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Abstract: Water and sediment discharges can change rapidly, and low-frequency measurement
devices might not be sufficient to elucidate existing dynamics. As such, above-water radiometry might
enhance monitoring of suspended particulate matter (SPM) dynamics in inland waters. However, it
has been barely applied for continuous monitoring, especially under partially cloudy sky conditions.
In this study, an in situ, high-frequency (30 s timestep), above-water radiometric dataset, collected
over 18 days in a tropical reservoir, is analyzed for the purpose of continuous monitoring of SPM
concentration. Different modalities to retrieve reflectance spectra, as well as SPM inversion algorithms,
were applied and evaluated. We propose a sequence of processing that achieved an average unsigned
percent difference (UPD) of 10.4% during cloudy conditions and 4.6% during clear-sky conditions for
Rrs (665 nm), compared to the respective UPD values of 88.23% and 13.17% when using a simple
calculation approach. SPM retrieval methods were also evaluated and, depending on the methods
used, we show that the coefficient of variation (CV) of the SPM concentration varied from 69.5%
down to 2.7% when using a semi-analytical approach. As such, the proposed processing approach is
effective at reducing unwanted variability in the resulting SPM concentration assessed from above-
water radiometry, and our work paves the way towards the use of this noninvasive technique for
high-frequency monitoring of SPM concentrations in streams and lakes.

Keywords: suspended sediment concentration; hyperspectral; remote sensing; water color; reflectance

1. Introduction

Aquatic environments, especially rivers, are notoriously dynamic, and water con-
stituents can vary within a very short time span. Suspended sediment transported in rivers
and other water bodies can vary considerably over different time scales. According to
Vercruysse et al. [1], this variation is due to interactions between: hydro-meteorological
events, the sediment source, terrain disturbances, and human action. High-flow events
are responsible for a large portion of a river’s total sediment load [2], and it has been
estimated that 40–80% of the total river sediment load is transported in 2% of the time [3].
As such, a measurement device that could present the low-frequency acquisition rate would
underestimate the suspended sediment fluxes, as well as the fluxes of associated elements
that are transported on the particles such as nutrients, heavy metals, and pathogens.

Having a complete picture of the sediment load variability can be extremely important
for reservoir sediment management, particularly in dams located in rivers with high
sediment concentrations, as siltation is one of the most significant operational challenges in
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the usage of hydropower [4]. This is a problem worldwide: for instance, in Asia, a reduction
of 80% of the operational storage volume is expected by 2035, and in Europe by 2080 [5,6].

Water bodies contain spectral information that can be converted into data about its
optically active constituents (OACs), such as phytoplankton, colored dissolved organic
matter (CDOM), and suspended particulate matter (SPM). For this reason, remote-sensing
instruments have been successfully used as a tool to monitor the concentration of OACs
in such water bodies [7–10]. Their application in the estimation of suspended solids
concentration is already well established in the literature, both with field radiometric
sensors and with the use of orbital sensors [11–14]. However, even though satellite images
are advantageous from the point of view of their spatial coverage, they have limitations
regarding their temporal and spectral resolution. Most available satellite sensors can offer, at
best, an image every day from the same location and are limited by the occurrence of cloud
coverage that can severely reduce the availability of spaceborne sensor imagery during
rainy episodes and high-flow events. The collection of airborne radiometric data enables
higher acquisition frequency, but it still requires significant human resources for operation
and cannot be used as a permanent monitoring alternative [15,16]. Conventional water
quality monitoring is based on the collection of frequent water samples for analysis using
local operators or automatic sampling instruments which require frequent maintenance,
being impossible to deploy at a large scale within the catchments. Consequently, the
estimation of the suspended sediment load being transported by a given river can suffer
from very significant inaccuracies when using sampling methods or satellite data [17,18].

For this reason, continuous turbidity measurements through underwater probes are
generally the most utilized method for the estimation of river SPM as, once calibrated, they
do not require water sampling [19–21]. Hence, to retrieve SPM from a turbidity record, a
concentration curve that relates the turbidity measurements to SPM must be created using
samples collected during a period long enough to cover all kinds of hydrological conditions.
The absence of this kind of calibration procedure can create errors in the final estimated
SPM values, due to the turbidity measurement sensitivity to sediment grain size variability
and to the relative organic fraction. Furthermore, turbidity probes require direct contact
with the water, leading to rapid degradation (i.e., biofouling) of the measurements without
appropriate and frequent maintenance [22].

