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In this work, we investigate the effect of particle shape, ranging from spherical to highly concave, on steady
flows in a rotating drum, a system that facilitates a continuous transition from a jamming state at greater depths to
an unjamming state at shallower regions. We develop an analytical model to elucidate granular behavior within
the rotating drum: (i) First, by decomposing the shear stress, we reconcile the discrepancy between simulation
data and theoretical predictions, establishing a relationship with the angle of repose. (ii) Second, we extend the
generalized Bagnold scaling, coupled with a nonlocal fluidity relation based on packing fraction, providing a
framework for a correlation between shear stress, shear rate, and packing fraction. Additionally, we introduce
a characteristic length to quantify the influence of particle shape and drum speed. This analytical model offers
explicit functional forms for physical quantity profiles, which are validated experimentally in a thin rotating
drum and numerically in a two-dimensional rotating drum. Our results demonstrate that this model accurately
describes the change in velocity from the bottom of the drum to the free surface. Moreover, for different shapes
of particle and drum speeds, the characteristic length captures the interplay between shear stress, shear rate, and
the variation of packing fraction.

DOI: 10.1103/PhysRevResearch.6.043310

I. INTRODUCTION: FLOW WITHIN A ROTATING DRUM

Granular matter is ubiquitous in both natural and indus-
trial environments, featuring diverse complexity of shapes.
Systems composed of these materials are commonly observed
and studied both at the macroscopic and microscopic scales.
One of their main characteristics is their ability to exhibit both
solidlike (jammed) and fluidlike (unjammed) behavior [1–3].
Still, in this latter state, they do not behave as Newtonian fluid.
Indeed, in contrast to the well-established constitutive rela-
tionships like the Navier-Stokes equations that aptly describe
liquid flow, no single analytical model captures the evolution
of flowing granular systems. In other words, the rheological
behavior in granular flows differs from that of traditional flu-
ids, representing an active area of intense investigation across
several fields for decades [2–6].

One of the most complicated situations for this type of flow
is when at least one surface of the system is not constrained
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and is free to move, as the one observed near the surface of
the flow in a rotating drum. In this latter case, there exist
distinct flow modes that can simultaneously cohabit within the
system. More specifically, in the so-called “rolling regime”
(i.e., a flow governed by inertial effects with a well-defined
dynamics [2,7–9]), we observe a solidlike behavior close to
the walls and deep in bulk, where the particle motion is
slow and considered as static. In contrast, in the upper part,
a liquidlike behavior develops, characterized by layers of
grains with larger inertia. In these layers, the flow evolves
from a quasistatic regime just above the solidlike zone to
inertial in the layers close to the free surface with an almost
exponential increase in grain velocity. In this last layer, the
flow is characterized by a nearly linear increase of grain ve-
locity [2,8–12]. Finally, at the free surface particles mainly
interact via binary collisions [8,9]. The transitions between
each of these regimes, within a single system, are still a matter
of debate [2,8,13,14]: At what depth do they occur? How
thick they are? How do these thicknesses vary as a function
of the drum speed and size? What about the properties of the
grains?

This set of seemingly simple questions reveals a complex
and still open problem: In the simplest and most common
flow geometry, that of the rotating drum, there is no yet
well-defined constitutive equations accounting for (i) the
phase-flow transition and (ii) allowing to predict the stress and
velocity fields. To address these issues, and more generally to
provide a more scientific description of multidirectional gran-
ular flows in rotating drums, several paths may be explored.
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This paper is structured as follows: In Sec. II, we provide
a comprehensive review of the state-of-the-art strategies for
modeling granular flows, with a particular focus on drum
geometry. This includes an examination of scaling laws, and
local and nonlocal approaches. Section III delves into re-
cent research regarding the influence of grain shape on flow
behavior and how accounting for grain shape effects poses
challenges to current rheological models. In Sec. IV, we in-
troduce a theoretical model based on the concept of “fluidity”
to predict stress and velocity fields in drum flow, considering
the effect of grain shape. Sections V and VI detail the develop-
ment of two-dimensional (2D) discrete element modeling and
three-dimensional (3D) laboratory experiments to validate the
new theories. Finally, in Sec. VII, we present our conclusions
and outline future research directions.

