-rb, S1-fp, S2, S3) are based on the 
420 same HRDEM but incorporate additional hydro-conditioning processes, as synthesized in Table 2. 
421 Specifically, the surveyed river bathymetry and flowline enforcement are incorporated in terrain setups 
422 S1-rb and S2, while the trapezoidal bathymetry is used in terrain setup S3. The floodplain drainage 
423 network was enforced in terrain setups S1-fp, S2 and S3. Moreover, levees were removed to finalize 
424 terrain setups S2 and S3.

425 Table 2. Terrain setups used for the assessment of hydro-conditioning and man-made features; × marks 
426 the applied configuration in a setup

Terrain setup River bathymetry Levee removal
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Original 
25-cm HRDEM

 Surveyed 
cross-sections

Trapezoidal 
power law cross-

sections 

Floodplain 
drainage 

enforcement

S1 x     

S1-rb x x

S1-fp x   x  

S2 x x x x

S3 x  x x x

427

428 3.1.4. Sensitivity analysis of reach length parameter

429 The reach length L and Manning’s roughness coefficient n are the two parameters dictating the model 
430 performance. Since Manning’s roughness coefficient is established for different land cover types, the 
431 reach length parameter was scrutinized as it can be more critical for the accuracy of hydraulic geometry 
432 and SRCs (Gordon et al., 2023). A sensitivity analysis was performed using terrain setup S2 since it had 
433 the highest level of hydro-conditioning while admitting a high terrain accuracy. Reach lengths adopted in 
434 the literature ranged between 1 km and 3 km (Aristizabal et al., 2023; Garousi‐Nejad et al., 2019; Hocini 
435 et al., 2020; Rebolho et al., 2018; Zheng et al., 2018a, 2018b). L values tested here were 150 m, 300 m, 
436 600 m, 900 m, and 1350 m and 2700 m. 

437 3.1.5. Testing the effect of DEM resolution 

438 In flood mapping, there are two key attributes of a DEM: the vertical accuracy and the horizontal 
439 resolution. In flat terrains, the vertical accuracy can be more significant than the horizontal resolution, 
440 with coarser DEMs still capable of reproducing the elevations accurately. However, both attributes are 
441 necessary for accurate terrain representation. Using hydraulic models, fine resolution DEMs produce 
442 more accurate flood maps and extents compared to coarser ones, even when admitting the same vertical 
443 accuracy (Saksena & Merwade, 2015). Whereas using HAND-SRC model, it is generally found that finer 
444 resolutions improve performance, however, no clear trend is established across different resolutions. An 
445 improvement was found from increasing DEM resolution from 10 m to 3 m by Garousi‐Nejad et al. 
446 (2019). Conversely, no significant change in the accuracy of inundation extents was registered from 
447 varying DEM resolution between 3 and 20 m, but a significant decline was found from using coarser 
448 resolutions of 60 and 90 m by Aristizabal et al. (2024). Terrain-based models heavily rely on the DEM as 
449 the main input, making them heavily prone to the DEM properties and errors. The variation in DEM 
450 resolution leads to increased errors in the vertical accuracy, horizontal accuracy and the representation of 
451 artificial features, albeit with lower computational demand. Typically, DEM errors arise from the 
452 collection method, sampling methods, interpolation techniques and hydro-conditioning processes.
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453 In this study, the errors stemming from DEM resampling were examined to determine their effect on 
454 HAND-SRC model performance. The HAND-SRC was simulated for resolutions of 1m, 3m, 5m, 10m, 
455 20m and 30m which correspond to the most commonly used DEM resolutions. The DEMs were 
456 resampled using bilinear interpolation technique from the HRDEM of terrain setup S2. For the sake of 
457 comparison between the various resolutions, a fixed reach length L of 1.35 km was used. This value was 
458 selected due to its suitability for coarser resolutions and as it falls within the adopted range in the 
459 literature. The resampled resolutions were evaluated in comparison to the 25-cm HRDEM of setup S2 
460 also using the same L.

461 3.2. Hydraulics-based flood mapping: HEC-RAS

462 A one-dimensional (1D) hydraulic model was used to develop reference flood maps using a more 
463 physically-based approach, for comparison against the low-complexity HAND-SRC model.

464 3.2.1. Model overview

465 HEC-RAS (Hydrologic Engineering Center's River Analysis System) is a well-documented and widely 
466 used software in fluvial flooding simulation (USACE, 2020). In 1D configuration, the terrain is 
467 represented through a series of cross-sections and the flow is assumed to move in a longitudinal direction 
468 along the river. 

469 Within a HEC RAS project file, three input files are needed: (1) a geometry file which includes the DEM, 
470 the surveyed cross-sections, and Manning’s roughness coefficients, (2) a plan file specifying the 
471 simulation settings and (3) a steady/unsteady flow file containing the boundary conditions of the model. 

472 3.2.2. Input data, parameters and boundary conditions

473 The original 25-cm HRDEM was imported as the main input in the geometry file. The river centerline and 
474 bank lines were digitized using drone imagery within the RAS-mapper module of HEC-RAS. Cross-
475 sections were then added at the locations of the surveyed ones. The cross-section elevations were 
476 corrected using the surveyed point measurements. 

477 The channel Manning’s roughness coefficients were determined for each cross-section according to the 
478 methodology described in (USDA, 2012), based on field observations, captured photos and drone 
479 imagery. For the floodplain, Manning’s roughness coefficients were estimated based on the land 
480 use/cover maps. Furthermore, the upstream and downstream boundary conditions were set as the normal 
481 depth based on the average local slope. The flow file was designated to run the model in a steady state 
482 gradually varied flow simulation. 

483 3.2.3. Flood mapping and aggregated rating curves

484 The HEC RAS model was implemented over a 15 km length of the Ostouane River (see reach A-B in fig. 
485 1b) and simulated for the January 2019 flood. The model’s Manning’s roughness parameters were 
486 calibrated using the available flow records and crowdsourced flood depths. The flood maps at the peak of 
487 the January 2019 flood were generated. 

488 A series of rating curves were extracted at all cross-sections. The HEC RAS generated rating curves are 
489 valid at the location of cross-sections whereas the SRCs are valid over a river reach. To facilitate 
490 comparison between both rating curves, those of HEC RAS were aggregated for cross sections within the 
491 same reach. This was achieved by extracting the median of heights at each reach to plot an aggregated 
492 rating curve (ARC). 
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493 3.3. Evaluation approach and metrics

494 The evaluation was conducted against: crowdsourced data and HEC RAS flood maps. The former 
495 consists of flood occurrences (flooded/non-flooded occurrences) and flood depths.

496 3.3.1. Comparison of crowdsourced and simulated flood occurrences

497 To evaluate the model’s accuracy in capturing crowdsourced flood occurrences, the contingency table 
498 metrics were utilized. The metrics rely on the true positives (TP), false positives (FP), false negatives 
499 (FN) and true negatives (TN) values. TP and TN refer to points correctly classified as flooded or non-
500 flooded respectively. FP are non-flooded points falsely classified as flooded. Conversely, FN are flooded 
501 points falsely classified as non-flooded by the model.

502 The critical success index (CSIP) and Matthews correlation coefficient (MCCP) metrics were selected to 
503 assess the occurrence of flood at these locations. The CSI metric ranges between 0 and 1 while MCC 
504 ranges between -1 and 1. For both, a value of 1 represents a perfect match. CSI disregards true negatives 
505 and gives more significance to the ability of the model to avoid misses of flooded points or false alarms at 
506 non-flooded ones. However, CSI is sensitive to unbalanced datasets. MCC was thus introduced as it 
507 provides a balanced score that takes into account all instances of the confusion matrix regardless of their 
508 size. 