Given this context, the utilization of field spectroradiometric stations for measuring
SPM appears as an innovative alternative to acquire high-frequency data without any
invasive sampling. Although some field spectroradiometric stations have been used for
the continuous monitoring of water reflectance [23–25], they have been mostly used for
the purpose of satellite sensor calibration and validation [26,27], not for the continuous
measurement of water constituents in relation to watershed monitoring. Additionally,
existing measurement protocols [28–30] generally limit this measurement scheme to optimal
environmental illumination conditions, such as optimal sun elevation and relative azimuth
angles, as well as clear-sky conditions. Data degradation in suboptimal conditions is mostly
caused by uncorrected features originating from sky and sun reflection on the water surface
(i.e., “glint effect”). For this reason, different approaches have been proposed to correct
such errors, such as: (1) calculating the most appropriate value of the surface reflection
factor (ρ) [28,31]; (2) using the dark pixel assumption at certain wavelengths to infer the
effect of glint [32]; (3) exploiting some spectral features of the water reflectance, which is
nearly invariant in the near-infrared [33]; and (4) the use of pure-water absorption features
in the reflectance spectra to infer the amount of glint to be corrected [34].

There is a need to further assess the capacities of field continuous radiometry for
inland water quality monitoring, exploring the variability of the remote-sensing reflectance
(Rrs) in a broad range of weather and illumination conditions that include large irradiance
variability and contrasted weather conditions corresponding to nearly the whole daytime.
For this objective, we developed an experiment that consisted of acquiring continuous,
hyperspectral radiometric data from sunrise to sunset in a reservoir located in the tropics
(central Brazil) at the end of the rainy season with very different conditions corresponding
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to fully cloudy conditions, tropical rain events, or to bright days with small solar zenith
angle (θ) conditions at midday.

This article presents a methodology to retrieve continuous SPM records from hyper-
spectral data based on the detection of broad weather conditions, the benchmarking of
physically based reflectance correction schemes for sun/sky glint, followed by statistical
noise reduction procedures in order to produce robust Rrs time series acquired at a 30 s time
scale. The Rrs data are then processed for SPM calculation and an assessment of the method
error is presented. Instead of looking at a water body presenting varying water quality, we
took the reverse option of looking at a stable water body corresponding to the dam area of
a large reservoir. Large reservoirs present very stable conditions in their downstream parts
as strong sedimentation occurs upstream, and in such reservoirs, turbidity may vary by
only a few percent during an entire year [35]. The stability of the water SPM load across
the whole experiment made it possible to identify and study all the artifacts inherent to Rrs
acquisition and processing and to quantify their relative importance.

In this work, a measurement and processing scheme is proposed, in which different
complementary correction methods are applied to the same set of radiometric data that are
capable of measuring water SPM under varying illumination conditions. Particularly, to do
this we will: (1) collect controlled high-frequency continuous radiometric measurements
from a reservoir; (2) test different methodologies for obtaining Rrs; (3) process the estimated
Rrs to reduce noise and unwanted variability; and (4) retrieve the high-frequency, continu-
ous concentration of SPM. As such, we aim to evaluate these correction methods to identify
the best performing ones and to propose a processing pipeline that can obtain continuous,
high-frequency Rrs spectra and SPM concentrations in suboptimal observation conditions.

2. Materials and Methods
2.1. Test Site

The measurements were taken in the Queimado Reservoir located at the outlet of
the Preto River catchment, which is a tributary of the São Francisco River in Brazil, as
shown in Figure 1. The reservoir is used for both hydropower generation and irrigation
and is maintained by the CEB and CEMIG companies. The Preto River catchment is an
area of 3600 square kilometers, where the mean annual rainfall is 1336 mm and the rainy
season extends from November to April. The Queimado Reservoir itself has an area of
36 square kilometers.
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Figure 1. Map showing measurement station location in central Brazil.

We gathered hourly data collected by an automated meteorological station from
INMET (Instituto Nacional de Meteorologia), located 33 km from the measurement station.
The average temperature during the radiometric experiment was 22.4 ◦C (max 29.8 ◦C;
min 17.7 ◦C) and average wind speed was 1.9 m/s, with a std of 1.1 m/s. Although gusts
of wind of up to 10.3 m/s were recorded, the upper quartile wind speed was 2.4 m/s.
Precipitation was recorded for 7 of the 18 days of measurement, totaling 24.8 mm of rain.
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While radiometric measurements were being acquired, the station was visited on
three different days, in which water samples were collected at approximately midday
to determine the SPM concentration at the dam surface at the experiment location. The
concentration of total solids in suspension was then determined by the method described
by the APHA [36]. The samples were filtered through cellulose acetate filters, previously
dried for 24 h at 60 ◦C. After filtering, the filters were dried again for 24 h at 60 ◦C. The
suspended solids concentration was then determined by the difference in weights before
and after filtration. All three samples found a SPM concentration of 1.0 g/m3.

2.2. Radiometric Measurements

Radiometric measurements were performed continuously for 18 days (12 April 2019
to 30 April 2019) using TriOs RAMSES radiometers operating in the 350–950 nm spectral
range. One radiometer was mounted with a cosine collector for irradiance measurements,
and two other radiometers were equipped for radiance measurements with a field of view
of 7◦. All the radiometers were synchronized to simultaneously record a measurement
every 30 s. Measurements were collected from an intake tower located in the reservoir near
the dam, with a water column of about 10 m eliminating any possible influence from the
reservoir bottom or shore. The radiometers were located about 7 m above the water surface.

