
HAL Id: hal-04872001
https://hal.science/hal-04872001v1

Preprint submitted on 7 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Autostabilizing Minimal Clique Decomposition with
Byzantine Faults tolerance

Johanne Cohen, Laurence Pilard, Jonas Sénizergues

To cite this version:
Johanne Cohen, Laurence Pilard, Jonas Sénizergues. Autostabilizing Minimal Clique Decomposition
with Byzantine Faults tolerance. 2025. �hal-04872001�

https://hal.science/hal-04872001v1
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

Autostabilizing Minimal Clique Decomposition with

Byzantine Fault tolerance

Johanne Cohen1, Laurence Pilard2, and Jonas Sénizergues3

1LISN, Université Paris-Saclay & CNRS
2Li-PARaD, Université Versailles Saint-Quentin-en-Yvelines

3LaBRI, Université de Bordeaux

January 7, 2025

Abstract

In this paper, we tackle the problem of finding a minimal clique
decomposition of the underlying graph of a distributed system, in the
presence of transient and byzantines faults. We propose a distributed
algorithm that performs such a decomposition of the underlying graph
-minus byzantine nodes and nodes that are “too close” to them-. It
does so in O(∆n) rounds with high probability.

1 Introduction

The (Vertex) Clique cover problem is a well-known NP-complete problem
among Karp’s 21 in its minimization version [6]. It has, among other things,
been used to approximate Vertex Cover [2].

Definition 1 (Clique cover). Consider a graph G = (V,E), a clique cover
X = X1,X2, . . .Xℓ of G is such that:
- clique: Xi is a clique of G,

- cover:
⋃

i∈J1,ℓK Xi = V .

In centralized computing, it is equivalent to the problem of Clique De-
composition where you expect the cover to be also a partition of V . Any
clique decomposition is a clique cover, and to find a clique decomposition
it is enough to remove duplicate nodes from one clique until there is no
such duplicate left. However, it is not the case in distributed computing, as

1

choosing which duplicate to remove needs coordination. In this chapter, we
will study the Minimal Clique Decomposition problem, specified as follows.

Definition 2 (MCD Specification). Consider a graph G = (V,E), a minimal
clique decomposition X = {X1,X2, . . .Xℓ} of G is such that:
- clique: Xi is a clique of G,

- partition: X is a partition of V ,

- minimal: For any i, j distinct in J1, ℓK, Xi ∪ Xj is not a clique of G.

It is equivalent to the Coloring problem as it is enough to replace the
edge set by its complement to go from one problem to the other. Or so is the
case when you consider centralized computing. In distributed systems where
you search for the solution of a graph problem on the underlying graph of
the said system, the connectivity directly affects the computations. Here,
we deal with the problem of finding a minimal clique decomposition of the
graph of communications under the state model, with the possible presence
of Byzantine nodes.

2 State of the art

Searching for cliques already has a long history in distributed systems:
building upon the work in parallel computing [1], Jennings and al. [5] give a
distributed algorithm to find all maximal cliques in a graph, in the context of
a message-passing model with message of size O(log n). It has been followed
by many other works improving the performance of such a search (see [8, 9]
for example).

Closer to Clique Decomposition, Ishii and Kakugawa [4] give in a self-
stabilizing algorithm that operates in the state model under the unfair
centralized daemon to compute multiple cliques of “maximal size” for each
node under some constraints. In this work, there are agreement constraints
between nodes, as if a node computes a given clique, every member of that
clique must compute the same clique (among other cliques they may have
computed), it is thus closer to the problem of finding a clique decomposition.

The first attempt to our knowledge to tackle the Minimal Clique Decom-
position problem in a distributed self-stabilizing setting has been made by
Delbot and al. [3]. Their algorithm operates under a fair distributed daemon
in O(n) rounds provided a spanning tree has been computed beforehand.

In this chapter, we follow these footsteps by proposing the first algorithm
that tackles the Minimal Clique Decomposition problem while handling
Byzantine faults.

2

3 Description of the algorithm

Algorithm 1 Minimal Clique Decomposition Algorithm (MCD)

Variables:
Ωv ⊆ V : the set of nodes supposed to be the clique v belongs to

Nv ⊆ V : the (closed) neighborhood made apparent for the neighbors to read

βv ∈ N(v) ∪ {⊥}: the current merge target for the clique leader v

Funtions:

min(A) ≡
{

the smallest value of a set A if A ̸= ∅
⊥ otherwise

leader(v) ≡ min(Ωv)
merge candidate(v) ≡{
u ∈ N(v)|merge ready(u) ∧ Ωu ∩ Ωv = ∅ ∧

(
Ωv ∪ Ωu ⊆

⋂
x∈Ωv∪Ωu

Nx

)}

choose(A) is an element of the non-empty set A taken uniformly at random.

Ω0(v) ≡ {v}
Ωk+1(v) ≡

⋃
x∈Ωk(v) Ωx

Ω∗(v) ≡
⋃

i≥0 Ω
i(v): the Ω-closure of node v

Predicates:

merge ready(v) ≡ (leader(v) = v) ∧ Stab(v) ∧ coherent clique(v)

Stab(v) ≡ ∀x ∈ Ωv,Ωx = Ωv

coherent local(v) ≡ Nv = N(v) ∪ {v} ∧ {v} ⊂ Ωv ⊂ Nv ∧ βv ∈ {⊥} ∪ Nv \ Ωv

coherent clique(v) ≡
Ω∗(v) ⊆ Nv ∧ |{x ∈ Ω∗(v)|βx ̸= ⊥}| ≤ 1

∧∀x ∈ Ω∗(v),



Ω∗(v) ⊆ Nx

{x} ⊆ Ωx ⊆ Ωleader(x) = Ω∗(x)

∀y ∈ Ωx,Ωy ⊆ Ωx ∨ Ωy = Ω∗(x)

βx ̸= ⊥ ⇒ (Stab(x) ∧ leader(x) = x ∧ βx ∈ Nx \ Ωx)

minΩ∗(v) ∈
{
leader(leader(x)), βleader(x)

}
well defined(v) ≡ coherent local(v) ∧ coherent clique(v)

3

Abandonment ▷ priority 5
if (βv = u ̸= ⊥) ∧ (βu ̸∈ {⊥, v} ∨ u ̸∈ merge candidate(v)) then

βv = ⊥
end if

Mariage ▷ priority 4
if leader(v) = v∧Stab(v)∧ (βv = ⊥)∧ (∃u ∈ merge candidate(v), βu = v)
then

βv := choose({u ∈ merge candidate(v)|βu = v})
end if

Seduction ▷ priority 4
if leader(v) = v ∧ Stab(v) ∧ (βv = ⊥) ∧ (∀u ∈ merge candidate(v), βu ̸=
v) ∧ (∃u ∈ merge candidate(v), βu = ⊥) then

βv := choose({u ∈ merge candidate(v)|βu = ⊥})
end if

Merge lead ▷ priority 4
if leader(v) = v ∧Stab(v)∧βv = u ̸= ⊥∧u ∈ merge candidate(v)∧βu =
v ∧ v < u then

Ωv := Ωv ∪ Ωu

βv := ⊥
end if

Merge follow ▷ priority 4
if leader(v) = v∧Stab(v)∧βv = u ̸= ⊥∧leader(u) = u∧v ∈ Ωu∧Ω∗(u) ⊆
Nv ∧ coherent clique(u) then

Ωv := Ωu

βv := ⊥
end if

Update ▷ priority 2
if leader(v) = u ∧ Ωv ⊊ Ωu then

Ωv := Ωu

end if

Reset ▷ priority 1
if ¬well defined(v) then

Ωv := {v}
Nv := N(v) ∪ {v}
βv := ⊥

end if 4

3.1 Local variables

Each node v has three variables Nv, Ωv and βv:

• Nv represents its neighborhood,

• Ωv corresponding to the clique it belongs to,

• βv represents its current target for merging cliques if there is one. Else
it has value ⊥.

3.2 About the Ω-closure, Ω∗

The Ω-closure of a node v, Ω∗(v), is the clique that v will have in its variable
Ωv when the potential merging process currently going is finished. Note that
a locally coherent node v (such that coherent local(v) is true) can always
see -and thus read variables of- every node of its Ω-closure, as if it was not
the case Ω∗(v) would not be a clique containing v. From the local coherence
Nv = N(v)∪ {v} the node v can read the variables of the nodes of Ωv. Then
v can check whether the nodes of Ω2(v) (which we can compute since v can
read variables of Ωv) have their Ω-values included in Nv. Then v can do the
same for Ω3(v) and so on. Until Ω∗(v) ⊆ Nv is proven false or v stops seeing
new nodes, in which case we do have that Ω∗

v ⊆ Nv.

3.3 How to merge two cliques

Each clique has a distinguished node called the leader corresponding to the
one with the smallest identifier. Only the clique leader can decide with which
clique it will merge. The leader v of a clique starts looking for a merge target
as soon as all nodes in its clique have the same view: the predicate Stab(v)
is satisfied (∀x ∈ Ωv,Ωx = Ωv). When it is the case, v seeks a suitable clique
leader u to merge clique with. In order for v to merge with u, the local
variables of all nodes in Ωu must have the following properties:

• All nodes of this clique have the same view of this clique: the predicate
Stab(u) is satisfied (i.e. ∀x ∈ Ωu,Ωx = Ωu).

• All nodes of this clique and the clique of v form a clique in the graph:
Ωv ∪ Ωu ⊆

⋂
x∈Ωv∪Ωu

Nx.

• The clique is not merging with another clique : βu = ⊥.