509 𝐶𝑆𝐼𝑃 =
𝑇𝑃𝑃

𝑇𝑃𝑃 𝐹𝑃𝑃 𝐹𝑁𝑃
(4)

510 𝑀𝐶𝐶𝑃 =
𝑇𝑃𝑃×𝑇𝑁𝑃 𝐹𝑃𝑃×𝐹𝑁𝑃

(𝑇𝑃𝑃 𝐹𝑃𝑃)×(𝑇𝑃𝑃 𝐹𝑁𝑃)×(𝑇𝑁𝑃 𝐹𝑃𝑃)×(𝑇𝑁𝑃 𝐹𝑁𝑃) (5)

511 3.3.2. Comparison of simulated flood extents

512 The simulated flood extents of HAND-SRC and HEC RAS were also compared. CSI and MCC metrics 
513 were also utilized but for comparison of simulated areas. For this reason, the two metrics were denoted as 
514 CSIA and MCCA for HEC RAS maps comparison as opposed to CSIP and MCCP used for crowdsourced 
515 points. Generally, while evaluating flood maps, CSI values below 0.5 are considered poor while ones 
516 above 0.65 are considered good, whereas MCC is considered satisfactory for values above 0.3 (Bernhofen 
517 et al., 2018; Fleischmann et al., 2019).

518 𝐶𝑆𝐼𝐴 =
𝑇𝑃𝐴

𝑇𝑃𝐴 𝐹𝑃𝐴 𝐹𝑁𝐴
(6)

519 𝑀𝐶𝐶𝐴 =
𝑇𝑃𝐴×𝑇𝑁𝐴 𝐹𝑃𝐴×𝐹𝑁𝐴

(𝑇𝑃𝐴 𝐹𝑃𝐴)×(𝑇𝑃𝐴 𝐹𝑁𝐴)×(𝑇𝑁𝐴 𝐹𝑃𝐴)×(𝑇𝑁𝐴 𝐹𝑁𝐴) (7)

520 3.3.3. Comparison of crowdsourced and simulated flood depths 

521 The simulated flood depth and the crowdsourced flood depths were compared. The mean absolute error 
522 (MAE) and root mean square error (RMSE) were utilized for flood depth error evaluation. The two 
523 metrics were also used to calculate the error in DEM vertical accuracy and SRC accuracy.

524 𝑅𝑀𝑆𝐸 = ∑𝑛
𝑖=1 (𝑑𝑒𝑝𝑡ℎ𝐻𝐴𝑁𝐷―𝑆𝑅𝐶  𝑑𝑒𝑝𝑡ℎ𝑐𝑟𝑜𝑤𝑑𝑠𝑜𝑢𝑟𝑐𝑒𝑑)2

𝑛
(8)

525 𝑀𝐴𝐸 = 1
𝑛∑𝑛

𝑖=1|𝑑𝑒𝑝𝑡ℎ𝐻𝐴𝑁𝐷―𝑆𝑅𝐶 ― 𝑑𝑒𝑝𝑡ℎ𝑐𝑟𝑜𝑤𝑑𝑠𝑜𝑢𝑟𝑐𝑒𝑑| (9)
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526 3.3.4. Comparison between simulated flood depths 

527 Flood depths simulated using HAND-SRC and HEC RAS were also compared. Three metrics were used 
528 to assess the difference in the depth variable. The mean difference (MD), mean absolute difference 
529 (MAD) and the root mean square difference (RMSD) were utilized in this assessment.

530 𝑀𝐷 = 1
𝑛∑𝑛

𝑖=1(𝑑𝑒𝑝𝑡ℎ𝐻𝐸𝐶 𝑅𝐴𝑆 ―  𝑑𝑒𝑝𝑡ℎ𝐻𝐴𝑁𝐷―𝑆𝑅𝐶) (10)

531 𝑀𝐴𝐷 = 1
𝑛∑𝑛

𝑖=1|𝑑𝑒𝑝𝑡ℎ𝐻𝐸𝐶 𝑅𝐴𝑆 ― 𝑑𝑒𝑝𝑡ℎ𝐻𝐴𝑁𝐷―𝑆𝑅𝐶| (11)

532 𝑅𝑀𝑆𝐷 = ∑𝑛
𝑖=1 (𝑑𝑒𝑝𝑡ℎ𝐻𝐸𝐶 𝑅𝐴𝑆  𝑑𝑒𝑝𝑡ℎ𝐻𝐴𝑁𝐷―𝑆𝑅𝐶)2

𝑛
(12)

533 3.4. Workflow and analysis

534 In our workflow (Fig. 3): (1) the datasets were acquired, assessed and processed including topography 
535 and crowdsourced data, (2) terrain setups were developed based on the chosen hydro-conditioning criteria 
536 in Table 2 and the resolutions in selected in section 3.1.5, (3) the HAND raster files and SRCs plots were 
537 calculated and flood maps were generated for the January 2019 event using the framework described in 
538 section 3.1.1, (4) HEC RAS hydraulic model was set up and simulated to derive the flood maps and 
539 ARCs, (5) the performance of the flood maps was evaluated against the crowdsourced data and HEC RAS 
540 extents. 

541 The methodology used to apply HAND-SRC models here is similar to the one used by (Zheng et al., 
542 2018a). However, several key modifications to the DEM preparation approach were introduced. 
543 Specifically, two bathymetric inputs based on the surveyed riverbed and a hydraulic geometry power law 
544 were integrated. In addition, a novel hydro-conditioning processes in the bathymetry and floodplain to 
545 enforce drainage and remove levees were implemented. A sub-meter high-resolution DEM was utilized 
546 for enhanced detection of the natural drainage patterns. This paper is set out to test HAND-SRC flood 
547 mapping based on: the terrain representation enhanced by the hydro-conditioning processes and the 
548 influence of the DEM resolution. 
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549

550 Figure 3: Workflow chart summarizing the main processes involved in the assessment of the HAND-SRC 
551 model. The workflow begins with data acquisition followed by development of the terrain setups of 
552 HAND-SRC and the HEC RAS model, then the calculation of the HAND raster and SRC plots. Finally, 
553 flood maps are generated and evaluated against crowdsourced data and HEC RAS flood maps

554 4. Results

555 This section presents the outcome of the study from three aspects: (1) the evaluation of the model terrain 
556 analysis and parametrization, (2) the HAND-SRC flood mapping performance compared to crowdsourced 
557 points and HEC RAS, and (3) the effect of DEM resolution on flood mapping accuracy and computation 
558 time.

559 4.1. HAND-SRC model evaluation

560 4.1.1. Effect of hydro-conditioning on HAND raster

561 The automatic pit filling and drainage delineation in the HAND raster calculation (described in section 
562 3.1.1) can induce significant changes in the DEM. Prior to calculating the HAND raster, the hydro-
563 conditioning processes were applied to prepare the DEMs (see table 2). These processes are also 
564 necessary to ensure that the DEM conforms to the assumptions of the HAND-SRC model, which is not 
565 naturally achieved with fine resolution DEMs. Figure 4 illustrates the effects of hydro-conditioning 
566 procedures on HAND raster (described in section 3.1.3) at four zoomed-in locations. In figure 4a, the 
567 riverbed lacking an enforced flowline in terrain setup S1 was filled and flattened leading to the loss of 
568 most bathymetric geometry. Enforcing a flowline as in the S1-rb setup (Fig. 4b) allowed retaining most of 
569 the topographic details of the channel bathymetry at the expense of minor DEM alterations. Figures 4c 
570 and 4d highlight the role of using a fill-burn approach after enforcing a flowline (ex. setup S1-rb), 
571 particularly in locations where two or more parallel flowlines coexist leading to a ‘wall-effect’ in the 
572 HAND raster (ex. setup S1). This problem is often found in reaches with wide and shallow channels and 
573 where river islands are present. In addition, the hydro-conditioning of the floodplains by enforcing a 
574 drainage network delineated using GeoNet improved the accuracy of the natural drainage that is 
575 influenced by the existing canals and ditches. Consequently, this step reduced the impact of DEM pit 
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576 filling as shown in terrain setup S1-fp (figure 4e, 4f). Figures 4g & 4h demonstrate the effect of the 
577 combined effect of the three applied processes including the removal of levees in setup S2. The effect of 
578 the applied processes is reflected in the expansion of the extent of the HAND raster in addition to the 
579 preservation of its terrain accuracy. The talweg profile in the bathymetry of both setups S2 and S3 showed 
580 little difference in elevations (Fig. SM3 in supplementary material).