We utilized a viewing angle of 40◦ (angle between the radiometer and a downward
vertical axis) for the radiance radiometers, whereas the irradiance radiometer was pointed
towards the zenith following the protocol proposed by Mobley [28]. The radiometer’s
azimuth remained fixed during the whole experiment at 240◦ (north clockwise), meaning
that the radiometer-sun relative azimuth was constantly varying as a function of the
apparent sun movement in the sky. This relative azimuth was chosen to both reduce
shading from the structure to which the station was mounted and to maximize the time
in which the relative azimuth was larger than 90◦. We chose not to use rotating platforms
as this kind of installation would be hardly feasible for water quality measurements in
isolated conditions.

2.3. Data Processing

A specific evaluation scheme was designed to evaluate the respective performances
of the different retrieval modalities to be applied to the raw radiometric data for the
determination of Rrs. This scheme was also completed using two different methodological
approaches to obtain the SPM concentration from Rrs. These methods are described below
and are shown schematically in Figure 2.
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Figure 2. Data processing methodology schematic.

The processing scheme for obtaining Rrs consists of three main steps: (1) direct retrieval
of Rrs from the radiometric data (Ed, Ld, and Lu); (2) further postprocessing to correct
for residual glint effects in Rrs; (3) time-series smoothing based on a smoothing filter
applied to the acquired time-series. The methods used in each step are described in the
following sections.
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2.3.1. Rrs Calculation Methods

As proposed by Mobley (1999) [28], Rrs can be calculated as shown in Equation (1).

Rrs(λ) =
Lu(λ)− ρ ∗ Ld(λ)

Ed(λ)

[
sr−1

]
(1)

where Ed(λ) is the downwelling irradiance above the water surface, Lu(λ) is the upwelling
radiance above the surface water, and Ld(λ) is the sky radiance, which is used to correct
for the skylight reflection effect at the air–water interface. The above-water upwelling
radiance Lu is the sum of the water-leaving radiance Lw(0+) and of the surface radiance,
Lsurf, originating from the sun and skylight (or cloud) reflected onto the air–water interface.
Because only Lu is directly measurable, Lsurf is, in its simplest formulation, assessed as
Lsurf = ρ Ld, where ρ is a proportionality factor frequently referred to as the Fresnel surface
reflectance factor. The factor ρ is not an inherent optical property of the surface and is
dependent on sky conditions, wind speed, solar zenith angle, and viewing geometry, and
varies with wavelength. The next four models described use different approaches to derive
the value of ρ:

1. A value of ρ equal to 0.028 was assessed from the optical modeling for ideal con-
ditions (i.e., perfectly plane surface) and for a viewing angle of 40◦ and relative
azimuth of 135◦. This method is henceforth referred to as M99(1) and stands as the
simplest correction approach as it does not vary as a function of viewing geometry
nor wavelength.

2. Rrs calculated using the ρ table from Mobley [28] and applied to Equation (1). The
table offers specific ρ-values for combinations of wind speed, relative azimuth, and
viewing angle. As such, to find ρ, relative azimuth values were determined at each
measurement step, the viewing angle was 40◦, and the wind speed was assumed to
be 2 m/s for all data points. It should be noted that even though some meteorological
wind data were available, it was not accurate enough to be used for shorter time
scales; thus, an overall wind velocity average was preferred. Henceforth, it is referred
to as M99(2).

3. Rrs calculated similarly to M99(2), but using the updated rho table published in [31].
Henceforth, it is referred to as M15.

4. Following the abovementioned approach, the ρ-factor was also computed using the
radiative transfer code OSOAA [37]. Those computations enable us to directly handle
the impact of the light polarization at play in the skylight reflection on the rough
water surface [38]. Spectral ρ-factor values were computed for two aerosol-load cases:
(i) a fine-mode aerosol model with a modal radius of 0.06 µm and (ii) a coarse aerosol
mode with a modal radius of 0.6 µm. For both cases, simulations were performed for
a series of aerosol optical thicknesses (from 0 to 1 at 550 nm), several wind speeds
(0 to 12 m/s), and for a great number of viewing geometries corresponding to the sun
zenith from 0 to 88◦ (increment 4◦) and azimuth angles from 0 to 360◦ (increment 5◦).
Note that only clear-sky conditions were considered in those computations. In the
rest of the article, the methods using the fine- or the coarse-mode aerosol are referred
to as OSOAA(fine) and OSOAA(coarse), respectively.