II. AN OVERVIEW OF MODELING STRATEGIES

A. Scaling law approach

Scaling laws have been formulated to relate some macro-
scopic observables to microscopic features of the flows. These
laws are most of the time established heuristically or empiri-
cally. For instance, in Govender’s comprehensive review [15],
it is shown that the mean flow velocity 〈v〉 scales with the liq-
uidlike flow thickness h as 〈v〉 ∝ hm, where m varies from 1 to
3 [2,10,16–18]. The dynamic angle of repose 〈θ〉 is also found
to vary as a power law of angular speed � with exponent be-
tween 1 and 2.6 depending on the system properties [18–20].
Richer scaling laws have also been proposed, combining the
Froude number (Fr = Rd�

2/g, where Rd , �, and g are the
cylinder radius, rotating velocity, and gravity acceleration,
respectively) with other system parameters to describe the
flow rates [21–23] or the dynamic angle of repose [23].

In fact, there is still no agreement on a set of equations to
govern these systems. Crafting such equations is challenging
due to the range of system parawmeters and flow scenarios
involved.

B. The μ(I) rheology and its limitation in multiphase flows

To analytically describe the evolution of a granular flow, a
second way actively pursued consisted of building constitutive
laws that better capture the main features of the flow rheology.
After decades of efforts, compiling experimental and numer-
ical data on flows in multiple configurations, a consensus has
emerged in the form of the so-called “μ(I ) rheology” [2]. This
law empirically stated that the apparent macroscopic friction
coefficient μ = τ/P and the packing fraction φ both depend
on the so-called “inertial number” I [24–26], with τ being the
shear stress and P the confining pressure. The state parameter
I is defined as the ratio of the shear time γ̇ −1 imposed by the
flow rate γ̇ over the particle relaxation time (ρd/P)1/2 for a
particle of density ρ and equivalent diameter d [2]. It is shown
that the shear stress is proportional to the pressure, through
the effective friction coefficient as τ = μ(I )P, and the volume
fraction φ is a function of I as φ = φ(I ). In general, a linear
dependence is obtained for small values of I both for μ(I ) and
φ(I ) [24]. More advanced functions have also been proposed
to consider larger values of I [3,16,17] or values depending on
the geometry [13,25,27].

It is remarkable that this model agrees with Bagnold’s
theory. Indeed, assuming that the momentum transfer between
particles in adjacent layers results from binary collisions dur-
ing flow [6,28,29] proposed

τ = f1(φ)ρd2γ̇ 2, (1a)

P = f2(φ)ρd2γ̇ 2, (1b)

where f1 and f2 are functions depending only on φ such that
f1(φ) = μ[I (φ)]/I2(φ) and f2 = I−2(φ). Equation (1) has
been recovered using dimensional analysis [28] and shown to
be valid for all shear rates [30].

The μ(I ) model when combined with a continuous ap-
proach (for the stress field) correctly predicts the velocity
fields in various homogeneous flow geometries [3,26]. Never-
theless, a number of limitations still remain [2,3,31]. Indeed,
for instance, this model manages to characterize the rheology
of the flow in the bulk material but fails near the walls, or
for finite-size flows where boundary effects dominate [32,33].
In the inclined plane flow, for example, the bottom and free
surfaces are close and the angle at which the flowing layer
comes to rest is determined by the layer thickness indepen-
dently from the μ(I ) prediction [2,34]. Similarly, this model
cannot accurately describe the transitions, from the quasistatic
to the static regime and from the inertial to the collisional
one [3].

This latter point is particularly critical when dealing with
the flow in a rotating drum since these different regimes
coexist. In this flowing geometry, the collinearity between
the deviatoric shear stress and strain tensor is not observed,
preventing the establishment of a general tensorial form of the
constitutive law as in unidirectional flow [3,35]. Nevertheless,
the scalar form of the μ(I ) relationship holds throughout the
drum [13,36,37]. However, in cases such as these, or under
conditions of high and low inertial numbers, the μ(I ) law
becomes “ill posed” due to its reliance on incompressible flu-
idlike behavior [38]. It is possible to modify the original μ(I )
function to maximize the range of well posedness [39]. This
approach has been successfully used to employ to simulate
two-dimensional flow in square and triangular rotating drums
containing mixtures of grains [40,41] In these simulations, the
μ(I ) rheology is active only in a surface layer, transitioning to
a highly viscous Newtonian fluid deeper within the drum. This
introduces a creep state, allowing grains deep within the drum
to experience almost solid-body rotation. However, the theory
in [39] can still become ill posed at high inertial numbers.
New compressible theories have been developed [42–44].
However, as numerous studies have shown [13,22,36,37], this
does not imply that stress and velocity fields can be predicted
using a continuum approach with a Bagnold-type profile, as is
typically done for free-surface flow.