5

If all these properties are satisfied, v can propose clique merging. To do
so, it changes the value of βv to u, the leader of one of the cliques suitable
for merging with, chosen at random. Then, u answers or does not respond
positively to this proposal. Of course, it checks that the first two conditions
above are verified too. Note that it is basically applying locally the algorithm
proposed by Kunne and al. [7] on the well-formed nodes, hence the borrowed
names for the rules dedicated to this: Seduction, Marriage and Aban-
donment. Once the two leaders agree to merge (βv = u and βu = v) the
merging process begins. The one among u and v with the smallest identifier
changes its variable Ω value to the union of the two cliques, and sets its
variable β to ⊥ by executing rule Merge lead. Then the other one updates
its two local variables by executing rule Merge follow. All the other nodes
refresh their variables by executing rule Update to complete the merging
process.

3.4 How to handle errors

Now we describe how the algorithm handles errors in the local variables and
avoids creating new ones when cliques merge. This part of the explanation
of the algorithm is the most technical.

Each time a node v is activated, it checks whether it detects any in-
consistencies in its local variables (for example the local variable Nv must
correspond to its closed neighborhood.) or those of its current clique nodes
(for example the clique must be included in the displayed neighborhood N of
every node of the clique). If it detects any inconsistency that way, it executes
the rule Reset.

The predicate coherent local allows a node v to detect that its local
variables are well initialized : Nv = N(v) ∪ {v} and {v} ⊆ Ωv ⊆ Nv. Since
variable βv designates the clique’s leader with whom the clique Ωv must
merge, βv must not be in Ωv. Note that coherent local(v) can only be
computed by v itself since it needs to know N(v).

The predicate coherent clique allows a node to check that the state of
the (future) clique of a node v is coherent (assuming local coherence for all
the nodes involved). Note that a locally coherent node u may only evaluate
coherent clique(v) when Ω∗(v) ⊆ Nu. As we have said above, it is always
the case when u = v. It will otherwise only be evaluated when u considers
v as a potential target to merge their cliques. In such a case, we will have
checked that Ω∗(v) ⊆ Nu beforehand, and there will be no problem. We
structure the explanation of coherent clique(v) by following the structure of
the predicate for better intelligibility:

6

• Ω∗(v) ⊆ Nv: As Ω
∗(v) is supposed to be either the future clique of v (or

current if there is no merging in progress), this condition is necessary
for Ω∗(v) to be a clique containing v.

• |{x ∈ Ω∗(v)|βx ̸= ⊥}| ≤ 1: If multiple β-values were non-⊥ in Ω∗(v),
it would mean that multiple merging processes are taking place at the
same time. As the algorithm waits for a clique to have finished merging
before making it merge again, we do not want that.

• Then v checks all nodes x of its Ω-closure for potential inconsistencies:

– ∀x ∈ Ω∗(v),Ω∗(v) ⊆ Nx: Ω
∗(v) is supposed to be a clique, thus

every node of Ω∗(v) must have every other node of Ω∗(v) in its
neighborhood.

– ∀x ∈ Ω∗(v), {x} ⊆ Ωx ⊆ Ωleader(x) = Ω∗(x): As leaders are those
that move first when merging, we have Ωx ⊆ Ωleader(x). {x} ⊆ Ωx

is just a part of the local coherence of x that happens to be
checkable by neighbors. As x ∈ Ω∗(v), we have Ω∗(x) ⊆ Ω∗(v),
and thus if a node can see every node of Ω∗(v), it can see every
node of Ω∗(x). Observe that Ω∗(x) may be different from Ω∗(v)
in the case of an x that is part of a clique whose leader has yet to
execute Merge follow. Finally, there are two cases for the leader
of x:

∗ It has already the final value as Ω-value (it has already ex-
ecuted Merge lead or Merge follow) and in this case
Ω∗(x) = Ω∗(v).

∗ It is waiting to execute Merge follow and thus still has its
old clique value.

In both cases Ωleader(x) = Ω∗(x).

– ∀x ∈ Ω∗(v),∀y ∈ Ωx,Ωy ⊆ Ωx ∨ Ωy = Ω∗(x): When a clique
merging begins, every node in one of the old cliques have only two
possible values: the old, and the new one. The old being included
in the new one. Note that either Ω∗(x) = Ω∗(v), or we are in a
case where the leader of x is waiting to execute Merge follow.

– ∀x ∈ Ω∗(v), βx ̸= ⊥ ⇒ (Stab(x) ∧ leader(x) = x ∧ βx ∈ Nx \ Ωx):
Only a leader may have a non-⊥ β-value, and it should be in
a valid shape to have such a value. It means that x should be
its own leader, having every node in its clique having the same
Ω-value, and having a merge target βx that is not already in its

7

clique. βx ̸= ⊥ can either happen for x = minΩ∗(v) if the clique
of v is ready to merge, or to another node that would be the
leader of the clique minΩ∗(v) is merging with (which has yet to
execute Merge follow).

– ∀x ∈ Ω∗(v),minΩ∗(v) ∈
{
leader(leader(x)), βleader(x)

}
: minΩ∗(v)

will be the leader of the future clique of v, Ω∗(v), when ev-
ery node in it has updated its Ω-value. The case minΩ∗(v) =
leader(leader(x)) corresponds to two types of situations. The
first one is when either x has been part of the clique that started
the merging process with Merge lead (it was already true before
the merging in this case). The second is when x has been part of
the the other clique involved in the merging and the leader of that
second clique has already performed Merge follow. The case
minΩ∗(v) = βleader(x) corresponds to situations where leader(x)
is the leader of that other clique, but has yet to perform Merge
follow. If minΩ∗(v) is equal to neither of those two options, it
means that the clique x belongs to is not really aware that it
should be merging. It may happen as a result of errors in the
starting configuration.

The predicate coherent clique will be used to check for local coherence in
the predicate well defined, and also to avoid merging with nodes that can
be detected as not well defined (because coherent clique is false on them).

4 Convergence

To prove the convergence of our algorithm, we present our reasoning in five
steps.

First, in Subsection 4.1, we observe that after at most 1 round the variable
N of non-Byzantine nodes contains the closed neighborhood of the node
(Lemma 4.1), and it cannot change afterward (Lemma 4.2). As such we can,
without loss of generality, only consider N -stabilized configurations in the
remaining of the proof.

In Subsection 4.2, we discuss the properties of well-definedness (corre-
sponding to the well defined predicate). We use this to define V ′′

1 (Defini-
tion 4) a superset of V1 (recall that V1 is the set of the nodes that have no
Byzantine neighbors) on which well-definedness is guaranteed (Lemma 4.4).
We prove the convergence of our algorithm on V ′′

1 , as it would not be possible
on V1. on which we can hope to define a convergence property for our
algorithm.

8

In Subsection 4.3, we focus on the merging of two cliques. We prove
that when a merging between two nodes of V ′′

1 has been started, they do
not interact with nodes outside their cliques while the process is not finished
(Lemma 4.8), and it ends after a few rounds (Lemmas 4.10 and 4.12). It
allows us to focus on the events that lead nodes to begin such a merging.

In Subsection 4.4, we focus on the progression of the algorithm. To do so
we define a notion corresponding to the “current” state of the clique decom-
position (Definition 5). Using this, we then prove a succession of lemmas
that draw a pattern by which the decomposition progresses probabilistically
(summarized in Figure 1).

Finally, in Subsection 4.5 using a concentration inequality, we deduce
that our algorithm converges, and ends within O(∆n) rounds with high
probability (Theorem 4.23).

9

4.1 Neighborhood stabilization

Definition 3. We say that a configuration is N -stabilized when every non-
Byzantine node has its N -value equal to its actual closed neighborhood (i.e
∀x ∈ V0,Nx = N(x) ∪ {x}).

It is a condition needed for the rules to behave as intended, and as such
we need to know when we can ensure that the condition is met.

Lemma 4.1. Let γ be a configuration. The configuration γ′ reached after
one round from γ is N -stabilized.

Proof. Reset is the highest priority rule, and it is enabled on any node that
does not have its closed neighborhood as N -value. After it has been executed
on a non-Byzantine node, this node will have its closed neighborhood as
N -value, and it is the only rule that may change a N -value.

Then, after at most one round, every node that didn’t have its closed
neighborhood as N -value has then been activated and performed Reset.
As no node having its closed neighborhood as N -values may change that
property, it follows that γ′ is N -stabilized.

Then, it is easy to see that a N -stabilized configuration will stay N -
stabilized across a transition.

Lemma 4.2. Let γ be a N -stabilized configuration, and γ → γ′ be a transi-
tion. Then γ′ is N -stabilized.

Proof. No rule may change the N -value of a node that has its N -value match
its actual closed neighborhood.

From any configuration, after one round a N -stabilized configuration is
reached, and after that, in the execution, every transition will be N -stabilized.
Using this fact, in most of the lemmas, we will suppose that we start directly
in a N -stabilized configuration without loss of generality.

4.2 Well-definedness

The well defined predicate expresses a bunch of “good” properties that we
would like to be true, in the sense that it would be always true if we started
from a clean starting configuration without Byzantine nodes and where every
node u would be such that Ωu = {u}, Nu = N(u) ∪ {u} and βu = ⊥. As it
is not the case, we cannot hope for it to be true everywhere and every time.
But we can try to understand when it’s the case.

10

First, we note that the well defined property is inherited by nodes that
are in the Ω-closure of a well defined node.

Lemma 4.3. Let γ be a N -stabilized configuration and u, v two nodes such
that u ∈ Ω∗(v). In γ, if v is well-defined, u is well-defined too.

Proof. Let u and v be two nodes such that u ∈ Ω∗(v) and suppose that v
is well-defined. Since v is supposed well-defined, we have either Ω∗(u) =
Ω∗(v) or βleader(u) = leader(v). Since γ is supposed N -stabilized we have
Nu = N(u) ∪ {u}, and coherent clique(v) implies that {u} ⊆ Nu ⊆ Ω∗(u)
and Ω∗(v) ⊆ Nu. Thus {u} ⊆ Ωu ⊆ Nu. It also implies that βu ∈ Nu \ Ωu.
Thus, coherent local(u) is true.