581 Based on different hydro-conditioning configurations, it was evident that combining all processes is 
582 necessary at several locations along the river but especially at the model's test zone (Fig. 1c). Figure 5 
583 illustrates the HAND raster extents using the various terrain setups. The HAND raster of terrain setup S1 
584 (see Table 2) failed to extend over all inundation-prone zones within the floodplain due to the presence of 
585 levees. However, hydro-conditioning the floodplain allowed the HAND raster to partially expand into the 
586 full flood zone in setups S1-fp, S2 and S3. While integrating bathymetry did not affect the HAND raster 
587 extents, removing levees enabled full hydrological continuity in the floodplains. By removing levees that 
588 acted as drainage barriers, the HAND raster extended across the full floodplain area on both banks. This 
589 comprehensive approach of hydro-conditioning by integrating bathymetry, enforcing floodplain drainage 
590 and removing levees, allowed the model to accurately depict the full inundable extent of the terrain across 
591 both banks. In the following sections, terrain setups S2 and S3 are scrutinized as they provided HAND 
592 rasters with the most accurate representation of the topography and matched the full flood zone extents.

593

594 Figure 4: HAND raster maps developed using the HRDEM at four locations: Z1, Z2, Z3 and Z4 
595 highlighting different terrain setups: (a) S1, (b) S1-rb, (c) S1, (d) S1-rb, (e) S1, (f) S1-fp, (g) S1 and (h) 
596 S2. (a) & (b) illustrate the impact of flowline enforcement in the bathymetry. (c) & (d) demonstrate the 
597 impact of the fill-burn process in preventing a “wall-effect” in the HAND raster. (e) & (f) show the 
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598 impact of floodplain drainage enforcement. (g) & (h) illustrate the full impact of bathymetry integration, 
599 drainage enforcement and removal of levees

600

601 Figure 5: Inundation susceptible zones based on HAND raster extent under the five terrain-setups: S1, S1-
602 rb, S1-fp, S2 and S3 at the test site. S1 includes levees and lacks any hydro-conditioning process, S1-rb 
603 includes bathymetry and levees, S1-fp includes levees with floodplain drainage enforcement, S2 includes 
604 surveyed bathymetry with floodplain drainage enforcement and no levees, S3 includes surveyed 
605 bathymetry with floodplain drainage enforcement and no levees 

606 4.1.2. Model parameterization and sensitivity analysis 

607 Flood mapping using HAND-SRC is highly sensitive to the stage height in flat terrains (Johnson et al., 
608 2019; Jafarzadegan et al., 2022). The reach length L is usually fixed for the entire implementation domain 
609 of HAND-SRC. It is generally recommended to use a moderate length between 1.2 and 5 km (Godbout et 
610 al., 2019; Zheng et al., 2018a). This is to prevent the effects of local variability in slope and terrain in 
611 smaller lengths and the loss of topographic details in lengthier ones. Similarly, Manning’s roughness 
612 coefficient is applied uniformly over the whole domain. The values are chosen either on the basis of other 
613 model parameters or on the basis of land use. The range of this parameter varies between 0.05 and 0.08 
614 s/m1/3 (Aristizabal et al., 2023; Garousi‐Nejad et al., 2019; Hocini et al., 2020; Johnson et al., 2019; 
615 Zheng et al., 2018a). Based on this a Manning’s roughness coefficient of 0.07 s/m1/3 was selected for the 
616 tested domain. 

617 The role of reach length L was investigated by fixing Manning’s roughness coefficient n to 0.07 s/m1/3 
618 and calculating stage heights for tested reach lengths of 150, 300, 600, 900 and 1350 m. The setup S2 was 
619 chosen for the sensitivity analysis as it produced a HAND raster extended to the full floodplain area 
620 unlike setups S1, S1-fp and S1-rb, while maintaining the highest topographic accuracy after implementing 
621 the hydro-conditioning processes and integrating the surveyed bathymetry. Stage heights were derived 
622 from SRCs of each catchment using the estimated peak discharge Qp=94.1 m3/s of the January 2019 
623 event. Figure 6 shows the variation in stage value using various reach lengths. Stage heights for L of 150 
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624 m and 300 m demonstrated a good ability to capture the crowdsourced flood depths. However, L showed 
625 little influence on the ability to correctly detect flooded and non-flooded crowdsourced occurrences. A 
626 reach length L of 300 m was chosen for flood mapping purposes as it showed fewer outlier stage heights 
627 arising from topographic heterogeneity compared to L = 150 m. In addition, it yielded the lowest RMSE 
628 (68.3 cm) compared to other L values. 

629

630 Figure 6: Sensitivity analysis of reach length L in the HAND-SRC model. The stage heights (h) were 
631 calculated for five L values in the test site using a fixed Manning’s roughness coefficient (n=0.07 s/m1/3) 
632 and using the peak discharge of January 2019 flood, Qp. The stage height is referenced to the flowline of 
633 each reach and is added on the graph at the midpoint of the reach. A regression line was calculated from 
634 the stage heights at which the crowdsourced flood levels are reached

635 4.2. HAND-SRC flood mapping 

636 4.2.1. Flood depth and occurrence comparison against crowdsourced data

637 The performance of HAND-SRC flood mapping was investigated against crowdsourced data using the 
638 two terrain setups S2 and S3 at the test site at the downstream part of the floodplain (Fig. 1c). The two 
639 setups were selected for this assessment because they were the only ones to produce a HAND raster that 
640 extends over the full floodplains and preserves a topographic consistency with the original HRDEM after 
641 implementing the hydro-conditioning processes. The site has an average DEM slope of 6.7%, a standard 
642 deviation of 1.34 m and a river gradient of 0.2%. A reach length of 300 m and a uniform Manning’s 
643 roughness coefficient n=0.07 s/m1/3 were used. By using RMSE, CSIP and MCCP an evaluation form that 
644 targets the depth and ability to capture the flooded crowdsourced points is elected rather than a flood area. 
645 This allows for a more critical review of the model’s ability to capture detailed locations within the 
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646 floodplain. The validity of crowdsourced data is thus relied upon rather than an established or simulated 
647 flood map. The depth comparison made here is between the HAND-SRC flood depths and the 
648 crowdsourced flood depths. The latter was calculated as the difference between the surveyed ground 
649 elevation and the crowdsourced elevation of peak flood depth. The vertical elevation error was thus not 
650 propagated throughout the rest of the calculations.

651 Figure 7 shows the flood maps generated for the different terrain setups. The figure was generated based 
652 on stage heights derived from SRCs of each catchment for Qp=94.1 m3/s. The maps have distinct patterns 
653 and areas of inundation. The two setups S2 and S3 showed a balanced flooding area over the two banks of 
654 the river. Differences between S2 and S3 can be identified where S3 showed higher flood levels and a 
655 wider extent compared to S2. Both terrain setups were able to capture the flooded points to a good degree, 
656 however S3 submerges several non-flooded points. Terrain setup S2 produced a CSIP value of 0.64 
657 compared to a CSIP of 0.79 for S3. Whereas for MCCP, the results showed values of 0.49 and 0.24 
658 respectively. Additionally, both setups showed a RMSE of 70 cm and 54 cm respectively. Furthermore, 
659 an intercomparison between the flood depths obtained with terrain setups S2 and S3 was performed. The 
660 mean difference between both was 16 cm with S3 showing a higher flood depth. The mean absolute error 
661 amounted to 31.1 cm. While varying level of differences could be observed along the different river 
662 reaches, the difference throughout the floodplains was minimal. 