5. The three-component method (hereafter referred to as 3C) exploits an approach in
which the spectral dependence of the glint contribution is obtained by distinguish-
ing three irradiance components: the direct solar irradiance, the diffuse molecular-
scattered irradiance, and the diffuse aerosol-scattered irradiance. The 3C method
combines an aquatic component, in which a semi-analytical, bio-optical model is
used to estimate Rrs based on certain optical properties as well as boundary condi-
tions and an atmospheric correction model. An optimization procedure is then used
to minimize an objective function related to the differences observed between the
modeled and measured values of Lw/Ed, which returns the values of the nine free
parameters used in the aquatic and atmospheric models. Rrs is then determined by
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utilizing the four atmospheric free parameters to calculate a spectrally dependent
glint offset and then find Rrs based on measured values of Ed, Lu, and Ld. A more
complete description of the model can be seen in the original work [39] as well as in
the follow-up paper [40]. It should be noted that, although the 3C method is an Rrs
calculation method in the sense that it takes radiometric data as input and outputs Rrs
curves, it is also a postprocessing algorithm in the sense used in this article, as it was
developed with the intent to correct spectra obtained in suboptimal conditions. For
this reason, further postprocessing steps (see next section) used in the present study
were not applied to the 3C model.

2.3.2. Rrs Postprocessing Methods

1. The similarity spectrum, as described in Ruddick et al. [33]. In this method, we assume
that the true Rrs is related to the measured Rrs by a flat error factor ε, as shown in
Equation (2).

R ′rs(λ) = Rrs(λ)− ε (2)

This error factor ε can be estimated as:

ε =
α·Rrs(λ1)− Rrs(λ2)

α− 1
(3)

in which λ1 and λ2 are two suitably chosen NIR wavelenghts, and α is a related
tabulated value provided by the authors. The authors suggest using two suitable
pairs of wavelengths, (λ1, λ2) = (720 nm, 780 nm) and (780 nm, 870 nm), which are
calculated with α = 2.35 and α = 1.91, respectively. Both pairs of wavelengths were
tested in this study and are further referred to as R05(1) and R05(2).

2. The correction method proposed by [34]—further referred to as J20, which utilizes the
relative height of the water absorption dip-induced reflectance peak at 810 nm—uses
RHW as a baseline index. RHW can be calculated using Equations (4) and (5).

RHW = Rrs(810)− R′rs(810) (4)

R′rs(810) = Rrs(780) + (Rrs(840)− Rrs(780))× (810− 780)/(840− 780). (5)

The authors then proposed a method to estimate Rrs at 810 nm, in which Rrs(810)
is empirically derived from RHW based on a synthetic dataset. As such, Rrs(810) can be
calculated with the following equation.

estimatedRrs(810) = 16, 865.541RHW3 − 52.728RHW2 + 3.361RHW (6)

The value of ∆ can then be calculated using Equation (7) and used to derive the
corrected Rrs with Equation (8):

∆ = estimatedRrs(810)− Rrs(810) (7)

J20Rrs(λ) = Rrs(λ)− ∆ (8)

3. An adaptation of the method proposed by [32], in which we fit a power function of
the Rrs values between the spectral ranges of 350–380 nm and 890–900 nm, and then
subtract the values of the obtained power function from the original Rrs. In the original
work, the authors perform the correction directly on the reflectance values (Lu/Ed).
Here, we apply the correction scheme to previously calculated Rrs, as presented in the
previous section. Henceforth, it is referred to as K13.
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2.3.3. Rrs Time-Series Smoothing

Following the first two processing steps, a moving median smoothing filter was then
applied to the Rrs data. For a window n and timestep t, it was calculated using Equation (9).
For this study, we chose n = 30 (15 min window).

Rrsmedian(λ, t) = Median(Rrs(λ, t− n), Rrs(λ, t− n + 1), . . . , Rrs(λ, n− 1), Rrs(λ, n)) (9)

2.4. Validation

The assessment of each method was carried out via a statistical comparison of the
unsigned percent difference (UPD) values, as shown in Equations (10) and (11).

UPDday =
100
N

N

∑
i=1

Rrsi − Rrsref(λ)

Rrsi
(10)

UPD =
UPDday

Number of days
(11)

in which the reference remote-sensing reflectance (Rrsreference) was determined, for each
day, as the median of the Rrs collected with ideal illumination conditions during that day,
and the i value refers to each individual Rrs spectra measured that day. The UPD is then
calculated as the average of the UPD values obtained for each day.

The chosen validation procedure is based on the assumption that the magnitude of
intraday variation in Rrs is almost totally due to the variation in observational parameters,
such as weather and sun position, and not due to changes in water composition.

2.5. SPM Assessment

The processed Rrs was then used to measure SPM concentration using a simple
band ratio formula. To do this, we chose two state-of-the-art methods which employ
different approaches to estimate the SPM from the Rrs data. The first method, proposed by
Nechad et al. [41], utilizes a semi-empirical formulation, in which the SPM concentration is
obtained with Equation (12):

SPM = A
Rrs

1− Rrs
C

+ B (12)

in which A, B, and C are wavelength-dependent parameters that were empirically cali-
brated in the original study. Here, we utilize λ = 665 nm, for which the parameters are
355.85 (g·m−3), 0.1728(g·m−3), and 1.74. This wavelength was chosen as it showed good
performance in the original study (coefficient of multiple determination, R2 = 78.9%) and
also allows for better comparison with the second SPM calculation method, which is also
based on values at 665 nm (although not exclusively).