Let’s then prove coherent clique(u):

• Suppose Ω∗(u) = Ω∗(v). As coherent clique(v) is true, it only remains
to prove Ω∗(u) ⊆ Nu, Ωleader(u) = Ω∗(u) and |{x ∈ Ω∗(u)|βx ̸= ⊥}| ≤ 1.
Using the hypothesis Ω∗(u) = Ω∗(v) and the fact that u ∈ Ω∗(v), they
are direct consequences of coherent clique(v).

• Suppose now that Ω∗(u) ̸= Ω∗(v). It implies Ω∗(u) ⊊ Ω∗(v). Then,
using the well-definedness of v we get:

– Ω∗(u) ⊊ Ω∗(v) ⊆ Nu;

– Since β(u) ̸= ⊥, from the fact that |{x ∈ Ω∗(v)|βx ̸= ⊥}| ≤ 1, u
is the only node in Ω∗(v) to have a non-⊥ value of β. Thus, as
Ω∗(u) ⊊ Ω∗(v), we get |{x ∈ Ω∗(u)|βx ̸= ⊥}| = 1 ≤ 1;

– The first four properties stated in the quantified part does not
depend on v, thus they are still true for every node of Ω∗(u) ⊊
Ω∗(v). The fifth one comes from the fact that as β(u) ̸= ⊥, we
have Stab(u) and leader(u) = u, thus leader(leader(.)) has value
u = minΩ∗(u) for every node of Ω∗(u) = Ωu.

Thus, coherent clique(u) is true.

Thus, in every case, u is well-defined.

To contain the influence of Byzantine nodes, we must identify on which
space we want our algorithm to converge. V0 is out of the picture as a node
neighbor to two Byzantine nodes could be fooled by those pretending to be
neighbors of each other. The next set to naturally consider is V1, but as
nodes of V1 may legitimately have some nodes of V0 in their Ω-value it is not
possible to take exactly V1. We have to widen a bit V1 in order to include

11

those legitimately included V0 nodes. As we just proved that well defined(v)
implies that all the nodes of Ω∗(v) are well-defined as well, we might want
to consider V ′

1 = Ω∗(V1).
As it is easier for us to handle well-defined nodes, we define the following:

Definition 4. V ′′
1 = Ω∗({u ∈ V1|well defined(u)}).

We will later on prove that after some time it must contain V1. Do note
that contrary to V1, V

′′
1 depends on the variables’ values of a configuration.

We write V ′′
1 (γ) for “V ′′

1 in configuration γ” when there could be some
ambiguity.

As we constructed it with this in mind, let’s prove that every node of V ′′
1

is indeed well-defined.

Lemma 4.4. Let γ be a N -stabilized configuration. Every node of V ′′
1 is

well-defined.

Proof. Let u be a node of V ′′
1 . By definition, it must be in Ω∗(v) for some

well-defined v ∈ V1. Then by Lemma 4.3, as v is well-defined, u must also
be well-defined.

To be a concept of use to express the convergence of an algorithm, we
need V ′′

1 to be non-decreasing.

Lemma 4.5. Let γ be a N -stabilized configuration, and γ
t−→ γ′ a transition.

Consider u ∈ V , well-defined in γ, such that leader(u) = u and Ωu does not
contain Byzantine nodes.

1. If ¬Stab(u), u is well-defined in γ′;

2. Else, if u does not perform a move in the transition, u is well-defined
in γ′;

3. Else, if βu = ⊥, u is well-defined in γ′;

4. Else, if u performs Abandonment in the transition, u is well-defined
in γ′;

5. Else, if Ωβu does not contain Byzantine nodes, u is well-defined in γ′.

Proof. Let γ be a N -stabilized configuration, and γ
t−→ γ′ a transition.

Consider u ∈ V such that u is well-defined in γ, leader(u) = u and Ωu does
not contain Byzantine nodes. Let us first prove Point 1.

12

Proof of Point 1. Suppose ¬Stab(u). With the well-definedness of u, it
implies that none of Mariage, Seduction, Abandonment or Merge lead
is enabled on any node of Ω∗(u) = Ωu in γ (recall that no node of Ωγ

u is
Byzantine by hypothesis).

Using one of these rules, the Ω-value of a node may only grow by setting
it to the value of its current leader (or to the target of the merge in progress
in the case of the only potential node being enabled for the rule Merge
follow) which is already a subset of Ω∗(u) in γ. As the value of Ωu does not
change in the transition since u is its own leader, the value of Ω∗(u) does
not change in the transition.

Then, let’s prove what is needed for coherent clique to be true in γ′ (we
cut the proof according to the structure of the predicate to make the reading
easier):

• As Ω∗(u) does not change in the transition Ω∗(u) ⊆ Nu is still true in
γ′.

• As |{x ∈ Ω∗(v)|βx ̸= ⊥}| ≤ 1 and no rule that may give a non-⊥ value
of β is activable on any node of Ω∗(u) in γ, the same can be said in γ′.

• Let x ∈ Ω∗(u),

– Neither Ω∗(u) nor Nx may change in the transition, thus as it was
true in γ from well-definedness, Ω∗(u) ⊆ Nx is still true in γ′.

– As the Ω-value of a well-defined node may only change by taking
the current Ω-value of its leader, {x} ⊆ Ωx ⊆ Ωleader(x) = Ω∗(x)
in γ implies the same in γ′.

– Let y be a node of Ωγ
x, we have in γ that Ωy ⊆ Ωx ∨ Ωy = Ω∗(x)

in γ by well-definedness. If none of x and y are activated in the
transition, or if x = y, there is nothing to prove, suppose then
that they are distinct and at least one of them is activated.

∗ Suppose Ωy ⊆ Ωx in γ. If only x was activated this remains
true in γ′, and there is nothing to prove. We then suppose y
is activated in the transition.

· If Ω∗(x) = Ω∗(y) in γ, y must have performed Update
in the transition (as Ωy ⊊ Ωx implies ¬Stab(y)). As
well-definedness implies that Ωx = Ω∗(x) and Ωleader(y) =

Ω∗(x) = Ωx in γ, we have Ωγ′
y = Ωγ

x ⊆ Ωγ′
x .

· Else, we have Ω∗(y) ⊊ Ω∗(x) ⊆ Ω∗(v). Well-definedness
implies min(Ω∗(v)) ∈

{
leader(leader(y)), βleader(y)

}
in γ.

13

The previous inequality implies that leader(leader(y)) ̸=
min(Ω∗(v)) in γ, thus we have βleader(y) = min(Ω∗(v))
in γ. Well-definedness implies Stab(leader(y)), and thus
since we supposed that y is activated in the transition we
must have y = leader(y), and y performed Merge fol-
low in the transition. We can also deduce that Ω∗(x) =
Ω∗(v) from the fact that it would otherwise imply that
leader(x) ̸= y has a non-⊥ value of β which would con-
tradict well-definedness. Thus, in γ′, Ωy = Ωx = Ω∗(v).

∗ Else, we have Ωy = Ω∗(x). If Ω∗(x) = Ω∗(v), there is nothing
to prove as Ω-values may only grow in the transition and
Ω∗(v) does not change. Suppose then that Ω∗(x) ̸= Ω∗(v),
i.e. Ω∗(x) ⊊ Ω∗(v). This implies by well-definedness that
βleader(x) = min(Ω∗(v)), and Stab(leader(x)). Then, only
leader(x) is activable (for the Merge follow rule) among
the nodes of Ωleader(x). As x and y are in Ωleader(x) = Ω∗(x),
one of them must be leader(x), and the other one is not
activated in the transition. Then, if y performs Merge
follow in the transition, we have Ωy = Ω∗(v) = Ω∗(x) in
γ′. Else, x performs Merge follow in the transition, and
Ωy ⊆ Ω∗(v) = Ωx = Ω∗(x) in γ′.

– We have βx ̸= ⊥ ⇒ (Stab(x) ∧ leader(x) = x ∧ βx ∈ Nx \ Ωx) in

γ. If βγ′
x = ⊥ there is nothing to prove. Let’s then focus on the

other case: βx ̸= ⊥ in γ′. In this case we have βx ≠ ⊥ in γ too
as no rule that could give a non-⊥ β-value is enabled on Ω∗(v)
in γ. Thus, by well-definedness, Stab(x) and leader(x) = x in γ
and only x may be activable among nodes of Ωx in γ, for the rule
Merge follow. As βx ≠ ⊥, it executes Merge follow in the
transition, and no node of Ωx was activated. Thus Stab(x) and
leader(x) = x are still true in γ′, and as no variable of x changes
value, βx ∈ Nx \ Ωx in γ′ too.

– By well-definedness, min(Ω∗(v)) ∈
{
leader(leader(x)), βleader(x)

}
in γ. As Ω∗(v) does not change in the transition, so does its mini-
mum min(Ω∗(v)). As Ω-values may only grow in the transition, if
leader(leader(x)) = min(Ω∗(v)) in γ, the same is also true in γ′.
Suppose now that leader(leader(x)) ̸= min(Ω∗(v)) in γ, which
means that βleader(x) = min(Ω∗(v)) in γ. Using well-definedness
we have Stab(leader(x)) and leader(leader(x)) = leader(x) ̸=
min(Ω∗(v)). If leader(x) is not activated in the transition there

14

is nothing to prove. Else, it performs Merge follow and we have

Ωγ′

leader(x) = Ωγ
min(Ω∗(v)) = Ω∗(v). Thus, in γ′, leader(leader(x)) =

min(Ω∗(v)).

Thus, when ¬Stab(u) in γ, u is well-defined in γ′, which proves Point 1.