663 The results of both scenarios using the various tested reach lengths are shown in table 3. For all lengths, 
664 S2 showed higher RMSE compared to S3. Similarly, the CSIP metric was also higher using S3. However, 
665 for MCCP, the results were variable with S2 showing higher value except for the 900 m and 2700 m reach 
666 lengths. Considering that S2 is a better realization of the bathymetric geometry, S3 with a more simplified 
667 geometry showed better metrics in capturing crowdsourced points compared to S2 under most L values. 
668 This suggests that using a theoretical bathymetry instead of a surveyed one can be sufficient in such 
669 applications with minimal difference in flood depths (< 25 cm). 

670

671 Figure 7: Comparison between simulated HAND-SRC flood maps for the peak discharge Qp of January 
672 2019 flood event using the 25-cm HRDEM for the two terrain setups: (a) S2, which includes interpolated 
673 surveyed bathymetry, flowline and floodplain drainage enforcement, and no levees; and (b) S3, which 
674 includes trapezoidal power law cross-section bathymetry, flowline and floodplain drainage enforcement, 
675 and no levees. For both setups a reach length of 300 m was used and a Manning’s roughness coefficient 
676 of n=0.07 s/m1/3
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677 Table 3: Terrain setups used for the assessment of hydro-conditioning and man-made features; × marks 
678 the applied configuration in a setup

Reach length L (m)

Terrain setup

150 300 600 900 1350 2700

RMSE (m) 0.64 0.70 0.71 0.65 0.62 0.61

CSIP 0.48 0.64 0.54 0.56 0.63 0.55S2

MCCP 0.38 0.49 0.40 0.41 0.47 0.41

RMSE (m) 0.57 0.54 0.59 0.65 0.55 0.59

CSIP 0.75 0.79 0.53 0.53 0.50 0.53S3

MCCP 0.36 0.24 0.18 0.49 0.30 0.49

679

680 4.2.2. Flood depth and extent comparison against HEC RAS 

681 The comparison between HAND-SRC and HEC RAS flood maps was conducted for the peak discharge 
682 value of the 2019 event for terrain setups S2 and S3 (fig. SM4 in supplementary material). It should be 
683 mentioned that the DEM used in HEC RAS does not use the same hydro-conditioned terrain used in 
684 HAND-SRC modelling. Instead, it relies on the original HRDEM with corrected cross sections (see 
685 section 3.2). Initially, HEC-RAS flood maps were evaluated against crowdsourced points. HEC RAS 
686 produced a CSIP value of 0.61 and the lowest RMSE in flood depth of 34 cm among all tested 
687 simulations. 

688 Figure 8 shows the comparison between HAND-SRC inundation maps using S3 setup with the HEC RAS 
689 model. Evaluating setup S3 flood extents against HEC RAS extents produced a CSIA of 0.59 and MCCA 
690 of 0.32. An overprediction by HAND-SRC was found on the left bank of the river contrary to an 
691 underprediction on the right bank. For terrain setup S2, HAND-SRC gave a comparable pattern to that of 
692 terrain setup S3, with a CSIA and MCCA of 0.66 and 0.35 between the two flooded extents. Moreover, the 
693 flood depths simulated by HAND-SRC and HEC RAS were compared across overlapping flooded areas. 
694 Figure 9 shows the comparison of HEC RAS and HAND-SRC flood depths using terrain setups S2 and 
695 S3. In both cases, HAND-SRC underestimated the simulated flood depth. However, setup S2 showed 
696 lower errors compared to S3. Terrain setup S2 revealed a MD of 0.15 m, MAD of 0.62 m, and a RMSD 
697 of 0.72 m. Whereas under setup S3 a MD of 0.37 m was registered, a MAD of 0.66 m, and a RMSD of 
698 0.98 m. The MD between S2 and S3 was 0.16 m.
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699 An alternative approach to simulate flood maps was then tested by using HAND raster of terrain setup S2 
700 with ARCs instead of SRCs. The generated flood map showed the highest metric performances, with a 
701 CSIA of 0.86 and MCCA of 0.65. However, there was generally an overestimation in HEC-RAS depths 
702 and extents compared to HAND-SRC. This test demonstrates that a hydro-conditioned terrain setup can 
703 replicate the extents simulated by a hydraulic model more accurately by adjusting the reach length and 
704 Manning’s roughness coefficient parameters.

705 In the operational use of low-complexity models, correctly predicting flood occurrences with minimal 
706 misses is essential, therefore, the model parameters were optimized using CSI metric. Testing this, an 
707 optimal CSIP value of 0.73 for crowdsourced data was obtained for a minimum stage height of 4.5 m 
708 under all tested reach lengths. Back calculating Manning’s roughness coefficient using this stage height 
709 produced a corresponding value of n = 0.095 s/m1/3. Applying this value for all catchments in setup S2 
710 improved the performance of the HAND-SRC extents compared to HEC RAS simulated extents by 
711 10.6% (CSIA score 0.66 to 0.73). In contrast, using a Manning’s roughness coefficient based on fitting the 
712 SRC to the ARC at the Pont Halba gauge station produced a value n = 0.062 which hindered the model 
713 prediction accuracy in the floodplains downstream. 

714 Overall, both terrain setups S2 and S3 showed similar and good agreement with HEC-RAS flood maps. 
715 These tests highlight the potential of HAND-SRC model, particularly with hydro-conditioned terrain and 
716 optimized parameters. While HEC RAS produced the lowest RMSE in crowdsourced data, the HAND-
717 SRC model was capable of reproducing the HEC RAS extents sufficiently. This demonstrates that even in 
718 challenging topographies, the HAND-SRC model can still be reliable for floodplain mapping.

719
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720 Figure 8: (a) Comparison of simulated HEC RAS and HAND-SRC extents for the January 2019 flood 
721 event using terrain setup S3, (b) zoomed-in extent at the edge of the flood zone, (c) zoomed-in extent at a 
722 river meander, and (d) zoomed-in extent in a reach with a deep straight channel

723

724 Figure 9: Comparison of simulated flood depths between HEC RAS and HAND-SRC at test site. The 
725 maps were computed by subtracting HEC RAS flood depth from HAND-SRC flood depths for terrain 
726 setups: (a) S2 and (b) S3. MD denotes Mean Difference; MAD denote Mean Absolute Difference; and 
727 RMSE denote Root Mean Squared Difference

728 4.3. Resolution effect on HAND-SRC in low-relief areas 

729 4.3.1. Flood mapping using upscaled resolution

730 The analysis of the resampled DEMs focuses on the horizontal resolution impact, which is significant on 
731 the computational burden and the adherence to the HAND-SRC assumptions. Obtaining high resolution 
732 DEMs is still a challenge in many areas, therefore, testing whether coarser resolutions can reproduce 
733 similar results is needed from an operational perspective. By resampling the HRDEM enables assessing 
734 this effect.

735 Figure 10 illustrates the flood maps at different resolutions. The 1 m resolution DEM produced a similar 
736 flood extent and depth to that of the 25 cm HRDEM, yielding a balanced estimate of flood spatial extent. 
737 However, the 3 m and 5 m resampled resolutions both showed flooding only on one side of the river. This 
738 issue originated from the change in the flow direction grid caused by resampling. At a resolution of 5 m 
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739 and above the influence of the natural drainage in the floodplains becomes less significant as the drainage 
740 controlling features become dissolved within the grid cells whose size becomes larger than the width of 
741 the present ditches and canals. Contrarily, the delineated river flowline using a resolution of 30 m 
742 diverged away from the channel. This resulted in a clear overestimation of flood depth as the DEM turned 
743 into a completely flat area. The river’s bank-full width varies between 8 and 15 meters and loses much of 
744 its elevation accuracy at resolutions of 20 and 30 m. At these two resolutions, SRCs showed higher errors 
745 and led to exaggerated stage heights. Consequently, the whole catchments were filled up to their 
746 boundaries. Generally, these results reflect how employing high-resolution DEMs is crucial for accurate 
747 flood modelling in flat regions, as coarser resolutions fail to capture critical drainage features and result in 
748 significant errors in flood extent and depth estimation mainly driven by the disruption of terrain 
749 convergence between the channel and floodplains. 