Another approach is still possible. By assuming a perma-
nent flow, momentum balance equations along and normal to
the flow direction yield a linear stress distribution across the
depth as [2]

τ (z) = ρg(H − z) sin〈θ〉, (2a)

P(z) = ρg(H − z) cos〈θ〉, (2b)
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FIG. 1. (a) Typical shear stress profile τ (z) as a function of depth
measured in drum geometry (red line). The gray zone represents the
deviation of τ (z) from τ0 (gray dashed line) the shear stress given
by Eq. (2). The blue line represents the additional shear stress from
the drum geometry (see discussion in Sec. IV B). (b) Typical velocity
profile vx (z) as a function of depth measured in drum geometry (red
line). The gray zone represents the deviation of vx (z) from v0 (gray
dashed line) the typical Bagnold-type profile for a free-surface flow
as in inclined plane geometry. The blue line represents the velocity
profile imposed by the drum vdrum(z) (see also Sec. IV B).

where g is the gravitational acceleration and H is the height
of the free surface along the z direction (see Fig. 1). These
relations are verified for flows down an inclined plane [2,3]
and even for heap flows [2]. However Eq. (2a) fails in the
case of flow within a rotating drum [13,14], while Eq. (2b)
continues to be valid.

In Fig. 1(a) we present a sketch of the shear stress profile
measured in the stationary rolling regime (full red curve) and
its prediction from Eq. (2a) (gray dashed line). This latter,
although acceptable in the first inertial layers, differs from
the measurements deep in the quasistatic and static layers. In
these layers, the shear stress tends to become independent of
depth. It is often argued that the discrepancy between mea-
surement and predictions comes from the fact that the flow is
not perfectly homogeneous. As a major consequence, the ef-
fective coefficient of friction μ also varies with depth, and thus
cannot be directly related to free-surface angle 〈θ〉 [3,13,14].
Then, a constitutive law for the shear stress within a rotating
drum is still missing.

Moreover, the streamwise velocity profile sketched in
Fig. 1(b) shows a logarithmiclike decrease as it extends further
from the inertial-flow zone deep into the static bulk zone. It
moves away from the Bagnolian-type profile deduced from
the μ(I ) rheology [3,14]. Consequently, the μ(I ) law does not
apply to the drum case, requiring a nonlocal extension of the
Bagnold scaling.

C. Nonlocal rheology and high-order fluidity parameter

1. Generalities

For some flow geometries, the previous observations em-
phasize the need to consider the nonlocal nature of the
granular flow. What occurs at a given point in the flow is
influenced by what diffuses from its immediate vicinity. To
implement this in a coherent way, we introduce a charac-
teristic length scale lm related to the particle diameter. This
defines a scale of interaction that is distinct from the actual

size of the individual particles. Thus, a coefficient α is intro-
duced such that lm = αd . This is assumed to account for the
occurrence of collective motion of some clusters at different
scales [2,12,31,45–47] and location within the flow. Then,
following [2] Bagnold equation (1) is modified as

τ (z) = l2
m(z)ργ̇ 2(z). (3)

In the case of the rotating drum, it has been shown that
this coherent length scale lm goes to zero at the free surface.
Then it progressively increases as it approaches the transition
into the static phase leading to a divergence close to the walls.
This behavior drastically differs from other homogeneouslike
flows where lm remains most of the time relatively constant
in bulk [2]. The challenge therefore lies in finding the “right”
physical model to best describe how this coherent length scale
originates and evolves as a function of the flow conditions.