The second SPM calculation method, proposed by Balasubramanian et al. [42], utilizes
a hybrid approach, in which the water type is first identified, and then different processing
steps are carried out for each type. The SOLID model starts with a semi-analytical step,
in which the particulate backscattering (bbp) at 665 nm is estimated using the so-called
quasi-analytical algorithm (QAA) [43]. SPM is then retrieved by an empirically calibrated
power-law function, given by Equation (13):

SPM = 53.736× bbp(665)0.8559 (13)

3. Results
3.1. Radiometric Data

Radiometric data were successfully acquired during the entire measurement period
without interruption. Due to the presence of shadowing effects in the data collected during
early morning and late afternoon, we only processed measurements in which the sun zenith
angle was <70◦, which resulted in a total of 18,371 measurement sets of Ed, Lu, and Ld in
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situ measurements. Figure 3 shows the variation of the sun zenith angle and sun-sensor
relative azimuth during the measurement period, over which we observed a minimum sun
zenith angle of ~25◦.
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Figure 3. Sun zenith angle and sun-sensor relative azimuth corresponding to all radiometric mea-
surements collected during the 18-day experiment.

As data were collected throughout most of the day, there was considerable variability
in the Lu, Ld, and Ed data (Figure 4). Most of the variability in the raw data was simply
due to varying direct solar irradiance; however, significant variability was also induced
by changing sky conditions (i.e., cloud coverage). Table 1, in which normalized data
show a high coefficient of variance values for three different wavelengths, also shows this
behavior. Figure 4a shows the Lu, Ld, Ed, and Rrs time series at 550 nm from a whole day
of acquisition. Morning sky conditions match clear-sky conditions until 10 a.m., showing
steadily increasing Ed values and stable records for the other variables. From 10 a.m. to
3:30 p.m., we note strongly varying values of Ed (550) (varying between m246 Wm−2nm−1

and 1654 mWm−2nm−1) and Ld as a function of cloud coverage. For the latest time period
until 4:30 p.m., we note a very low Ed (of about 200 W·m−2) but rather elevated Ld values.
This shows how challenging it is to apply the correction of Rrs as a function of varying
illumination geometry and/or cloud coverage.

Table 1. Coefficient of variation for cosine-normalized radiometric measurements at selected wave-
lengths for the 18-day experiment.

CV at 400 nm CV at 550 nm CV at 665 nm

Lu/cos(θ) 29.7% 37.6% 60.2%

Ld/cos(θ) 48.2% 86.2% 108.7%

Ed/cos(θ) 41.2% 45.5% 48.0%

A more detailed inspection of the intraday variability shows that there are periods
of time in which the radiometric data stay stable and periods when they vary quite a lot.
These variations, which occur even on successive data points (30 s intervals), coincide with
variations in sky conditions, mostly related to cloud coverage. To more efficiently assess the
gain of the different processing/correction schemes that were evaluated, we classified the
dataset into three different categories. The first two categories are related to the measured
and cosine-normalized Ed (which serves as a simple proxy for the expected clear-sky Ed).
This classification was determined based on the distribution of the cosine-normalized
values of irradiance at 55 nm, as shown in Figure 5. The bimodal distribution was divided
into two classes—clear sky and cloudy—using a chosen threshold of 1350 mWm−2nm−1.
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Figure 4. Radiometric measurements. Panel (a) shows radiometric values at 550 nm that were
recorded on the 7th day of measurement, Lu and Ld values are shown on the main axis, and Ed values
are on the secondary axis. Panels (b–d) show cosine-normalized radiometric spectra recorded on the
7th day of measurement. Panels (e–g) show percentile values of radiometric spectra for the whole
dataset (all 18 days).
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We also classify measurement points in an additional class referred to as “ideal con-
ditions”, which is a subset of the clear-sky class, corresponding to when there are op-
timal measurement conditions. In this class, data with a relative azimuth >90 ◦ and
sun zenith angle < 50◦ were selected and then filtered to remove measurements with too
many scattered clouds. To do this, measurements in which Ld values were higher than
expected due to pointing at a cloud (Ld(550) > 0.15 mWm−2nm−1sr−1) were removed,
as was the top half of the clear-sky dataset (Ed/cos θ > 1618 mWm−2nm−1). After clas-
sification, the clear-sky, cloudy, and ideal classes were composed of 10,771, 7600, and
2612 measurements, respectively.

3.2. Obtaining and Processing Remote-Sensing Reflectance

We defined a reference Rrs spectra for each day in order to validate the different Rrs
calculation models. These reference spectra were selected using data obtained for each
day during the best cloud-free conditions. As shown in Section 2.4, model validation was
performed using data collected during ideal conditions from each measurement day. As
such, Figure 6 shows all reference spectra used for the UPD calculation. As it can be seen,
during the 18 measurement days, spectra collected in ideal conditions remained relatively
stable. For example, the coefficient of variation of the reference Rrs for the M99 model was
7.4% at 44 nm, 4.6% at 55 nm, 5.0% at 66 nm, and 8.9% at 800 nm.