750 Figure 11 shows the produced metrics of CSIA, CSIP, and the RMSEs in the DEM vertical accuracy, 
751 SRCs, simulated flood depths, and flood surface water elevation (SWE) simulated using HAND-SRC 
752 under the selected DEM resolutions. RMSEDEM refers to the DEM vertical accuracy that was calculated in 
753 comparison against the original HRDEM (before any resampling). RMSESWE-CS was calculated for the 
754 HAND-SRC surface water elevation compared to the crowdsourced flood SWE. Likewise, the RMSEFD 
755 was calculated between the HAND-SRC flood depths and the crowdsourced flood depths. Moreover, 
756 RMSESRC was calculated against the ARC at each catchment. The evaluated terrain resolutions showed a 
757 consistent ability to simulate crowdsourced flooded depths except for the 30 m resolution. However, the 
758 tested resolutions showed a random ability to capture crowdsourced flood occurrences and HEC RAS 
759 flood extents. The 25 cm resolution yielded satisfactory values in all metrics. 

760 Contrary to expectations, a resolution of 20 m also demonstrated a satisfactory replication of HEC RAS 
761 extents and crowdsourced depths and occurrences despite the heightened errors in DEM accuracy. It 
762 should be noted that the errors in surface water elevations were more significant compared to the errors in 
763 flood depth which can be attributed to the heightened errors in DEM vertical accuracy. Furthermore, the 
764 resulting HAND rasters and flood maps failed to accurately capture the depth and hydraulic geometry of 
765 the river channel. No linear trend was observed from the resampled DEM flood mapping performance. 
766 However, some coarser resampled DEM resolutions could sufficiently capture the extent of flooding and 
767 crowdsourced occurrences or depths. Nonetheless, their inherent errors and compromised accuracy make 
768 them less ideal compared to finer resolutions with higher vertical accuracy.
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769

770 Figure 10: Simulated HAND-SRC flood maps of the January 2019 flood event using terrain setup S2 at a 
771 DEM resolution of (a) 25 cm, (b) 1 m, (c) 5 m, (d) 10 m, (e) 20 m and (f) 30 m. The DEMs were 
772 resampled from the 25-cm HRDEM and the reach length used is 1350 m for a constant Manning’s 
773 roughness coefficient of 0.07
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774

775 Figure 11: Evaluation of HAND-SRC model using root mean square error (RMSE) and critical success 
776 index (CSI) across seven tested resolutions of terrain setup S2. RMSE is calculated for DEM vertical 
777 accuracy (RMSEDEM), synthetic rating curves (SRCs) compared to ARC (RSMESRC), in addition to both 
778 crowdsourced flood depth (RMSEFD-CS) and crowdsource ed water surface elevation (RMSESWE-CS) that 
779 were both against HAND-SRC simulations. CSI is calculated for crowdsourced points (CSIP) and HEC 
780 RAS simulated flood extents (CSIA) 

781 4.3.2.Computation time

782 The computational time required to run the calculations/simulations showed a large difference between 
783 the resampled DEM resolutions (Table 4). A personal computer was used for simulating the HAND-SRC 
784 model equipped with an AMD Ryzen 5800h CPU with 8 cores (3.2 GHz and 16 logical processors) in 
785 addition to a 16 GB of RAM. Parallel processing was adopted for simulating TauDEM utilities using 16 
786 processes. The total time required to develop the HAND raster and the SRCs using the 25 cm HRDEM 
787 with an area of 8 km2 was 47.4 mins out of which 81% were dedicated for TauDEM utilities. In 
788 comparison a 30 m resolution DEM required only 2.1 seconds. Generally, little difference was found 
789 when simulating coarse resolutions above 5 m. The 3 m resolution required twice the time compared to 
790 the 5 m DEM. Moving from a 3 m to 1 m resolution, a difference of two orders of magnitude in 
791 simulation time was observed. An order of magnitude difference was also witnessed when changing the 
792 resolution from 1 m to 25 cm resolution. The calculation of HAND raster and SRCs at high resolutions 
793 can be of high computational requirement, however it is only needed once. Furthermore, there is no 
794 significant computational cost when mapping floods which can be achieved in a matter of a few seconds. 
795 In essence, setting up of HAND-SRC may be initially computationally demanding using high resolutions, 
796 however, the model is highly efficient for repeated flood simulations required in operational forecasting 
797 using all resolutions.

798 Table 4: The DEM resolutions tested using HAND-SRC, their raster size, uncompressed size and 
799 computational time

DEM resolution (m) Raster Size Uncompressed size Computational time 
(sec)

0.25 17488×15800 1.03 GB 2844.310
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1 4372×3938 65.68 MB 100.331

3 1457×1313 7.3 MB 6.811

5 874×788 2.63 MB 3.349

10 437×394 672.57 KB 2.487

20 219×197 168.53 KB 2.158

30 146×131 74.71 KB 2.113

800

801 5. Discussion

802 This section presents the discussion of three aspects that highlights the importance of accurate terrain 
803 representation and the challenges of incorporating crowdsourced data sources for flood modelling. 
804 Specifically, it covers: (1) the hydro-conditioning processes and the effect of the reach length variation, 
805 (2) the flood mapping performance of the model, and (3) the DEM resolution effect on flood mapping.

806 5.1. Terrain analysis: hydro-conditioning and reach length parameter

807 Hydro-conditioning is an indispensable practice used to correct or improve the effectiveness of the 
808 geometric representation for modelling purposes. The hydro-conditioning processes applied here differ 
809 from (Garousi‐Nejad et al., 2019; Zheng et al., 2018a) in four ways. First, two bathymetric DEMs were 
810 superimposed. The integration of bathymetry is an attempt to ensure topographic accuracy that is 
811 consistently absent in similar applications. Second, the enforced flowline was delineated using the D8 
812 approach. Third, the floodplain part of the DEM was hydro-conditioned by enforcing a drainage network 
813 delineated using GeoNet. Here, the drainage continuity into a singular flowline was ensured by two 
814 drainage enforcement processes, namely the AGREE-DEM and fill-burn processes. Fourth, levees were 
815 removed from the DEM to ensure full drainage continuity between the floodplains and river channel, in 
816 an unorthodox approach. These hydro-conditioning processes may seem unconventional in hydrological 
817 applications but are necessary to adapt to both the terrain's flat nature and the model's assumptions. 

818 A key aspect of integrating interpolated bathymetry is that, unlike the trapezoidal cross-section 
819 bathymetry, it may admit multiple parallel flowlines. This generates inconsistencies in the HAND raster 
820 due to the increased downstream distance between a DEM grid cell and the flowline grid cell. The flow-
821 burn approach that followed the AGREE DEM approach resolves this limitation, by leading the drainage 
822 within the bathymetry into the singular enforced flowline in the HAND raster. 

823 Another pivotal impact of the hydro-conditioning processes is the alteration of the DEM. While this may 
824 introduce additional errors, it guarantees drainage continuity through the lowest elevations in the terrain. 
825 By enforcing drainage in the bathymetry and floodplain, these processes mitigate the effect of the 
826 automatic pit-filling and flow direction grid calculation while preparing the HAND raster. This approach 
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827 preserves the consistency between the original DEM and the HAND raster, which is essential for accurate 
828 mapping and for comparison with crowdsourced flood levels. 

829 Levee representation within a DEM is highly significant since they act as a barrier against flow. In our 
830 study case, the high resolution of the DEM allowed detecting levees that act as a barrier despite their 
831 small size. These soil levees, developed through random efforts by local farmers, do not meet modern 
832 engineering design standards. They are also scattered along the river course with many gaps and breaches, 
833 rendering them non-optimal for flood mitigation. Unlike other studies (Afshari et al., 2018; Aristizabal et 
834 al., 2023) that tried to enforce levees into the DEM, we opted to remove them due to their lack of 
835 hydraulic significance. Our analysis revealed that removing these levees to allow floodplain drainage into 
836 the channel is crucial to producing coherent HAND raster that extend across the complete floodplains (see 
837 figure 5) and SRCs that accurately replicate ARCs by maintaining the hydrological connection. 