Now suppose Stab(u) in γ. As u is well-defined and there is no Byzantine
node in Ωu by hypothesis, no rule is enabled on Ωu \ {u}.

Proof of Point 2. If u does not execute any rule in the transition, no node
of Ωu = Ω∗(u) does, and u is well-defined in γ′ which proves Point 2.

Suppose then that u executes a rule in the transition.

Proof of Point 3. Suppose βγ
u = ⊥. As u is well-defined, the only rules it can

perform in the transition are Seduction and Mariage. From the guards

of those rules βγ′

leader(u) is a node in merge candidate(leader(u)) in γ, which

ensures that βγ′

leader(u) ̸∈ Ωγ
leader(u) = Ωγ′

leader(u). The guards of both rules

imply that Stab(u) is true in γ. This gives by well-definedness that no node
of Ωγ

u had β-value non-⊥ in γ, and that in Ωγ
u only u is activable in γ. As no

Ω-value in Ωγ
u changes in the transition, we have that u is well-defined in γ′.

Suppose now that βγ
u ̸= ⊥, u must have performed either Abandonment,

Merge lead, or Merge follow.

Proof of Point 4. Suppose u performed Abandonment in the transition.
As only u was activable in γ among nodes of Ωγ

u, it’s easy to see that u is
still well-defined in γ′ which proves Point 4.

Suppose now that u did not perform Abandonment in the transition.
It means that either Merge follow or Merge lead has been executed by u.

Proof of Point 5. Let’s write v = βγ
u , and suppose Ωv does not contain

Byzantine nodes. Then v is well-defined in γ, as v ∈ merge candidate(u)
(from the guard of both possible rules) and γ is N -stabilized (by hypothesis).

• Suppose Merge follow was executed by u in the transition. Then we
may apply Point 1 of the Lemma to v. Hence v is well-defined in γ′.

From the guard of Merge follow we have u ∈ Ωγ
v , thus u ∈ Ωγ′

v as v
does not execute Reset in the transition. Then, applying Lemma 4.3,
we get that u is well-defined.

15

• Suppose Merge lead was executed by u in the transition. We know
from the guard of the rule that v = βγ

u is in merge candidate(u) in γ,
which implies leader(v) = v, Stab(v), and coherent neighborhood(v).
Since the configuration is supposed N -stabilized, v is then well-defined
in γ. By hypothesis on u that there is no Byzantine node in Ωγ

v . Since
Stab(v) is true, no node of Ωγ

v \ {v} is activable in γ. Moreover, the
guard of Merge lead also implies that leader(u) < v and βγ

v = u,
which implies that v is not activable in γ. Thus u is the only node
of Ωγ

leader(u) ∪ Ωγ
v that has been activated in the transition, and no

other node of that set had the values of its variables changed. As

Ωγ′
u = Ωγ

u ∪ Ωγ
v from Merge lead command, we get Ω∗(u)γ

′
= Ωγ′

u =
Ωγ

u ∪ Ωγ
v . Let’s check that coherent clique(u) is true in γ′ (again we

cut the proof according to the structure of the predicate to make the
reading easier):

– As only u was executed in the transition, we have Ω∗(u)γ
′
= Ωγ′

u =
Ωγ
u∪Ωγ

v . From the guard of Merge lead, v ∈ merge candidate(u)
in γ, hence Ω∗(u)γ

′
= Ωγ

u ∪ Ωγ
v ⊆ Nu

– As βu = v and βv = u in γ from the guard of Merge lead. By
hypothesis u and v are well-defined in γ, thus u and v are the
only nodes in Ωγ

u ∪ Ωγ
v to have non-⊥ β-value. Hence we have, in

γ′, {x ∈ Ω∗(u)|βx ̸= ⊥} = {v}, of size 1.

– Let x ∈ Ω∗(u)γ
′
,

∗ Ω∗(u) ⊆ Nx in γ′ is a consequence of v ∈ merge candidate(u)
in γ.

∗ As Stab(u) and Stab(v) in γ, we know that leader(x)γ is
either u or v. If x = u there is nothing to prove. Else x was
not activated in the transition, and thus {x} ⊆ Ωx ⊆ Ωleader(x)

as the Ω-value of its leader may only have grown. Moreover,

we still have Ωγ′
v = Ω∗(v)γ

′
as no node of Ωγ′

v is activated in

the transition, and we’ve already seen that Ωγ′
u = Ω∗(u)γ

′
,

thus Ωleader(x) = Ω∗(x).

∗ Let y be a node of Ωγ′
x . If x ∈ Ωγ

u, either y = u, and then

Ωγ′
y = Ω∗(u)γ

′
= Ω∗(x)γ

′
, or Ωγ′

y = Ωγ
u ⊆ Ωγ′

x . Else, x ∈ Ωγ
v ,

and Ωγ′
x = Ωγ′

y as neither node was activated in the transition.

∗ If x ̸= v, βγ′
x = ⊥ and there is nothing to prove. Else, x = v,

and as no node of Ωγ
v is activated in the transition we still

have Stab(v), leader(v) = v and βγ
v ∈ Nv \ Ωv in γ′ .

16

∗ If x ∈ Ωγ
u, we have leader(x)γ

′
= u, thus leader(leader(x)) =

leader(u) = u in γ′. Else, x ∈ Ωγ
v , and then leader(x)γ

′
= v

and thus βleader(x) = βv = u in γ′.

Thus coherent clique(v) is true in γ′, and hence v is well-defined. Which
proves Point 5.

All five points have been proved, hence the result.

Lemma 4.6. Let γ be a N -stabilized configuration, and γ
t−→ γ′ a transition.

Then u ∈ V ′′
1 (γ) ⇒ u ∈ V ′′

1 (γ
′).

Proof. As u ∈ V ′′
1 (γ), u is well-defined in γ from Lemma 4.4. By definition

of V ′′
1 , there is x ∈ V1 well-defined in γ such that u ∈ Ω∗(x).
Let’s write u′ = leader(leader(u)). As u′ = leader(leader(u)) ∈ Ωleader(u)

and leader(u) ∈ Ωu, we have u
′ ∈ Ω∗(x). Thus by definition of V ′′

1 , u
′ ∈ V ′′

1 (γ)
and u′ is well-defined in γ from Lemma 4.4. As Ωleader(u) = Ω∗(u)γ from
well-definedness, we get u′ = leader(leader(u)) = minΩ∗(u)γ , and thus
leader(u′) = u′ in γ.

If ¬Stab(u′), u′ does not perform a move in the transition, β = ⊥, or u′

executes Abandonment, we can apply Lemma 4.5 and thus u′ is well-defined
in γ′.

Suppose now that Stab(u), βγ
u′ ≠ ⊥, and u performs a non-Abandonment

move in the transition. By well-definedness we know that Ωγ
u′ = Ω∗(u′)γ

Let’s write v = βγ
u′ . Given the conditions, the rule executed by u′ in the

transition is either Merge lead or Merge follow.

• Suppose it is Merge follow. As u′ ∈ Ωγ
v from the guard of Merge fol-

low, x ∈ Ω∗(v)γ by definition of Ω∗. Since we have coherent clique(v)
and leader(v) = v in γ, we get Ωγ

v = Ω∗(v)γ . Thus, using again the
fact that coherent clique(v) is true in γ, we get Ωγ

v = Ω∗(v)γ ⊆ Nx.

• Suppose now that it is Merge lead. The guard of the rule implies
v ∈ merge candidate(u′), which leads to Ωv ⊆ Nx.

In both cases, we have Ωv ⊆ Nx. As x ∈ V1 and the configuration is supposed
N -stabilized, it implies Ωγ

v ⊆ V0 i.e. does not contain Byzantine nodes. We
can then apply Lemma 4.5 and thus u′ is well-defined in γ′.

Well-definedness of u′ in γ gives x ∈ Ω∗(u′)γ . As every node of Ω∗(x)γ is
well-defined by Lemma 4.4, no such node may have executed Reset in the
transition, thus their Ω-value can only grow in the transition. Thus we have
x ∈ Ω∗(u′)γ

′
which implies that x is well-defined in γ′ from Lemma 4.3, and

u ∈ Ω∗(x) which then gives u ∈ V ′′
1 (γ

′).

17

There is still to prove that our V ′′
1 will contain V1 at some point in the

execution, as we advertised that the algorithm would converge on “at least”
V1.

Lemma 4.7. Let γ be a N -stabilized configuration. Every node of V1 is
well-defined in the configuration γ′ reached after one round from γ.

Proof. Suppose there are some nodes of V1 that are not well-defined in
γ. Reset is activable on them until they become well-defined or execute
Reset, in which case they are well-defined in the configuration following this
execution. By definition of a round one of them must happen before the
round ends. Then from Lemma 4.6, those may not stop being well-defined,
thus they are well-defined in γ′.

4.3 Any merging process ends

On N -stabilized configurations, the algorithm behaves on a large time scale
as if the only existing nodes were the ones that are currently their own leaders
with their neighborhood modified to be the intersection of the neighborhood
of every node under their rule. Once such a node has performed a move
to merge with another leader (using the Merge lead rule), their subjects
simply follow. Here, we prove that when a merging has begun, a leader must
wait for its followers before doing anything more, and that followers end up
synchronized with their leader at some point.

To do this, we first prove that in the clique of such a leader node, the
only rules that can be enabled are those that are designed to synchronize a
follower to its leader, either Update (for those that were already followers
before), or Merge follow (for the leader that is to become a follower after
the merging is completed).

Lemma 4.8. Let γ be a N -stabilized configuration. If u ∈ V ′′
1 , leader(u) = u,

and ¬Stab(u), only rules Update and Merge follow may be enabled on
nodes of Ω∗(u) in γ.

Proof. From Lemma 4.3 every node of Ω∗(u) is also well-defined. Consider
then v ∈ Ω∗

u.

• If ¬Stab(v), only Update can be enabled on v.