Rrs data were calculated and postprocessed using the different models described in
Sections 2.3.1 and 2.3.2. Each Rrs calculation and postprocessing scheme combination had
its performance assessed, as described in Section 2.4. The results for ideal, clear-sky, and
overcast conditions are shown in Figure 7 for the range between 400 nm and 700 nm. As
expected, UPD values were the lowest in ideal and clear-sky conditions, and considerably
higher in overcast conditions. For almost all methods, UPD values were lower in the
500 to 600 nm range, and higher when closer to 400 nm or 700 nm.

Amongst the Rrs calculation methods (without further processing, first column in
Figure 7), 3C had the lowest overall UPD values in all situations analyzed. At 665 nm,
we found that the UPD was 33.26%, 8.69%, and 2.52% for overcast, clear-sky, and ideal
conditions, respectively, for this method. For ideal and clear conditions, the UPD was
mostly stable throughout the analyzed spectral range; however, for overcast conditions,
the UPD was considerably higher when closer to 400 nm or 700 nm.

The M99(1), M99(2), OSOAA(fine), and OSOAA(coarse) methods showed very sim-
ilar UPD values in all conditions, especially in ideal and clear-sky conditions, in which
differences between them were negligible. The UPD(665 nm) for overcast, clear-sky, and
ideal conditions stayed within the ranges of 4.24–4.89%, 13.37–14.62%, and 54.47–88.23%
for these four methods, respectively. Conversely, the M15 method had a markedly infe-
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rior performance in all conditions, although the UPD values for the clear-sky and ideal
conditions were still satisfactory (i.e., lower than 17% at 665 nm).
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Figure 6. Reference Rrs spectra obtained by each calculation method used. (a) 3C; (b) M99(1);
(c) M99(2); (d) M15; (e) OSOAA(fine); (f) OSOAA(coarse). Each curve is the reference
Rrs of a day of measurement that corresponds to the best measurement acquisition con-
ditions (relative azimuth > 90◦, sun zenith angle < 50◦, Ed/cos θ > 1618 mWm−2nm−1,
Ld(550) < 0.15 mWm−2nm−1sr−1).

A correction processing step was then applied to the Rrs obtained by each calculation
method (except spectra obtained by the 3C method, as it already includes correction
procedures), as shown in columns 2–6 of Figure 7. Both the R05(2) and the J20 algorithms
showed significant reductions in UPD values when applied to calculation methods. Overall,
R05(2) was slightly more successful. As an example, when it was applied to the M99(1)
calculation method, The UPD(665 nm) for each weather condition was reduced from
65.83%, 14.62%, and 4.55% to 18.17%, 5.25%, and 2.54%, respectively. When applied to the
same calculation method, J20 achieved UPD(665 nm) values of 29.85%, 6.23%, and 3.1%.
In contrast, the R05(1) method only slightly improved UPD values, and even worsened
them in some pairings. The K13 algorithm also had unsatisfactory results; even though it
successfully reduced UPD values for overcast conditions, it significantly worsened the UPD
for clear-sky and ideal conditions, i.e., when applied to OSOAA(fine), the UPD(665 nm) at
ideal conditions went from 5.54% to 13.2%, except when it was applied to the M15 method
(which curiously was the worst performing method on its own).
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When looking at UPD(665 nm), only a small difference was observed between the dif-
ferent calculation methods when applied to the best-performing postprocessing algorithms
(R05(2) and J20). However, when looking at lower wavelengths, both OSOAA methods had
better results in ideal and clear-sky conditions while having worse results when overcast.
When postprocessed by R05(2), the M99(2) method found the UPD(450 nm) of 15.0%, 9.7%,
and 3.9% for overcast, clear-sky, and ideal conditions, respectively; when applying the
same method, OSOAA(fine) found respective values of 26.6%, 3.6%, and 7.8%.

Percentile values (5%, 25%, 75%, and 95%) of the resulting spectra that had the lowest
overall UPD values, as well as all spectra from day 7, are shown in Figure 8. In it, we can
see that: (1) 3C achieved a low variance for spectra in the blue range, even in very varied
weather conditions; (2) OSOAA(fine) + J20 and OSOAA(fine) + R05(2) have very similar
resulting spectra percentiles; (3) in the >600 nm range, algorithms were very effective at
correcting values above the median spectral values, with most of the observed variance
being observed for values with a negative bias; and (4) the most significant variation was
still observed closer to the reflectance peak at 550 nm.
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3.3. Time-Series Smoothing