838 It should be noted that levee presence in a DEM can be highly problematic in HAND-SRC model. 
839 Inundation in HAND-SRC is based on traced hydrological connection that drains the floodplains into the 
840 channel (assumption A1). These hydrological pathways require a monotonically decreasing flow direction 
841 grid that cannot occur in the presence of a levee. Since levees are raised structures that separate two 
842 regions in a DEM, no monotonic decrease will be found between the upstream and downstream sides of 
843 the levee. Therefore, any traced connection, if found, will be erroneous further contributing to errors in 
844 SRC and estimated stage heights. Furthermore, the HAND raster extent, in the presence of a levee, will be 
845 restricted to the levee location and will result in an infinite “wall effect” when the raster is filled up to the 
846 levee edge. Nonetheless, a stage height can be overlaid over the whole HAND raster regardless of a 
847 hydrological connection to overcome the levee problem, as in Afshari et al. (2018). This however, would 
848 lead to an overestimation of the flood extent, especially in flat terrains. Another possible workaround can 
849 be made by removing the levees and adjusting the SRC such that no floodplain inundation occurs until 
850 bank-full discharge is reached. 

851 The two primary parameters of the HAND-SRC model are Manning's roughness coefficient and the reach 
852 length L. The former is dependent on the characteristics of the land surface and its features, while several 
853 terrain properties dictate the latter. The most commonly used L values in the literature are at least 1000 m. 
854 Here, reach lengths down to 150 m were tested. Our analysis revealed an increasing trend in the average 
855 stage height when reducing L. The outlier values that appear when using a reach length of 150 m can be 
856 attributed to either the delineated catchment's hydraulic geometry or the local slope heterogeneity. 
857 Catchments with lower L can be unbalanced, with a larger draining area on one bank of the river or 
858 different maximum fillable heights at each bank, leading to a strictly vertical filling of the catchment and 
859 consequently an increase in estimated stage heights. This is identified by sudden increasing shifts in 
860 SRCs. Reach slope outliers ranging from 0.01% to 0.7% were found in L=150 m, contributing to the 
861 stage height variability in some catchments. (Godbout et al., 2019) found that decreasing L below 1.2 km 
862 or targeting low-slope reaches reduces SRC accuracy using a 10 m topographic dataset. In our study, the 
863 slope and reach length did not show any co-linearity, suggesting that stage height errors using shorter L (< 
864 1000 m) can be mitigated when robust bathymetric measures are available. The limitation on using 
865 shorter L remains from the effect of catchment geometry which mainly depends on the terrain 
866 connectivity and HAND raster quality. 

867 5.2. HAND-SRC flood mapping 

868 5.2.1. Flood mapping performance

869 HAND-SRC as a hydrological terrain filling technique coupled with Manning’s flow equation lacks the 
870 physics of fluid mechanics in more complex hydraulic models using shallow water equations. Manning’s 
871 flow equation certainly introduces a simplified flow hydraulics representation albeit the limitations 
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872 stemming from the uniformity assumption of water levels within a catchment (A3) their discretization 
873 along catchments of a river reaches (A4) and the infinite water volume assumption (A5) (see section 
874 3.1.2). These assumptions create a surface water elevation with a stepped curve along the river and fail to 
875 conserve mass or momentum across consecutive river reaches. Nonetheless, a plethora of other simplified 
876 low-complexity models can be used for rapid flood inundation mapping such as RFSM, TVD, AutoRoute, 
877 planar surface, bathtub method, topographic wetness index, geomorphic flood index and slope position 
878 (Dhote et al., 2023; Jafarzadegan et al., 2023; Teng et al., 2019). Yet, HAND tends to perform similarly 
879 or better than other low-complexity models in terms of simulated extent and depth (Afshari et al., 2018; 
880 Dhote et al., 2023; Lioi et al., 2020; McGrath et al., 2018). The model is an efficient and less costly 
881 alternative to more physically-based models that admit higher ranges of uncertainty (Diehl et al., 2021). 

882 Overall, the hydro-conditioned terrain setups were capable of capturing the extent and depths of 
883 crowdsourced data (CSIP of 0.64 and 0.79) and HEC RAS extents (CSIA of 0.66 and 0.59). The presence 
884 of crowdsourced points in rural areas may be subject to the influence of terrain features. The resulting 
885 magnitude of RMSE errors compared to crowdsourced data was generally on the lower side (< 1m), and 
886 this can be attributed to the flat geomorphology of the terrain. While HEC RAS attained a lower RMSE 
887 (34 cm), terrain setups S2 and S3 showed a low error as well (70 cm and 54 cm respectively). These 
888 values are considered acceptable for flood modelling (Fleischmann et al., 2019). 

889 Interestingly, the trapezoidal bathymetry in S3 produced some enhanced metric performances compared 
890 to the surveyed interpolated one in S2 against crowdsourced data (table 3). A slight improvement was 
891 also found in replicating HEC RAS extents. Flood depths using S3 were also overestimated against HEC 
892 RAS but with similar hot-spots of overestimation and underestimation compared to S2. S3 had lower 
893 MAD and RMSD compared to S2 but a higher MD indicating higher outliers than in S2. This implies a 
894 greater bias toward underestimation of flood depth in setup S3 compared to setup S2. The average 
895 trapezoidal bathymetry area is similar to that of the surveyed interpolated one while both terrains 
896 produced similar rating curves. Yet, two main factors influencing this difference can be attributed. (1) The 
897 enhanced drainage continuity between the channel with superimposed bathymetry and the floodplain 
898 caused by reduced noise and errors resulting from bathymetric interpolation that may create obstructions 
899 between both. (2) The reduced errors stemming from the internal drainage within the riverbed that can 
900 lead to increased hydrological distance between the flowline and a DEM cell consequently leading to an 
901 overestimation of HAND values and therefore reduced flood depths and extents. Such errors arise from 
902 possible river islands or from the rectangular delineated drainage pattern within the surveyed interpolated 
903 bathymetry. This suggests that a simplified geometry can be more favorable for terrain-based HAND-
904 SRC applications. 

905 5.2.2. Underprediction in low-reliefs

906 In general, HAND-SRC maps underestimated the flood depths compared to crowdsourced data despite a 
907 relatively high Manning’s roughness coefficient (n = 0.07 s/m1/3). Such a finding was also reported by 
908 (Afshari et al., 2018; Hocini et al., 2020). Other works suggested a reduction of Manning’s roughness 
909 coefficient in high-stream order reaches and low-relief terrains (Johnson et al., 2019). Four factors can be 
910 behind this difference. First, the hydro-conditioning can increase the fillable volumes and subsequently, 
911 the cross-sectional area implying a higher n is needed as a result of assumption (A5). Second, errors in the 
912 river slope in DEMs lacking bathymetry can lead to irregular slope estimates and increased height 
913 differences especially in coarser resolutions adopted in the literature. Third, the underestimation of 
914 hydraulic geometry due to the lack of bathymetry and the coarse resolutions in the different literature 
915 (Godbout et al., 2019; Hocini et al., 2020; Johnson et al., 2019) result in a flat SRC with little sensitivity 
916 to elevation. Lastly, the traced hydrological flow path along the flow direction between the flowline cell 
917 and a DEM cell may not correspond to the actual distance in reality. This can be due to DEM errors or 
918 incorrect drainage delineation resulting in increased distance along the hydrological flow path leading to 



32

919 increased HAND index at a DEM cell that in reality should be lower. This may further contribute to the 
920 underprediction in flat areas.

921 5.2.3. Perspectives on crowdsourced data 

922 Crowdsourcing introduces a type of uncertainty that is complex to outline and constrain. The source of 
923 uncertainty varies according to the type of data, collection method and analysis approach. Yet, the 
924 approaches and protocols to understand them are still being developed (Assumpção et al., 2018; Nardi et 
925 al., 2022). In our study, the uncertainty in crowdsourced data manifests in the spatiotemporal 
926 characterization, originating from the timing of peak flood observation and the elevation errors. 
927 Evaluating this requires a transdisciplinary analysis incorporating demographic, social and psychological 
928 sciences to deal with the biases and randomness of human observations.

