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AI algorithms can analyze ECG signals in real time and 
perform rapid decision-making. Given the diversity of ECG 
morphologies, rhythms, and artifacts, finding a model that 
generalizes well and avoids false predictions is crucial. 

Such a model can then be deployed in a microcontroller 
adapted for ECG acquisition and shock delivery, which also 
imposes resource-related constraints.

AI to the Rescue!
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What is Cardiac Arrest?
In cardiac arrest the heart suddenly stops pumping blood 
effectively, due to a disruption in its electrical activity, 
leading to a loss of circulation and unconsciousness.

Immediate intervention is needed by:
• Performing CPR to maintain blood flow
• Defibrillation to reset the heart’s electrical system

Automated External Defibrillators (AEDs) analyze the 
patient’s Electrocardiogram (ECG) to identify cardiac arrest 
and apply an electrical shock to the heart. 
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ResNet
Network with skip connections

EfficientNet
Scaling width, depth, and resolution

DenseNet
Dense connections between blocks

MobileNet
Depthwise separable convolutions
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Wider networks with fewer layers
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The ECG can be represented in 
various ways, providing 
different information or being 
adapted for certain network 
architectures (1D vs 2D).

The time series provides 
morphological details, whereas 
the spectrogram describes its 
frequency content.

Different resource-efficient neural 
network architectures have been 
used for embedded systems. 
When choosing the architecture, 
one should consider how it 
impacts the implementation 
requirements.

32 bits

8 bits

For an embedded system implementation, 
decreasing the number of bits to 
represent the weights and activations 
comes with multiple advantages:
• Reduce model size
• Faster inference
• Lower memory requirements
• Minimal loss of information

Every minute is critical, 
as the chances of survival 
reduce significantly over 
time, around 10% per 
minute.

300 000
cardiac arrests per 
year in Europe

10% 
survival rate

~10 min 
for emergency medical 
services to arrive

Experiments and Preliminary Results 
1. Signal duration affects model training
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3. Quantization does not degrade performance

2. Bayesian hyperparameter optimization helps 
define architecture and training

Data summary
129 patients from 4 PhysioNet databases
(VFDB, CUDB, MITDB, AFDB)
Over 15 rhythm types and conditions 
938h of ECG recordings (1:100 positive)

Preprocessing
Resampling to 100 Hz
Segmentation according to available annotations
Standard Scaling
Label aggregation (binary targets)
Patient-based data split

Training
Sliding window approach
Weighted sampling (ensure data balance)
Time series data augmentation 
Binary cross-entropy loss function
AdamW optimizer

*results for ResNet1D model in NUCLEO-H743ZI2 board

4. Benchmarking on STM32 boards (Cube.AI)

Floating point 
model (32 bits)
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97,2%
97%
3%
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MACCs
Flash weights

RAM activations
Inference time

FPS

55M
55,6 KiB
153,4 KiB
392.7 ms
2,5 

MACCs:  Multiply-Accumulate Operations
FPS: frames per second

Some items were designed using images from Flaticon.com

Find out more!