As explained in the extensive reviews by Bouzid et al. [48]
and Kamrin [49], a fruitful way to overcome this challenge
has consisted of building an extra parameter describing the
local state of the system. It relies on the introduction of an
order parameter f describing the dynamical transition from
solidlike to fluidlike behavior. This order parameter quantifies
the degree of fluidity displayed by a given region within a
granular system. This parameter f satisfies a partial Ginzburg-
Landau–type phenomenological equation based on a diffusion
process of the form [50–52]

T
D f

Dt︸ ︷︷ ︸
evolution, material derivative

= l2∇2 f︸ ︷︷ ︸
diffusive term

+ I ( f )︸︷︷︸
source term

, (4)

where T and l are characteristic time and length scales, re-
spectively. I ( f ) is a “source term” designed to switch the
stability of the phase f from solidlike to liquidlike behavior.
Under this framework, Eq. (3) is often rewritten in a more
general form as f = F (τ, γ̇ , P, I . . . ). Then, the main issue
consists of finding the control parameters and the source func-
tion I ( f ) that fit with the system dynamics.

One of the earliest approaches is the so-called “partially
fluidized theory” (PFT), where f is assumed to vary from
1, for solidlike behavior, to 0 for fluidlike behavior. The
characteristic length scale l is taken as the mean grain di-
ameter [50,53,54]. The PFT manages to go further than the
traditional μ(I ) model and captures the solid-to-fluid phase
transition, particularly concerning the initial and stopping
heights along an inclined plane [50,53] or some specific flow
patterns [55,56].

Then, the “nonlocal granular fluidity” (NGF) approach
has emerged as a powerful tool for quantitatively predicting
various nonlocal phenomena in various loading geome-
tries [5,52,57]. The NGF can be seen as an extension of the
work of Goyon et al. [4] and Bocquet et al. [58] where the
fluidity is assumed to be the inverse of the viscosity: f = γ̇ /μ.
Also, the source term I ( f ) is chosen to vanish when f tends
to a local fluidity floc that depends on μ. The characteristic
length scale l represents long-range interactions diverging as
the flow approaches the solid phase and going to 0 in the
fluidized zone. More recently, Zhang and Kamrin [59] have
formulated a microscopic interpretation that has then been
verified experimentally [60] and found to be equivalent to the
macroscopic form (under given boundary conditions) by Poon
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and colleagues [61]. It turns out that the fluidity originates in
the spatial fluctuations of the particle velocities. Nevertheless,
the NGF is based on an explicit formulation of the μ(I ) law
which makes its applicability quite tricky in the drum geome-
try where stress information is missing. Moreover, both μ(z)
and I (z) are nonuniformly distributed in the drum.

Other strategies have been considered, for instance, by
assuming that the fluidity is only defined from the inertial
number [i.e., f = I together with an expansion of the μ(I )
law] [48,51].

2. Discussion: The case of the rotating drum

Nonlocal models for the flow in the rotating drum geom-
etry (in particular to predict the stress and velocity fields) is
still largely an open question. Nevertheless, some successes
have been achieved (at least for the “rolling” regime) with
the PFT approach. For instance, Horpe and Khakhar showed
that the PFT (as developed initially by Arranson and Tsim-
ring [50,53]) reproduces the velocity field within a rotating
drum [14], although they do not perfectly fit the numerical and
experimental data. Nonetheless, their model relies on four ad
hoc adjustable parameters, together with a preliminary fit of
the shear stress τ , in the absence of a predefined stress model.
However, their velocity model does not follow a Bagnolian
profile.

At the same time as Aranson and Tsimring [50], Bonamy
and Mills [62] developed their own nonlocal model. In this
latter, the flowing granular medium is assumed to behave
like a network of granular chains embedded in a Newtonian
viscouslike fluid. By decomposing the total stress as a linear
combination of Coulombic friction stresses, viscous stresses,
and stresses due to immersed chains, they propose a simple
equation based on solely two parameters (the shear rate and
a characteristic length linked to the particle diameter). Their
equation fits the data well in the liquid flow region, but does
not describe the region near the free surface and fails to
reproduce the transition to the solid region, particularly at
high rotation speeds. Bonamy revisited the PFT approach,
and modified the original model by forcing the viscosity to
follow a Bagnold’s law [63]. He obtained a model that fits the
experimental data much better than the earlier version, but the
justification for maintaining a Bagnolian approach is missing.

III. THE IMPORTANCE OF GRAIN SHAPE AND OVERALL
OBJECTIVE OF THE PAPER

A. Grain shape effects

Most of the results discussed in the previous sections have
been obtained for model granular materials, i.e., materials
composed of disks (2D) or spheres (3D). Whether they are
minimalist like the μ(I ) model, or more sophisticated as the
“fluidity” concept, most of the models are all able to explain
complex collective phenomena, but they mainly ignore the
fact that the complexity can arise from the materials itself.
The intrinsic properties of the grains composing the system
can dramatically change its rheology [64–71].