• Else, we have Stab(v). If leader(v) ̸= v, v is not activable, and there is
nothing to prove. Else, from well-definedness of u, we get min(Ω∗(u)) =
u ∈

{
leader(leader(v)), βleader(v)

}
. As leader(leader(v)) = v by hy-

pothesis, we must have βv = u, and then the only rule that can be
enabled on v is Merge follow.

18

When the said Update or Merge follow are executed, we can observe
that it leads to synchronization with the leader.

Lemma 4.9. Let γ be a N -stabilized configuration. Consider u ∈ V ′′
1 such

that leader(u) = u and ¬Stab(u) in γ, and a transition γ
t−→ γ′. We have:

• Ω∗(u)γ = Ω∗(u)γ
′
;

• If v ∈ Ω∗(u)γ appears in a move of t, βγ′
v = ⊥ and Ωγ′

v = Ω∗(u)γ.

Proof. Let’s prove separately the two points of the lemma:

• Lemma 4.8 only allows Update and Merge follow to be enabled on
nodes of Ω∗(u)γ in γ. By well-definedness Ω∗(u)γ = Ωγ

u, and βγ
u = ⊥

thus no rule is enabled on u. Then Update and Merge follow may
only change the Ω-value of nodes in Ωγ

u to values that are included in
Ωγ
u in the transition. Thus Ω∗(u)γ

′
= Ωγ

u = Ω∗(u)γ .

• If v ∈ Ω∗(u)γ appears in a move t, it means that it executed either
Update and Merge follow in the transition. In both cases, the
well-definedness of u implies that the new Ω-value of v must be Ω∗(u)γ .

To bound the time it takes for every node to synchronize with the new
leader, we begin by removing Merge follow from the equation, which takes
at most one round.

Lemma 4.10. Let γ be a N -stabilized configuration. Consider u ∈ V ′′
1

such that leader(u) = u, and ¬Stab(u) in γ. Then after at most one
round a configuration γ′ is reached such that Ω∗(u)γ

′
= Ω∗(u)γ and ∀x ∈

Ω∗(u)γ
′
, βγ′

x = ⊥.

Proof. Using well-definedness, we know that at most one node of Ω∗(u) with
β-value non-⊥ in γ. Remember that from Lemma 4.6 u will be well-defined
in every future configuration.

If there is no such node, then γ already verifies the condition, and there
is nothing to prove.

Suppose then such a node v exists, well-definedness gives that βγ
v = u and

guarantees that Merge follow is enabled on it until this β-value changes.
Thus, after at most one round, Merge follow is executed by this node.
Consider the first transition when it happens γ′′ → γ′.

19

By hypothesis v does not execute Merge follow in any transition in
γ →∗ γ′′. Thus βv = u in every configuration between γ and γ′′.

By immediate induction using our Lemma 4.9 and the fact that βv = u,
every configuration in γ →∗ γ′′ is such that leader(u) = u and ¬Stab(u). We
then have Ω∗(u)γ

′′
= Ω∗(u)γ , and v is the only node of Ω∗(γ′′) with β-value

non-⊥.
Then using Lemma 4.9 we get in γ′ that Ω∗(u)γ

′
= Ω∗(u)γ

′′
and since v

is activated in the transition we have βγ′
v = ⊥. As the other nodes of Ω∗(u)γ

′

had already β-value ⊥ and no rule may have changed that in the transition

by Lemma 4.8, we have ∀x ∈ Ω∗(u)γ
′
, βγ′

x = ⊥.

Lemma 4.11. Let γ be a N -stabilized configuration. Consider u ∈ V ′′
1 such

that leader(u) = u and ¬Stab(u) and ∀x ∈ Ω∗(u), βx = ⊥ in γ.
Then ∀x ∈ Ω∗(u) either Ωx = Ω∗(u) or Update is enabled on x in γ.

Proof. From Lemma 4.8 only Update and Merge follow. As the guard of
Merge follow requires a non-⊥ β-value it cannot be enabled.

Consider v ∈ Ω∗(u)γ . The well-definedness of u gives min(Ω∗(u)) ∈{
leader(leader(v)), βleader(v)

}
. As u = min(Ω∗(v)) and with the constraints

on β-values, we get that leader(leader(v)) = u, thus Ω∗(v) = Ω∗(u). Well-
definedness gives also Ωleader(v) = Ω∗(u).

Then, either Ωv = Ωleader(v) = Ω∗(u) (and Update is not enabled on v),
or Ωv ̸= Ωleader(v) and Update is enabled on v.

Then, we prove that if only Update is enabled on the followers of a
leader, after at most one round, a configuration where every follower is
synchronized with the leader is reached.

Lemma 4.12. Let γ be a N -stabilized configuration. Consider u ∈ V ′′
1 such

that leader(u) = u, ¬Stab(u), and ∀x ∈ Ω∗(u)γ , βγ
x = ⊥.Then after at most

one round a configuration γ′ is reached such that Ω∗(u)γ
′
= Ω∗(u)γ, Stab(u)

is true and βu = ⊥ in γ′.

Proof. Consider such a configuration γ and such a node u. Let v be a node
such that Ωv ̸= Ω∗(u).

Let’s prove by induction that in every configuration until v executes
Update, Ω∗(u) does not change, and ¬Stab(u) is true. It is enough for
that purpose to see that Ωv ̸= Ω∗(u) prevents Stab(u) to be true, thus the
induction works using Lemma 4.9.

Consider then S = {x ∈ Ω∗(u)γ |Ωγ
v ̸= Ω∗(u)γ}. As every node in S will

be activable until it has executed Update, after at most one round every

20

one of them will have done this. Consider then the configuration just after
the last of them is activated for the first time since γ, γ′.

By the above argument, every configuration in γ →∗ γ′ before γ′ is such
that ¬Stab(u) and Ω∗(u) is the same as in γ, and then using Lemma 4.9 for
the last transition we have Ω∗(u)γ

′
= Ω∗(u)γ . Then as Ω-value may only

grow on well-defined nodes, in γ′, we must have Stab(u). Morever as in every
configuration in γ →∗ γ′ before γ′ we have ¬Stab(u), no rule may have been

executed to change a β-value in Ω∗(u), thus βγ′
u = ⊥.

As a summary, it takes at most 2 rounds for every follower to synchronize
with the leader.

Lemma 4.13. Let γ be a N -stabilized configuration. Consider u ∈ V ′′
1 such

that ¬Stab(u) in γ. Then after at most two rounds a configuration γ′ is
reached such that Ω∗(u)γ

′
= Ω∗(u)γ and Stab(u) in γ′.

Proof. Using Lemma 4.10, from γ, after at most 1 round, a configuration γ′′

is reached and is such that Ω∗(u)γ
′′
= Ω∗(u)γ and ∀x ∈ Ω∗(u), βγ′′

x = ⊥.
Using Lemma 4.6 we know that u is still well-defined in γ′′, which gives

us that Ωγ′′
u = Ω∗(u)γ

′′
= Ω∗(u)γ = Ωγ

u. Thus leader(u)γ
′′
= leader(u)γ = u.

If Stab(u)γ
′′
, we can take γ′ = γ′′, and there is nothing left to prove.

Suppose now that ¬Stab(u)γ′′
. Then, using Lemma 4.12, from γ′′, after

at most 1 round, a configuration γ′ is reached and is such that Ω∗(u)γ
′
=

Ω∗(u)γ
′′
and Stab(u) is true in γ′. Which concludes the proof, as Ω∗(u)γ

′′
=

Ω∗(u)γ .

4.4 Merging happens and makes the solution progress

Now that we know that once a merging has begun it ends in a small number
of rounds, we want to be sure that some merging happens.

Definition 5. Consider a configuration γ, and K = {Ωx|x ∈ V ′′
1 (γ)}) the

set of all Ω-values in V ′′
1 (γ).

We define: C(γ) = {ω ∈ K|ω is maximal for inclusion in K}

To begin with, we prove that it is indeed a clique decomposition.

Lemma 4.14. Let γ be a N -stabilized configuration, then C(γ) is a clique
decomposition of V ′′

1 .

Proof. Being a clique decomposition of V ′′
1 is to be a set of cliques, to cover

the entire set, and to have pairwise disjoint members:

21

• Since every node of V ′′
1 is well-defined by Lemma 4.4, and since γ is

N -stabilized, every Ω-value of nodes in V ′′
1 is a clique of G.

• From well-definedness we have that every node is contained in its
Ω-value thus C(γ) is a cover of V ′′

1 .

• Suppose by contradiction that c and c′ distinct elements of C(γ) are
such that c ∩ c′ ̸= ∅. Consider then u ∈ c ∩ c′.

Consider v and v′ in V ′′
1 such that Ωv = c and Ωv′ = c′ which exist by

definition of C(γ). They are distinct since Ωv = c ̸= c′ = Ωv′ . If v = u
then by well-definedness we have c ⊆ c′, which is a contradiction to c
being a member of C(γ). Symmetrically the same can be said if v′ = u.
Suppose then that neither v nor v′ is equal to u. Well-definedness
of v and v′ implies that they are both in {leader(leader(u)), βu}. If
βu = ⊥, this is impossible as min(c) and min(c′) are distinct. Else
βu ̸= ⊥, and well-definedness of u implies that leader(leader(u)) = u,
which is impossible as u, v and v′ are supposed distinct. Thus, by
contradiction, we have that c ∩ c′ = ∅.

Thus C(γ) is a clique decomposition of V ′′
1 .

The next lemma is about some well-formed property of the cliques of
C(γ): every such clique must have a leader, and every node in a clique must
have an Ω-value included in the clique. It is what we expect from the way
the algorithm forms new cliques by merging.