929 The validation of crowdsourced data relies on external inputs such as remote sensing or aerial imagery at 
930 the time of the flood which were not available in our study (Dasgupta et al., 2022; Nardi et al., 2022). 
931 Thus, crowdsourced data should adopt structured methods to validate and assess their interoperability 
932 without external inputs. The crowdsourced data used here consisted of 45 points of which 33 represented 
933 a peak flood water elevation distributed over an area of 0.45 km2. For rural streams, 5 to 10 high water 
934 marks are sufficient to characterize a flood, however, urban settings require a higher number (Koenig et 
935 al., 2016). Given the small area of the crowdsourcing survey, the density of the points was found to be 
936 sufficient to reduce the uncertainty and eliminate discrepancies. Furthermore, the crowdsourced points 
937 were classified into three reliability levels: low, medium and high based on demographic criteria and 
938 retrieval abilities of the eyewitness. High and medium reliability points showed a similar level of profile 
939 agreement contrary to low reliability points that exhibited a non-linear tendency with several outliers. 
940 Interestingly, the complete dataset was capable of providing sufficient information for model validation in 
941 the targeted areas. Moreover, the elevation profile from the surveyed flood levels matched the slope and 
942 flow direction of the river bed slope (0.16%), showing an agreement with basic hydraulic principles. 
943 Therefore, we suggest that an adequate density of crowdsourced points is essential to reduce their 
944 associated uncertainty and validate their accuracy. 

945 A main limitation of crowdsourced data is their lack in uninhabited environments and covering urban 
946 environments where “sensors” whether human or technological are present. This can produce spatial 
947 biases derailing the overall accuracy of the approach in remote areas and agricultural plains. Our dataset 
948 admits an unbalance providing dense information only on the left bank of the river. This limitation was 
949 significant in the pre-processed terrain setups and tested DEM resolutions (3 m and 5 m) that showed 
950 good agreement in CSIP and RMSE metrics but failed to correctly capture the inundation extent of HEC 
951 RAS. Therefore, to overcome this limitation, hydraulic simulations or established flood maps are needed 
952 for an overall evaluation of the model on its full domain. 

953 The implementation of HAND-SRC highly depends on the estimation of a stage height. In the literature, 
954 different approaches are used including gauged stage levels were used as input (Johnson et al., 2019; 
955 Zheng et al., 2018a). In regions suffering from low data availability, alternative sources of information 
956 can be used to establish a good range of stages such as remote sensing. In our case limiting the analysis to 
957 a single event at its peak can be restricting, however, integrating multiple events may enhance the model's 
958 robustness. Crowdsourced data are only fit for local enhancement of the HAND-SRC due to their spatial 
959 limitations. Nonetheless, the reliability of the model for a range of discharge values can be enhanced by 
960 adjusting the model parameters at each reach until SRCs match the ARCs of a hydraulic model. 

961 The key advantage of using crowdsourced points is that they provide flood depth and extent estimates 
962 with minimal acquisition costs, at fine scales, and in urban environments. Yet, this can only be taken 
963 advantage of using a DEM with high resolution and accuracy. Integrating the crowdsourced flood depths 
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964 in calibrating the hydraulic HEC RAS model achieved a low RMSE (34 cm) illustrating the reliability of 
965 the dataset and its utility in the absence of other forms of observed data. In the future, crowdsourced data 
966 are expected to increasingly complement other forms of observed or remotely sensed data and in data 
967 assimilation in flood forecast models. 

968 5.3. DEM resolution requirement in low-reliefs 

969 Low-relief areas are highly prone to floods due to their inherent topographic characteristics. We tested a 
970 set of DEMs using HAND-SRC resampled using the bilinear interpolation method. This method was 
971 chosen because it preserves the smoothness of the DEM (Haile & Rientjes, 2005). The tests showed that 
972 only a 25 cm or a 1 m resolution DEMs can capture both flood depths and extents satisfactorily. The rest 
973 of the of coarser resolutions (3 m and above) all showed significant errors in water surface elevation, 
974 flood extents or flood depths in channel or floodplain. These errors can be attributed to several factors. 
975 First, the resampling of the DEM disrupts the terrain convergence leading to the formation of areas that 
976 do not drain into the river channel. This change arising from resampling usually follows no systematic 
977 trend (Wu et al., 2008). Second, the change in the drainage patterns results in the filling of the DEM 
978 leading to increased errors in the DEM and SRCs. Lastly, the reduction in DEM vertical accuracy is 
979 caused by the coarsening effect of the DEM. The first two factors are mostly present in low-relief terrain 
980 where resampling does not maintain the flow direction grid or drainage paths. The last factor consists of 
981 coarsening errors and errors from the interpolation method which are usually less significant (Muthusamy 
982 et al., 2021). 

983 Several papers have demonstrated that varying the spatial resolution through resampling has a higher 
984 influence on flood depth predictions rather than the extent (Leskens et al., 2014; Saksena & Merwade, 
985 2015; Savage et al., 2016) in hydraulic modelling approaches. In our case, HAND-SRC as a terrain-based 
986 model showed a random pattern that influenced both the flood extents and depths in flat areas. However, 
987 a more comprehensive understanding of the DEM resolution impacts on HAND-SRC requires a broader 
988 assessment that includes other topographic settings. 

989 Upscaled DEMs from higher resolution DEMs with high vertical accuracy can retain a high accuracy 
990 compared to global DEMs (Prakash Mohanty et al., 2020). Therefore, global DEMs may not be reliable 
991 for detailed assessment in low-relief sensitive terrains. Whereas, resampled DEMs from high resolution 
992 must be used with caution unless it conforms to two factors. (1) The resolution should allow the detection 
993 of the natural drainage pattern in the floodplains to achieve terrain convergence. (2) It should maintain 
994 enough topographic representation and accuracy in the DEM elevations for precise hydraulic geometry 
995 extraction. While an improvement in the performance of resampled DEMs is possible through additional 
996 hydro-conditioning, the approaches used in this study do not apply to all tested resolutions and are outside 
997 the scope of the study. 

998 6. Conclusion 

999 The purpose of this paper is to study the applicability of the low-complexity terrain-based HAND-SRC 
1000 model for flood mapping in a low-relief terrain with developed rural floodplains comprising channels, 
1001 ditches and levees. Due to the increasing demand for real time operational forecasting, testing adapted 
1002 approaches that provide efficient, rapid and accurate flood maps has become necessary. An application of 
1003 the HAND-SRC model using a complete geometric representation at a high resolution was presented. The 
1004 study further assessed the effective topographic representation required for HAND-SRC modelling in flat 
1005 areas through hydro-conditioning and upscaling DEM resolutions. The implementation was conducted in 
1006 the floodplains of the Ostouane catchment in Northern Lebanon. An intensive field investigation was 
1007 conducted to acquire a high-resolution DEM (25 cm), the bathymetry and a set of crowdsourced data on a 
1008 past flood event. Two sources of model validation were utilized: HEC RAS flood maps and crowdsourced 
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1009 data that consist of positive/negative flood occurrences and flood depths from a past event. While the first 
1010 provided a more comprehensive assessment of flood mapping, the latter scrutinized the accuracy of 
1011 prediction at detailed locations.  