For example, in the quasistatic limit (i.e., I � 1), the
shear strength μ increases with the grain angularity. But for
larger grain angularities it may saturate towards a maximum

value [72,73] or even decrease toward values close to that
of an assembly of disks, depending on the contact friction
value [74]. Numerous systematic studies have also highlighted
nonlinear variations in the solid fraction with grain elonga-
tion [64,65] or grain shape nonconvexity [65,66,68,75,76]. In
the case of homogeneous flows, the μ(I ) rheology is still well
observed, at least for convex [77] or slightly concave [75,78]
grains.

However, for the same thickness, the avalanche initia-
tion angle is greater for nonspherical grain packing [77,78],
demonstrating that the shape of the grains modifies the local
properties. In silolike geometries, faster discharges were ob-
served for elongated particles than for rounded particles [79].
In contrast, grain discharges slow down with increasingly
angular grains [80]. This again reveals nonlocal effects where
elongated grains manifest nematic ordering [81,82], facilitat-
ing their ejection, whereas increasingly pronounced arching
effects occur with angular grains induced by face-to-face con-
tact [72]. In drum geometry two distinct flow regimes were
observed depending on rotation speed and grain shape [83]:
(i) at high rotation speeds irregularly shaped grains led to
a higher dynamic angle of repose caused by the granular
packing expansion, (ii) at low rotation speeds, on the con-
trary, the angle is more related to the packing fraction. For
elongated and flat particles, differences in the velocity profile
measured in the active layer were reported as the aspect ratio
increases [84]. Similarly, nonspherical particles showed less
axial dispersion than glass beads [85].

Among all the possible grain shapes, concave grains are of
particular interest. Indeed, highly concave particles demon-
strate steep transitions between different dynamic states [69].
They can even maintain stability and loading without any
external confinement through their interlocking capability and
long-range correlation [86–90].

At the same time, they exhibit very low packing frac-
tion [66,76]. For instance, the column stability of concave
U-shaped particles shows that the decrease in particle packing
fraction offsets the increase in entanglement with concavity,
these two trends conspire to generate a maximum of resistance
to separation in collections of nonconvex particles of interme-
diate aspect ratio [67]. Very recently, it has also been reported
that sheared hexapods develop a secondary flow profile that
is completely opposite to that of convex grains in the same
geometry [91]. This makes the systems composed of these
particles an ideal system for exploring the fundamental princi-
ples governing transitions arising from grain shape properties.

The task is very challenging. In addition to theoretical as-
pects aimed at generalizing rheological and nonlocal models,
systematic studies need to be developed to continuously assess
the effect of grain shape change (from convex to highly con-
cave) on rheological properties. From an experimental point
of view, a fundamental challenge is to design a sufficient num-
ber of particles while systematically controlling their shapes
and mechanical properties. In addition, accounting for par-
ticle shape in numerical simulations using discrete element
methods presents a number of technical hurdles that are both
geometrically and computationally complex. An example is
detection of contacts and the calculation of forces between
particles of arbitrary shape, particularly concave ones, which
can have a large number of contacts.
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FIG. 2. A granular system is flowing in a half-filled rotating
drum of radius R and lateral thickness W . The unit vector ex oriented
with an angle θ from the horizontal is parallel to the free surface and
ez is perpendicular to it. 	 (in red) is a narrow area in which the
flow is considered invariant along x in the steady-state regime. q(z)
represents the value of any system observable, averaged in space and
time in the green area.

B. Objectives and outline of the paper

In this work, we investigate the effect of grain shape non-
convexity on the intrinsic rheology of a “rolling” steady-state
flow within a rotating drum. To this end, we design 2D nu-
merical studies and 3D experiments in which the grain shape
is systematically varied from circular (and spherical, respec-
tively) to cross-shaped particles with very thin arms. The drum
speed is also systematically varied to explore different rolling
regimes. Ultimately, we aim to develop a nonlocal model for
predicting the stress and velocity fields. This model has to
be sufficiently general to capture the effects that grain shape
can have on the different flow regimes (depth and thickness)
observed in the drum geometry.