Lemma 4.15. Let γ be a N -stabilized configuration, and consider c ∈ C(γ).
We have ∀x ∈ c,Ωx ⊆ c. Moreover, ∃!u ∈ V ′′

1 , leader(u) = u ∧ Ωu = c.

Proof. Consider x ∈ c. Consider also v ∈ V ′′
1 such that Ωv = c, which exists

by definition of C(γ). By well-definedness of v we have that Ωx ⊆ Ωv = c.
Consider then u = min(c). We have by definition of leader that leader(v) =

u, and then by well-definedness c ⊆ Ωu. As u ∈ c, we also have Ωu ⊆ c, thus
Ωu = c.

Unicity comes from that the leader of such a node must have min(c) as a
leader.

Definition 6 (Representative). Since we know the existence and unicity in
every clique of C(γ) of a node that is its own leader and has the clique as Ω-
value, we call min(c) the representative of the clique c ∈ C(γ) in configuration
γ.

22

To progress toward our goal, we need to prove that C makes progress
in some sense. To this aim, we prove a heredity property as well as a
non-regression property across transitions for C.

Lemma 4.16. Let γ be a N -stabilized configuration and γ → γ′ a transition.
We have:

• (Non-regression) ∀c ∈ C(γ), ∃c′ ∈ C(γ′), c ⊆ c′.

• (Heredity) ∀c′ ∈ C(γ′), ∃c ∈ C(γ), c ⊆ c′.

Proof. Let’s first prove the first point of the lemma. Consider c ∈ C(γ),
and consider u the representative of c in γ (see Lemma 4.15). Consider
also c′ ∈ C(γ′) such that u ∈ c′ (which exists by Lemma 4.14), with v the
representative of c′ in γ′ (see Lemma 4.15).

As u ∈ Ωγ′
v , by well-definedness Ωγ′

u ⊆ Ωγ′
v . But since u ∈ V ′′

1 (γ), we also

have Ωγ
u ⊆ Ωγ′

u (only Reset may make the Ω-value shrink). Thus Ωγ
u ⊆ Ωγ′

v

i.e. c ⊆ c′. Hence the first point of the Lemma.
Let’s then prove the second point of the lemma. Consider c′ ∈ C(γ′) with

v the representative of c in γ (see Lemma 4.15). If c′ ∈ C(γ), there is nothing
to prove, suppose then w.l.o.g. that it’s not the case.

As the Ω-value of v must have changed in the transition, it executed
either Merge lead, Merge follow, or Update.

• In fact, Update is not a valid option as it is not enabled on u in γ. It
would otherwise imply the existence of u ∈ V ′′

1 (γ) such that Ωu = c′.
Then there would be c ∈ C(γ) such that Ωu ⊆ c by definition of C.
Then with the first point of the Lemma plus the fact that C(γ′) is a
clique decomposition by Lemma 4.14 we get c′ ⊆ c ⊆ c′ i.e. c = c′

which is false by hypothesis.

• If v performed Merge lead in the transition, let’s write u = βγ
v . We

have also from the guard of Merge lead that βγ
u = v, Ωγ

u ∩ Ωγ
v = ∅,

Stab(v)γ , and u is not enabled in γ. By the definition of V ′′
1 (γ

′) and

the fact that Stab(v) is true, Ωγ′
v must contain a node of V1. Then, as

Ωγ′
v = Ωγ

u ∪ Ωγ
v , either Ω

γ
u or Ωγ

v .

– Suppose Ωγ
u contains a node of V1, we have u ∈ V ′′

1 . Suppose by
contradiction that Ωγ

u ̸∈ C(γ). There must exist u′ ∈ V ′′
1 (γ) such

that Ωγ
u ⊆ Ωγ

u′ . u′ ̸∈ Ω∗(v)γ from the fact that Ωγ
u ∩ Ωγ

v = ∅. But
then βu = v is a contradiction to the well-definedness of u′. Thus,
by contradiction we have Ωγ

u ∈ C(γ), we then write c = Ωγ
u. After

the transition we have Ωγ′
v = Ωγ

u ∪ Ωγ
v , thus c ⊆ c′.

23

– Suppose now Ωγ
v contains a node of V1. By the same reasoning as

the previous case, we have that Ωγ
v ∈ C(γ), and then by taking

c = Ωγ
v we have c ⊆ c′.

• Else, v must have performed Merge follow in the transition, and let’s
write u = βγ

v . The guard of the rule also gives us Stab(v)γ , Ωγ
u = c′.

Observe that as we supposed that c′ ̸∈ C(γ) this implies that u ̸∈ V ′′
1 ,

and that v ∈ V ′′
1 (γ). By the same reasoning than for the Merge lead

case we get Ωγ
v ∈ C(γ), and then by taking c = Ωγ

v we have c ⊆ c′.

Remark 1. Lemma 4.16 implies that in such a transition |C(γ′)| ≤ |C(γ)|.

When C changes, it makes progress. But we have to ensure that it does
change sometimes. The next four lemmas are a toolbox that will be used to
prove that.

Before proving that C makes progress, we prove a lemma about what
happens when a node of V0 \ V ′′

1 is merged with one from V ′′
1 .

Lemma 4.17. Let γ be N -stabilized configuration and v a node of V ′′
1 (γ).

If v executes rule Merge lead or Merge follow in the transition γ → γ′,
then βγ

v ∈ V ′′
1 (γ

′).

Proof. Suppose v executes Merge lead in the transition γ → γ′, it means
that Merge lead was enabled on v in γ. Then, as βv ∈ merge candidate(v)
in γ, we have leader(βv) = βv in γ, and thus βv ∈ Ωβv in γ. Thus, we have

βγ
v ∈ Ωγ′

v = Ωγ
v ∪ Ωγ

βv
.

Suppose now that v executes Merge follow in the transition γ → γ′, it
means thatMerge follow was enabled on v in γ. Then, as coherent clique(βv)

in γ, we have βv ∈ Ωβv in γ. Thus, we have βγ
v ∈ Ωγ′

v = Ωγ
βv
.

In both cases, βγ
v ∈ Ωγ′

v . But as u ∈ V ′′
1 (γ), from Lemma 4.6 we have

u ∈ V ′′
1 (γ

′). Thus βγ
v ∈ V ′′

1 (γ
′).

Starting in a N -stabilized configuration, either we directly get what we
want (Case 4 of Lemma 4.18), or we reach one of two types of configurations
(Cases 1,2 and 3 of Lemma 4.18) that will be dealt with in other lemmas.

Lemma 4.18. Let γ be a N -stabilized configuration. Suppose C(γ) is not a
minimal clique decomposition of V ′′

1 (γ) .
Then, after at most two rounds, a configuration γ′ is reached where one

of those is true:

24

1. Seduction or Mariage is enabled on at least one node of V ′′
1 (γ

′).

2. ∃u ∈ V ′′
1 ,∃v ∈ V0 such that βu = v and Mariage is enabled on v.

3. ∃u ∈ V ′′
1 ,∃v ∈ V0 such that Merge Lead is enabled on u or v.

4. |C(γ′)| < |C(γ)| or V ′′
1 (γ) ⊊ V ′′

1 (γ
′)

Proof. Suppose there exists c, c′ ∈ C(γ) such that c∪ c′ is a clique (they exist
by hypothesis, as C(γ) would be a minimal clique decomposition of V ′′

1 (γ)
otherwise).

Consider then u (resp. u′) the representative of c (resp. c′) in γ. If
Seduction or Mariage is enabled on u there is nothing to prove. The same
can be said if βu ̸= ⊥ and Merge Lead is enabled on either u or βu. The
same can be said for u′.

Let’s then suppose it’s not the case in γ. We are in either of those cases :

• Stab(u), βγ
u ̸= ⊥, and Merge follow is enabled on u. We have βγ

u ̸∈ V ′′
1

as if it was not the case, u would not be a representative. Then the
guard of Merge follow guarantees that Stab(βu) in γ and that this
will not change until Merge follow is executed by u. Thus after
at most one round, u executes Merge follow, and in the resulting
configuration βγ

u is in V ′′
1 from Lemma 4.17 and we have V ′′

1 (γ) ⊊ V ′′
1 (γ

′)
(Case 4 of the lemma).

• Stab(u), βγ
u ̸= ⊥, and Merge follow is not enabled on u. By hypothe-

sis, Merge lead is not enabled on u either.

– If Abandonment is not enabled on u we have βv ∈ {⊥, u} and
v ∈ merge candidate(u). If βv = ⊥, Mariage is then enabled on
v (Case 2 of the lemma), else βv = u and Merge lead is enabled
on u or v (Case 3 of the lemma)

– If Abandonment is enabled on u, it remains so until either it
executes Abandonment, or Abandonment is not activable
anymore, and one of those must happen in at least one round. In
the first case in the configuration just after the transition where
it executes Abandonment we have βu = ⊥, and Stab(u). In the
second case, as in the previous point, we are in either Case 2 or 3
of the lemma.

• ¬Stab(u) in γ, in which case by Lemma 4.13 a configuration where
Stab(u) is true and βu = ⊥ is reached after at most two rounds.

25

Thus, after at most two rounds, either a configuration that satisfies one of the
conditions of the lemma has been reached, or a configuration where Stab(u)
and βu = ⊥ has been reached. Note that when this is the case, the only rules
that may be enabled on u are Seduction or Mariage, so we may assume
w.l.o.g. that in the configuration when exactly two rounds have passed
Stab(u) and βu = ⊥ (otherwise we reached a configuration corresponding to
Case 1 of the lemma before that).

By symmetry, the exact same argument applies to u′.
Then, after two rounds, we are in a configuration where Stab(u), βu = ⊥,

Stab(u′) and βu′ = ⊥. Then, as c∪ c′ is supposed to be a clique, Seduction
is enabled on u and u′, which concludes the proof.