After obtaining processed spectra, we applied a simple 15 min window moving
median to the time-series spectral data as a smoothing filter. Figure 9 shows the resulting
time series for Rrs(665 nm) for days 7 and 8 that compares the spectra obtained by M99(1),
as well as that of OSOAA(fine)/R05(2) before and after smoothing. Rrs obtained by the
M99(1) method, which is shown as a baseline reference, resulted in highly variable Rrs
during cloudy conditions, which occurred during most of day 7. During day 7, Rrs-M99(1)
remained mostly stable until around 14:00, when some variation was observed due to
the presence of scattered clouds. On the other hand, Rrs obtained with OSOAA(fine) and
R05(2) shows some variability during cloudy conditions, but significantly less than what is
observed when applying M99(1). After smoothing, variability was further reduced, with
the resulting Rrs(665) staying quite stable throughout the day. As such, UPD(665) values
of the OSOAA(fine)/R05(2) model were reduced from 18.2% for overcast conditions to
10.4%, and from 5.3% to 4.6% and from 2.8% to 2.6% for clear-sky and ideal conditions,
respectively, when applying the smoothing filter.
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Figure 9. Comparison of Rrs at 665 nm, obtained using (i) M99(1) method; (ii) OSOAA(fine) post-
processed with R05 method; (iii) OSOAA(fine) postprocessed with R05 method with a final appli-
cation of a 15 min rolling median filter. Data presented for the 7th (above) and 8th (below) day
of measurement.

3.4. Variation Due to Sun Angular Position

In order to verify the model performance with regard to the variation of the incident
solar angle throughout the day, Figure 10 shows mean UPD(%) values for four different
processing/postprocessing combinations during clear-sky conditions. We found that,
after processing, the UPD was also lowered in these conditions, especially due to an
improvement during times when the relative azimuth was <90◦. It can be readily seen that
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the M99(1) method performed poorly when the relative azimuth was lower than 90 degrees.
However, the other three graphs show that the methods used were effective at improving
data quality for low values of the relative azimuth and average UPD(665 nm) values for
sun-sensor relative azimuths lower than 90◦, which in clear-sky conditions were 36.9%,
20.5%, 14.3%, and 10.9% for the M99(1), 3C, OSOAA(fine) + J20, and OSOAA(fine) + R05(2)
model combinations, respectively.
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Figure 10. UPD(%) of different Rrs models measured in clear-sky conditions at different relative
azimuth and sun zenith angles. (a) M99(1); (b) 3C; (c) OSOAA(fine) + J20; (d) OSOAA(fine) + R05(2).

This suggests that, even though most Rrs measurement protocols recommend values
of a relative azimuth close to 135◦, or at the very least, higher than 90◦ [29,30], the usage
of correction algorithms such as the ones applied in this study can extend the angular
relative azimuth range in which spectral data can be collected using field radiometry. With
regard to the effect of varying the sun zenith angle (which was only collected when lower
than 70◦), a significant degradation in spectral quality was not observed in the studied
range, with only a very slight difference being observed for values higher than 65◦. This
performance for varying sun angles significantly increases the viability of a permanent
radiometric station such as the one used in this study for the measurement of Rrs in inland
water bodies.

3.5. SPM Estimation

Using spectra obtained by different methods, SPM was then estimated using the
N10 and SOLID models. Table 2 shows the values of the mean SPM during the entire
measurement period, as well as the coefficient of variation, for four different methods with
and without the smoothing filter. In accordance with the findings regarding the different
correction algorithms, the best-performing calculation/correction methods reduced the
observed CV when compared to the baseline M99(1) model, while not changing the mean
SPM significantly. Similarly, applying the smoothing filter also decreased the observed CV.
More interestingly though, we found a significant disparity in the observed CV between
the different SPM inversion methods used. Although mean values were similar (~2.3 g/m3
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for N10 and ~1.7 for SOLID), the QAA-based SOLID algorithm had much lower values
of CV. In fact, when combining all the best-performing processing steps (OSOAA(fine),
R05(2), with the smoothing filter, applied to SOLID), we find a CV of only 2.7%, in contrast
to a CV of 69.5% found when applying the simplest processing pipeline (M99(1) applied to
N10). SPM was also determined from water samples collected during the experiment, in
which the three water samples found an equal SPM concentration value of 1.0 g/m3.

Table 2. Coefficient of variation and mean of SPM values obtained using different Rrs spectra and
SPM inversion models.

No Smoothing With Smoothing

Rrs Model SPM Model Mean (g/m3) CV (%) Mean (g/m3) CV (%)