1012 Due to the sensitivity of flat terrains and the complexity of detailed floodplain features at high resolutions, 
1013 an adapted hydro-conditioning approach was introduced to restructure the terrain in preparation for 
1014 HAND raster and SRC calculations. This is also to adhere to the model assumptions and retain the DEM 
1015 accuracy. Overall, the terrain setups with the highest level of hydro-conditioning (S2 and S3) showed 
1016 reasonable prediction performance in capturing crowdsourced flood occurrences (CSIP of 0.64 and 0.79 
1017 respectively), crowdsourced flood depths (RMSE of 0.7 and 0.54 m respectively) and HEC RAS extents 
1018 (CSIA of 0.66 and 0.59 respectively). Both setups incorporated drainage enforcement in the bathymetry 
1019 and floodplain, levee removal, and bathymetric integration. These processes all served the goal of 
1020 achieving drainage continuity and terrain convergence between the floodplain and the channel. 
1021 Furthermore, adopting a theoretical bathymetry based on hydraulic geometry power law (S3) produced 
1022 similar predictions compared to the bathymetry interpolated from surveyed cross-sections (S2). 
1023 Therefore, a simplified representation of the terrain can still be effective for bathymetry representation. 

1024 In addition to the representation of terrain features, the scalability of the hydro-conditioned terrain was 
1025 evaluated using resampled DEMs. Tested resolutions showed a variable performance mainly driven by 
1026 the effective topographic structure and properties of the DEM at the different scales. The highest 
1027 resolutions (25 cm and 1m) performed better in replicating correct flood extents and depths compared to 
1028 coarser resolutions where effective channel and floodplain features become dissolved. This leads to the 
1029 loss of drainage continuity and the alteration of terrain convergence in the DEM. Generally, coarser 
1030 terrains either resampled or from global DEMs should be used with caution due to their inherent structure 
1031 that does not necessarily conform to the model assumptions in flat terrains. Nonetheless, the utilization of 
1032 the sub-meter DEM resolution can be highly significant. This is demonstrated by permitting the detection 
1033 of the natural drainage through the detection of natural and artificial terrain features. The vertical 
1034 accuracy and fine resolution were both essential in avoiding the perfectly flat surface terrain problem that 
1035 is commonly found in coarser resolutions. Additionally, it permitted accurately identifying crowdsourced 
1036 locations and depths with high precision in the DEM. It is worth noting that the use of crowdsourced data 
1037 allows evaluating the model’s ability to capture detailed locations but introduces significant uncertainty 
1038 and requires placing high credibility in eyewitness accounts. Despite that, such data may be the sole 
1039 source of model validation in ungauged areas. An adequate density has shown to be necessary for 
1040 validating the dataset itself without the need to introduce external inputs. The spatial bias of such data 
1041 however, renders it complementary for modelling validation. 

1042 Our results also show that using the hydraulic model’s aggregated rating curves (ARCs) instead of 
1043 synthetic ones (SRCs) demonstrated that the hydro-conditioned terrain can replicate the extents of HEC 
1044 RAS. Generalizing this finding however, require a more comprehensive review of SRC accuracy for all 
1045 discharge ranges. Nonetheless, the implemented approach required increasing Manning’s roughness 
1046 coefficient to capture crowdsourced points levels. The fixed assumptions of this parameter can be a 
1047 limitation of the model but our analysis showed that it can still be locally optimized based on 
1048 crowdsourced observations. 

1049 In conclusion, the HAND-SRC terrain-based model as a continental and regional scale flood mapping 
1050 approach was found to still be relevant at local scales and in flat terrains. Adopting a high-resolution 
1051 hydro-conditioned terrain that maintains terrain convergence and drainage continuity, can provide good 
1052 performance in a challenging low-relief topography. This can be achieved in a simple straightforward 
1053 fashion compared to hydraulic models that require a more intensive preparation process. The model can 
1054 be superior in terms of preparation effort and computational time. HAND-SRC cannot be relied on for 
1055 highly accurate cell by cell estimations of flood depth especially in terrains with anthropogenic features. 
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1056 However, as a rapid flood mapping model it is capable of providing reasonable satisfactory information 
1057 on extent and depth. We thus suggest that the model can be beneficial for enhanced rapid identification of 
1058 flood risk areas and for ensemble-based flood forecast mapping. 
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1077 Table A1. List of abbreviations

Abbreviations Definition

ARC Aggregated Rating Curve from HEC RAS model

CSIA Critical Success Index used to compare with flood areal extent

CSIP Critical Success Index used to compare with crowdsourced points flood occurrences

DEM Digital Elevation Model

h Height threshold used for flood mapping in HAND-SRC
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HAND Height Above Nearest Drainage index

HAND-SRC Flood mapping model based on utilizing HAND index and SRC

HEC RAS Hydrologic Engineering Center's River Analysis System

HRDEM High resolution digital elevation model

L River reach length

MCCA Mathew's Correlation Coefficient used to compare with flood area

MCCP Mathew's Correlation Coefficient used to compare with crowdsourced points

n

Qp

Manning's roughness coefficient

Peak flow estimated at Pont Halba (G1) station for 2019 flood event

RMSE Root Mean Square Error

RMSEDEM Root Mean Square Error of DEM vertical accuracy

RMSEFD-CS Root Mean Square Error in simulated flood depth compared to crowdsourced flood depths

RMSESRC Root Mean Square Error in synthetic rating curve

RMSESWE-CS Root Mean Square Error in simulated SWE compared to crowdsourced flood SWE

SRC Synthetic Rating Curve

SWE Surface Water Elevation

1078
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1079

1080 Figure SM1: Delineated flood map using crowdsourced flood depths, flood extent points and non-flooded 
1081 point locations

1082

1083 Figure SM2: Illustration of HAND-SRC conceptual model. The HAND raster is filled to a variable stage 
1084 height h then the hydraulic geometries are extracted. Manning’s flow equation is used to estimate the 
1085 discharge and plot a synthetic rating curve for a Manning’s roughness coefficient
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1086

1087 Figure SM3: (a) Talweg elevation in the interpolated surveyed bathymetry and the theoretical trapezoidal 
1088 geometry between stations 5300 and 8300 m measured from the river outlet, and (b) bathymetry zone and 
1089 elevation across the test site
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1090

1091 Figure SM4: The January 2019 flood event: (a) HAND-SRC flood depth at Pont Halba gauge station 
1092 during peak flow; (b) Comparison between SRC and rating curve at the gauge; and (c) flow hydrograph 
1093 during the event calculated based on the theoretical rating curve
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1375

1376 Highlights: 

1377 • HAND-SRC applied in low-relief terrain with anthropogenic features in North Lebanon

1378 • Adapted hydro-conditioning necessary for HAND-SRC to replicate HEC-RAS flood extents 

1379 • Crowdsourced depths are well captured by HAND-SRC (CSI = 0.64 and RMSE = 54 cm)
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1380 • Integrated power-law bathymetry can reproduce flood maps of surveyed bathymetry 

1381 • High DEM resolution ≤ 1 m maintains terrain convergence for HAND-SRC accuracy

1382

1383

1384 Evaluating Terrain-Based 
1385 HAND-SRC Flood Mapping 
1386 Model in Low-Relief Rural 
1387 Plains 
1388 Using High 
1389 Resolution 
1390 Topography 
1391 and 
1392 Crowdsource
1393 d Data
1394 Objective: what is the effective representation of terrain for 
1395 HAND-SRC flood mapping in a low-relief terrain?

1396 Study Area & Data MethodologyEffect of terrain 
1397 hydro-conditioning DEM Resolution effect
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1398

• Drone photogrammetry: 
25-cm DEM

• Cross-sections

• Gauged water level

• Land use/cover

• Crowdsourcing of 2019 
flood event 
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HAND-SRC model 

Terrain Hydro-conditioning 

1. Integration of surveyed & 
theoretical bathymetry 

2. Bathymetry drainage 
enforcement

3. Floodplain drainage 
enforcement 

4. Levee removal

HAND index raster 

Synthetic Rating Curves 
) SRC ( 

1. Extraction of hydraulic 
geometry 

2. Sensitivity analysis

Upscaling DEM resolution 

, 3, 5, 10, 20 & 30 m 1 

HEC RAS model 

Reference flood maps 

Effect of bathymetry type 

Surveyed bathymetry Theoretical bathymetry 
Crowdsourced data: 
CSI = 0.64

Crowdsourced data: 
CSI = 0.79 

Flood extent comparison 

Surveyed: CSI = 0.66 
Theoretical: CSI = 0.59 
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