Then, starting in a configuration corresponding to Case 1 of Lemma 4.18,
we reach with probability at least 1

∆ a configuration having the same proper-
ties as the one of Case 3 of Lemma 4.18, i.e. a configuration where a clique
merging is about to begin.

Lemma 4.19. Let γ be a N -stabilized configuration and suppose Seduction
or Mariage is enabled on at least one node of V ′′

1 . Then, there is a probability
at least 1

∆ that after at most two rounds a configuration γ′ is reached where:
∃u ∈ V ′′

1 ,∃v ∈ V0 such that Merge Lead is enabled on u or v.

Proof. Consider a node u ∈ V ′′
1 (γ) such that Mariage is enabled on it. Any

node w ∈ V0 such that βγ
w = u and w ∈ merge candidate(u) cannot execute

any rule while Mariage is enabled on u. There is at least one such node
since Mariage is enabled on u. Thus after at most one round, u executes
Mariage, and in the resulting configuration we have βu = v ∈ V0, βu = v,
and βv = u, with v ∈ merge candidate(u). Thus, in this configuration,
Merge Lead is enabled on min(u, v).

Suppose now that Mariage is not enabled on any node of V ′′
1 . Consider

u ∈ V ′′
1 γ such that Seduction is enabled on it. Seduction will remain

enabled on u until either it is executed, or one member of merge candidate(u)
executes Seduction.

• Suppose that in the first transition where one of those events happens
u executes Seduction (after at most one round), and γ′ the resulting

configuration. If v = βγ′
u did not execute any rule in the transition,

then we have v ∈ merge candidate(u)γ
′
, βγ′

v = ⊥, and thus Mariage
is enabled on it. It will remain enabled until v executes Mariage (after
at most one round), and in the resulting configuration with probability

at least 1
∆ in the resulting configuration γ′′ we have βγ′′

v = u, and
Merge lead is enabled on min(u, v) in γ′′.

26

• Suppose now that in the first transition where one of those events
happens (after at most one round) u does not execute Seduction and
at least one node w ∈ merge candidate(u) executes Seduction. In the

resulting configuration γ′ we have then Stab(u), βγ′
u = ⊥. Moreover,

with probability at least 1
∆ , βw = u. Thus in γ′ Mariage is now

enabled on u until it is executed on u as no rule will be enabled
on v until then. When this happens (after at most one round), in
the resulting configuration γ′′, v = βγ

u is such that βu = v, βv = u,
v ∈ merge candidate(u) and u ∈ merge candidate(v). Thus, Merge
lead is enabled on min(u, v) in γ′′.

From a configuration of the type of Case 2 of Lemma 4.18 we will reach
a configuration of the type of Case 4 of Lemma 4.18 with probability at least
1
∆ .

Lemma 4.20. Let γ be a N -stabilized configuration such that ∃u ∈ V ′′
1 ,∃v ∈

V0 such that βu = v and Mariage is enabled on v.
Then, there is a probability at least 1

∆ that after at most one round a
configuration γ′ is reached where: ∃u ∈ V ′′

1 ,∃v ∈ V0 such that Merge Lead
is enabled on u or v.

Proof. As Mariage is enabled on v in γ, we have that v is well-defined and
v ∈ merge candidate(u), thus Ωv does not have Byzantine nodes. Mariage
will then remain enabled on v until it is executed as no node of Ωu and Ωv

except is activable while Mariage is enabled on βu = v. When the first time
v executes Mariage starting in γ (which happens after at most one round),
in the resulting configuration γ′, there is a probability at least 1

∆ (∆ being
the maximum size of merge candidate(v)) that βv = u. If this is the case,
as no other node than v in Ωu and Ωv

Observe that, as no other node than v in Ωu and Ωv was activable
before v executed Mariage, we still have v ∈ merge candidate(u) and

u ∈ merge candidate(v) in γ′. Then, if βγ′
v = u, Merge lead is enabled on

either u or v in γ′.
Thus, with probability at least 1

∆ , Merge lead is enabled on either u or
v in γ′.

And then from a configuration of the type of Case 3 of Lemma 4.18 we
will reach a configuration of the type of Case 4 of Lemma 4.18.

27

Lemma 4.21. Let γ be a N -stabilized configuration such that ∃u ∈ V ′′
1 ,∃v ∈

{x ∈ V0|well defined(x)} such that Merge Lead is enabled on u or v. Then
after 2 rounds a configuration γ′ is reached where βu = βv = ⊥, and either
is true:

• |C(γ′)| < |C(γ)|,

• |C(γ′)| ≤ |C(γ)| and V ′′
1 (γ) ⊊ V ′′

1 (γ
′).

Proof. As u ∈ V ′′
1 (γ), by definition of V ′′

1 there is w ∈ V1 well-defined in
γ such that u ∈ Ω∗(w)γ . As w is well-defined in γ, we have minΩ∗(w)γ ∈
{leader(leader(u)), βu} i.e. minΩ∗(w)γ ∈ {u, v}. If minΩ∗(w)γ was v, it
would contradict w well-definedness since we would have βγ

v ∈ Ω∗(w)γ , thus
by contradiction minΩ∗(w)γ = u.

Moreover well-definedness of w also implies that w ∈ minΩ∗(w)γ , thus
w ∈ Ωu. From the guard of Merge lead, either u ∈ merge candidate(v) or
v ∈ merge candidate(u). In both cases it implies that every node of Ωv is
neighbor of w ∈ V1, thus Ωv ⊆ V0.

Let us write x = min(u, v) and y = max(u, v)
Given the constraints on the configuration, we know that:

• Merge lead (and only this rule) is enabled on x in γ,

• No node in Ωγ
x \ {x} or Ωγ

y \ {y} is activable as we supposed Stab(x),
Stab(y), and that x and y are well-defined,

• No rule is activable on y, as βx = y.

Those facts will remain true after any transition where x is not activated
(as it means that no node in Ωγ

x or Ωγ
y made a move, and thus the hypothesis

on x and y stay true in the resulting configuration).
Thus, in the first transition where a node of Ωγ

x ∪Ωγ
y is activated, Merge

lead is executed by x and no other node of Ωγ
x ∪Ωγ

y is activated. It happens
after at most 1 round since Merge lead is continuously enabled on x until
so. Consider the configuration γ′ just after the transition where it happens.

Lemma 4.5 allow us to say that both x and y are still well-defined in γ′,
as neither Ωγ

x nor Ωγ
y contain Byzantine nodes.

We still have Stab(y) and leader(y) = y in γ′ since no node of Ωy was
activated. Moreover we also still have leader(x) = x in γ′ as x < y = minΩγ

y ,

and we have Ωγ′
y = Ωγ

y ⊆ Ωγ
x ∪Ωγ

y = Ωγ′
x . Moreover, as x is well-defined in γ′,

coherent clique(x) is true in γ′.
Thus Merge follow is enabled on y. Observe that no other node of Ωy

is activable, and that it won’t change until y executes a rule. Node x cannot

28

make any move until Stab(x) becomes true again, thus not before Merge
follow is executed by y. It happens after at most 1 round since Merge
follow is continuously enabled on y until so. Consider the configuration γ′′

just after the transition where it happens.
Again using Lemma 4.5, x and y are still well-defined in γ′′. From the

command of Merge follow we have βγ′′
y = ⊥. Moreover, from the guard of

Merge lead, βγ′
y = ⊥, and since x did not get activated afterward βγ′′

x = ⊥.

Then, as v ∈ Ωγ′′
u and u ∈ V ′′

1 (γ
′′), we have v ∈ V ′′

1 (γ
′′).

• If u and v where both in V ′′
1 (γ), we have Ωγ

u ∈ C(γ) and Ωγ
v ∈ C(γ)

with Ωγ
u ̸= Ωγ

v . Moreover, we have Ωγ
u ∪ Ωγ

v = Ωγ′′
u ∈ C(γ′′). Using

Lemma 4.16 we can then say |C(γ′′)| < |C(γ)|.

• Else, v was not in V ′′
1 (γ). Thus, as we have v ∈ V ′′

1 (γ
′′), V ′′

1 (γ) ⊊
V ′′
1 (γ

′′). Lemma 4.16 also implies |C(γ′′)| ≤ |C(γ)|.

4.5 Convergence and time complexity

Then, as we visually represent in Figure 1, we have a probabilistic pattern
that makes cliques grow that will repeat as long as C is not a minimal clique
decomposition of V ′′

1 . Trivially, it implies that the algorithm ends with
probability 1, but we will try to be more precise than that.

To do this, we use a concentration inequality (Azuma’s inequality) to
give a probabilistic bound on the number of rounds it takes to reach a
configuration where C is a minimal clique decomposition of V ′′

1 .

Lemma 4.22. Let γ be a N -stabilized configuration. With probability at

least p, after 4max(−∆2 ln p,
√
2√

2−1
∆n) + 6n rounds a configuration γ′ such

that C(γ′) is a minimal clique decomposition of V ′′
1 is reached.

Proof. The size of C may only decrease from Lemma 4.16, and V ′′
1 may only

increase from Lemma 4.6.
Suppose that C(γ) is not a minimal clique decomposition of V ′′

1 .
Starting in configuration γ, using Lemmas 4.18, 4.19 and 4.20 there

is a probability at least 1
∆ to reach a configuration corresponding to the

preconditions of Lemma 4.21 in at most 4 rounds.
If it is successful, from Lemma 4.21, starting in the resulting configuration

γ′, after at most two rounds, a configuration γ′′ is reached such that |C(γ′′)| <
|C(γ)|, or |C(γ′′)| ≤ |C(γ)| and V ′′

1 (γ) ⊊ V ′′
1 (γ

′′).

29

1

≥ 1
∆

≤ 1− 1
∆

1

Lemma 4.18

Lemma 4.19 and 4.20

Lemma 4.21

Any N -stabilized configuration

(1)/(2)

(3)

(4)

Figure 1: (1), (2), (3), and (4) refer to configurations having properties
numbered in Lemma 4.18. Values on arrows are probabilities given by the
lemmas.