M99(1)
N10 1.74 69.5% 1.68 53.6%

SOLID 2.23 17.5% 2.24 10.3%

3C
N10 1.76 43.8% 1.72 25.6%

SOLID 2.24 10.7% 2.26 4.9%

OSOAA(fine) J20
N10 1.60 52.5% 1.58 30.4%

SOLID 2.32 7.3% 2.33 3.9%

OSOAA(fine) R05(2)
N10 1.65 48.5% 1.63 29.4%

SOLID 2.20 4.1% 2.2 2.7%

4. Discussion

After all processing steps, the obtained spectra had their quality improved when
compared to spectra obtained using the most straightforward processing methodology
(M99(1)). In particular, the 3C method was highly effective in reducing the observed UPD,
and although the other calculation methods did slightly improve spectra quality (except
for M15 which worsened spectral errors), the best performance was found by applying
the obtained spectra to correction algorithms. We found that both J20 and the R05(2) were
sufficiently effective at reducing errors in all starting reflectance calculation methods. R05(1)
did not significantly improve spectra quality, and K13 was only effective at correcting data
collected during cloudy conditions. After applying correction algorithms, we found that
the spectra resulting from both OSOAA methods had the overall best results with respect to
the UPD, with satisfactory results in the whole spectrum range. When looking specifically
at blue wavelengths, the 3C method also showed satisfactory results, especially in ideal
and clear conditions, in which it was the best-performing method. This is consistent with
what was reported by Groetsch et al. [39], who found that using a spectrally dependent
correction offset was the most appropriate. In contrast, Jiang et al. [34] argued that the
wavelength dependance of a correction offset is negligible. In a sense, our results support
both affirmations, in that although there were considerable differences between models that
used these differing approaches, these results were only significant at shorter wavelengths
between 350 nm and 450 nm.

The best results were found when applying R05(2) to OSOAA(fine) spectra. Even
before applying the smoothing filter, the resulting UPD is already satisfactory enough to
be used as the valid Rrs for the estimation of water OACs. Using M99(1) as a comparison
baseline, we can see how effective the error correction was, particularly during cloudy
conditions, in which the UPD(665 nm) went from 88.23% to 18.17%. Although R05(2)
showed great results in this study, the authors of the original study say that the model is
limited to waters with relatively low concentrations of SPM, which is the regime in which
the water similarity spectra can be applied. In contrast, both 3C and J20 were reportedly
calibrated for a much larger SPM concentration range. Therefore, although R05(2) had
better results in this study, different water conditions might yield better results for the other
methods mentioned above.
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The final processing step of applying a smoothing filter to the time-series data was
also found to be highly effective at reducing observed errors. This points to a conclusion
where a high proportion of observed variance is due to stochastic effects in measured
data, which is mostly due to variation in cloud position and illumination and, to some
extent, to radiometer measurement artefacts. However, the usage of such a filter does limit
the information that can be collected from small time intervals, and thus, an appropriate
filter window should be chosen to reflect the objectives of the measurement. In this study,
we chose a 15 min window, as we found that it was sufficient to significantly decrease
errors while still being much smaller than the interval in which water components typically
change to a significant degree. Thus, different water body dynamics might justify a different
postprocessing choice.

We also found that different state-of-the-art SPM inversion models can find signifi-
cantly different results with regard to the variability of the observed data. When comparing
the mostly empirical N10 algorithm to the SOLID algorithm, which is a single-blended
algorithm that applies an empirical and analytical approach, we found that the SPM esti-
mated using SOLID had much lower values of CV. Indeed, this reduction in the overall
SPM variability found is probably because the SOLID model estimates SPM by applying
an empirical expression to bbp retrieved by QAA. Additionally, by being a physically based
model, QAA can estimate bbp independently of certain spectral variations, reducing the
overall variability. However, even though these methods performed differently regarding
observed variability, mean values were similar and in line with what was found with
laboratory-analyzed water samples.

With regard to the SPM estimation, the relationship between OACs, water optical
properties, and SPM can vary significantly depending on the specific properties of each
individual water body, and for this reason, estimates derived from remote-sensing data
will not be as accurate as other more direct measurements [44]. As such, the lack of a
more detailed analysis of the accuracy of retrieved SPM concentrations is a limitation of
this study as the SPM concentration results are based on the assumption that the existing
SPM inversion algorithms can be applied to the studied environment. However, still,
these estimates can provide valuable information to understand suspended sediment
dynamics, and Rrs-derived SPM data has been used in a variety of aquatic environments
(e.g., coastal lagoons and estuarine areas [45], tropical rivers [46], river floodplains [47],
river confluences [48], etc.).

Another important consideration regarding the findings of this study is that the model
assessments did not use, as reference values, field-validated spectra that could be derived,
for example, from subsurface reflectances. Instead, we used as a reference the Rrs spectra
that were collected in ideal conditions during each measurement day. For this reason,
the resulting UPD values for each model are best interpreted not necessarily with regard
to finding the actually correct spectra, but more specifically for stabilizing the effects of
changing illumination conditions over time. Additionally, water conditions, as well as Rrs
spectra, measured during ideal conditions remained very stable throughout the duration
of the study. Additionally, although this is very advantageous with regard to comparing
calculation and correction algorithms, as the illumination variables could be better isolated,
it also means that only a specific water condition was evaluated.

In summary, we found that there is a high potential for the application of autonomous
radiometric measurement stations to measure optically active components in water. As
such, a radiometric station could be used as a viable alternative in the monitoring of water
bodies, such as reservoirs and rivers, and the high-frequency nature of the measured data
could create further opportunities for the understanding of temporal dynamics of SPM,
as well as other OACs. Although varying illumination conditions create challenges in
the processing of spectral data, the combination of existing calculation, correction, and
smoothing algorithms can considerably reduce errors in measured data. However, further
studies are still necessary, particularly to understand how such a processing pipeline would
fare in other water conditions.
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