In both cases (successful or not), either in the resulting configuration C
is a clique decomposition of V ′′

1 (and there is nothing left to prove), or we
may again apply the same set of lemmas.

Then, by Azuma’s inequality, with probability at least p, in at most

max(−∆2 ln p,
√
2√

2−1
∆n) iterations, we get a configuration where C(γ′) is a

minimal clique decomposition of V ′′
1 .

Successful iterations take at most 6 rounds, unsuccessful ones 4. Since
there can be at most n successful iterations, we get to that configuration

after at most 4max(−∆2 ln p,
√
2√

2−1
∆n) + 6n rounds.

Follows the theorem as a direct corollary of Lemma 4.22 and 4.1

Theorem 4.23. From any configuration γ, with probability at least p, after

4max(−∆2 ln p,
√
2√

2−1
∆n) + 6n+ 1 rounds a configuration γ′ such that C(γ′)

is a minimal clique decomposition of V ′′
1 (and V1 ⊆ V ′′

1) is reached .

5 Specification

As we introduced the notions C and V ′′
1 we can now express the specification

of our algorithm: the legitimate configurations are configurations γ such that

30

V1 ⊆ V ′′
1 (γ) and C(γ) is a minimal clique decomposition of V ′′

1 (γ).
We cannot guarantee that when such a configuration is reached C and V ′′

1

will not change again. It’s because nodes that neighbor Byzantine nodes, and
were previously entangled in dummy cliques staged by those Byzantine nodes,
may at any time execute Reset after a move from a Byzantine node. If one
of them merges with a clique of V ′′

1 after that, it makes V ′′
1 grow, and this

can happen arbitrarily far in the execution. But what we can guarantee as a
stability property is that when such a configuration is reached the property C
is a minimal clique decomposition of V ′′

1 will be conserved, even if the values
of C and V ′′

1 change. And recall that those may only change by “growing” in
some sense (see Lemmas 4.16 and 4.6 respectively).

Lemma 5.1. Let γ be a N -stabilized configuration such that C(γ) is a
minimal clique decomposition of V ′′

1 (γ). Suppose γ → γ′.
Then C(γ′) is a minimal clique decomposition of V ′′

1 (γ
′).

Proof. Suppose by contradiction that C(γ′) is not a minimal clique decom-
position of V ′′

1 (γ
′).

As γ′ is N -stabilized by Lemma 4.2, Lemma 4.16 tells us that C(γ′)
is a clique decomposition of V ′′

1 . Then C(γ′) not being a minimal clique
decomposition of V ′′

1 (γ
′) means that there exist c and c′ in C(γ′) such that

c ∪ c′ is a clique of V ′′
1 (γ

′).
But then, using Lemma 4.16, consider k, k′ in C(γ) such that k ⊆ c and

k′ ⊆ c′. Since c∪ c′ is a clique, it means that k∪k′ ⊆ c∪ c′ is also a clique. It
is then a clique of V ′′

1 (γ), which contradicts the fact that C(γ) is a minimal
clique decomposition of V ′′

1 (γ).

6 Correction

Moreover, we want a correction property for our algorithm. A natural thing
would be to be in a legitimate configuration when no node is activable in
V ′′
1 . However, it’s not the case, as a node of V ′′

1 might not be activable,
but waiting for a node in V0 \ V ′′

1 to execute Merge lead before being able
to execute Merge follow. We will then restrict our correction property,
expressed in Lemma 6.3 to configurations where β-values of every node in
V ′′
1 is ⊥. To prove this lemma, we will prove two preliminary lemmas.
First, a lemma that states some properties that are weaker than being a

legitimate configuration but which are true whenever no node is activable in
V ′′
1 .

31

Lemma 6.1. Let γ be a configuration with no node activable in V ′′
1 . For

v ∈ V ′′
1 we have in γ:

1. Nv = N(v),

2. Ωv = Ωleader(v),

3. Stab(v),

4. Ωv is a clique of G.

Proof. 1. If we had Nv = N(v), Reset would be activable on v.

2. Suppose Ωv ̸= Ωleader(v). Then either v is not well-defined and Reset
is enabled on v, or Update is enabled on v.

3. Suppose ¬Stab(v). There would be w ∈ Ωv (= Ωleader(v) ⊆ V ′′
1) such

that Ωw ⊊ Ωleader(v). Then either w is not well-defined, or Update is
enabled on w, which contradicts the non-activable hypothesis.

4. Suppose that Ωv is not a clique of G, i.e. ∃s, t ∈ Ωv distinct such
that s and t are not neighbors. By definition, s and t are in V ′

1 . From
previous points, we have Stab(v), thus Ωv = Ωs = Ωt. Then t ̸∈ N(s)
implies either that t ̸∈ Ns or N(s) ̸= Ns, and in both cases Reset is
enabled on s which contradicts the hypothesis that no node is activable
in V ′′

1 .

Then we prove that in a configuration where no node is activable in V ′′
1 ,

if two cliques of V ′′
1 are not already waiting to merge with some node in

V0 \ V ′′
1 , then their union is not a clique.

Lemma 6.2. Let γ be a configuration with no activable nodes in V ′′
1 , and

u, v two distinct nodes of V ′′
1 such that Ωu ̸= Ωv and βu = βv = ⊥ in γ. The

set Ωu ∪ Ωv does not form a clique in G.

Proof. Suppose by contradiction that Ωu ∪ Ωv forms a clique in G with
Ωu ̸= Ωv.

By hypothesis, we have the properties from Lemma 6.1.
Thus Stab(u) and Stab(v), and we may suppose w.l.o.g. that leader(u) =

u and leader(v) = v.

The fact that Ωu∪Ωv is a clique ofGmeans that Ωu∪Ωv ⊆
⋂

x∈Ωu∪Ωv

N(x)∪

{x}, but by well-definedness we have ∀x ∈ Ωu ∪ Ωv,Nx = N(x) ∪ {x}.

32

Moreover, Ωu ∪ Ωv = ∅, since it would imply that Ωu = Ωv using Stab(v)
and Stab(u).

Then, since leader(v) = v and Stab(v), v ∈ merge candidate(u). Then,
since we have βu = βv = ⊥, either there exists w ∈ merge candidate(u) such
that βw = u and Mariage is activable on u, or Seduction is activable on
u.

Our correction property follows immediately from Lemmas 6.1 and 6.2.

Lemma 6.3. Let γ be a configuration with no node activable in V ′′
1 and

where every node of γ has β-value ⊥, C(γ) is a minimal clique decomposition
of V ′′

1 (γ).

7 Conclusion

We have proved that Minimal Clique Decomposition can be solved in O(∆n)
rounds with high probability in the presence of Byzantine faults under the
fair daemon.

The same algorithm could be used to do the same in a context without
Byzantine nodes but under the adversarial daemon. However, as we used
probabilistic rules to prevent the Byzantine nodes to be able to reliably
trap us, we could probably remove randomness in this context, by saying
choose(A) = min(A) instead of drawing an element uniformly.

References

[1] Elias Dahlhaus and Marek Karpinski. “A fast parallel algorithm for
computing all maximal cliques in a graph and the related problems”. In:
SWAT 88. Ed. by Rolf Karlsson and Andrzej Lingas. Springer Berlin
Heidelberg, 1988, pp. 139–144.

[2] François Delbot, Christian Laforest, and Raksmey Phan. “New approx-
imation algorithms for the vertex cover problem”. In: International
Workshop on Combinatorial Algorithms. Springer. 2013, pp. 438–442.

[3] François Delbot, Christian Laforest, and Stephane Rovedakis. “Self-
stabilizing Algorithms for Connected Vertex Cover and Clique Decompo-
sition Problems”. In: Principles of Distributed Systems. Ed. by Marcos K.
Aguilera, Leonardo Querzoni, and Marc Shapiro. Springer International
Publishing, 2014, pp. 307–322.

33

[4] H. Ishii and H. Kakugawa. “A self-stabilizing algorithm for finding
cliques in distributed systems”. In: 21st IEEE Symposium on Reliable
Distributed Systems, 2002. Proceedings. 2002, pp. 390–395.

[5] Esther Jennings and Lenka Motyčková. “A distributed algorithm for
finding all maximal cliques in a network graph”. In: LATIN ’92. Ed.
by Imre Simon. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992,
pp. 281–293.

[6] Richard M. Karp. “Reducibility among Combinatorial Problems”. In:
Complexity of Computer Computations: Proceedings of a symposium on
the Complexity of Computer Computations, held March 20–22, 1972,
at the IBM Thomas J. Watson Research Center, Yorktown Heights,
New York, and sponsored by the Office of Naval Research, Mathematics
Program, IBM World Trade Corporation, and the IBM Research Math-
ematical Sciences Department. Ed. by Raymond E. Miller, James W.
Thatcher, and Jean D. Bohlinger. Springer US, 1972, pp. 85–103.

[7] Stephan Kunne, Johanne Cohen, and Laurence Pilard. “Self-stabilization
and Byzantine Tolerance for Maximal Matching”. In: Stabilization,
Safety, and Security of Distributed Systems. Ed. by Taisuke Izumi and
Petr Kuznetsov. Cham: Springer International Publishing, 2018, pp. 80–
95.

[8] Li Lu, Yunhong Gu, and Robert Grossman. “dMaximalCliques: A Dis-
tributed Algorithm for Enumerating All Maximal Cliques and Maximal
Clique Distribution”. In: 2010 IEEE International Conference on Data
Mining Workshops. 2010, pp. 1320–1327.

[9] Yanyan Xu et al. “Distributed Maximal Clique Computation”. In: 2014
IEEE International Congress on Big Data. 2014, pp. 160–167.

34