IV. ANALYTICAL MODEL

A. Notations and main assumptions

In the rotating drum shown in Fig. 2, we define the refer-
ence frame R0 = (ex, ez ), where ex (respectively ez) is parallel
(respectively perpendicular) to the free surface. This latter is
inclined of an angle θ with the horizontal. In the reference
frame, the flow can be considered as quasihomogeneous at
the center of the drum, within a thin elementary slice 	 (red
area in Fig. 2), parallel to ez and located around x = 0. The
slice can be divided into elementary horizontal layers stacked
on top of each other and parallel to the flow, one such layer is
indicated as green in Fig. 2. The value of a given continuum
quantity q(z) (packing fraction, velocity, stress, etc.) at depth
z is then defined as the average of the corresponding quantity
given at the grain scale for all the particles, whose center of
mass is inside the layer. We assume that the flow is sufficiently
steady and quasihomogeneous across the flowing layer within
the slice 	, so that

∂q(z)

∂t
� 0,

∂q(z)

∂x
� 0. (5)

We also assume the packing fraction to be a global variable φ

in the granular flow. We define it as the ratio of the volume of
the particles to the volume of the packing φ = Vgrain/Vpacking.

Finally, the lateral thickness W is assumed to be wide
enough with respect to the apparent diameter of the grains d
to prevent side effects induced by lateral walls.

B. Stress profile

Starting from the Cauchy momentum equation that de-
scribes the momentum transport in any continuum, we
get [92]

∂v

∂t
+ (v · ∇)v︸ ︷︷ ︸

material derivative, Dv/Dt

= 1

ρ
(∇ · τ − ∇P)︸ ︷︷ ︸

∇·σ
+g, (6)

where v is the velocity vector field of the flow [depending
on time t and space (x, z)], ρ is the material density, g is
the gravitational acceleration, and σ is the stress tensor that
we can decompose into P the hydrostatic pressure and τ the
deviatoric stress tensor.

When studying the drum geometry, it is classical to de-
compose the velocity v into two distinct sources using the
superposition principle [2,13,14,35]: one linear component
following the same profile as the rotating drum vd [blue curve
in Fig. 1(b)], and another, nonlinear one, representing the
velocity relative to the drum vr . This gives

v = vr + vd. (7)

According to the first principle of special relativity, stating
that all physical laws take their simplest form in an inertial
frame and that there exist multiple inertial frames interrelated
by uniform translation [93], we postulate that the same holds
true for the stress tensor leading to the following decomposi-
tion:

σ = σr + σd, (8)

where σr is the stress tensor relative to the drum, and σd

the stresses resulting from the rotation induced by the drum.
However, while in Eq. (7) at least vd is well defined, in Eq. (8)
neither σd nor σr are known a priori.

As a first approximation, in the drum reference frame (R0),
the flow can be considered similar to the flow on a heap
(assuming no lateral wall effects [16,94]). This analogy can be
invoked thanks to the so-called self-similarity of the velocity
profiles in these two configurations [2,94,95]. Thus, according
to our main assumptions [see Eq. (5)], substituting σr and vr

within Eq. (6) in the reference frame R0 leads naturally to the
following equations [see also Eq. (2) in Sec. II B]:

τr (z) = ρg(H − z) sin〈θ〉, (9a)

Pr (z) = ρg(H − z) cos〈θ〉, (9b)

where τr (z) and Pr (z) are the average shear and normal
stresses components of σr, respectively. It should be noted that
Eq. (9) is always verified in heap flow geometry from the free
surface deep into the static bulk [96]. Thus, since the repose
angle 〈θ〉 remains constant, on average, within R0, the relative
effective coefficient of friction μr remains constant too and
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can be written as

μr = τr (z)

Pr (z)
= tan〈θ〉. (10)

Moreover, it is also reported in the literature that Eq. (9b) fits
correctly the normal stress distribution in the rotating drum
geometry [13]. Thus, it can be stated that P(z) = Pr (z), where
P(z) is the hydrostatic component of σ. This implies that σd

carries only the shear stress τd.
Therefore, we can define a “basal” friction coefficient μd .

This latter is transmitted only by the drum and results from
wall effects that propagate through the material [97]. Accord-
ingly, it can be written as

τd(z) = −μd P(z). (11)

The negative sign comes from the fact that the orientation
of τdrum(z) must correspond with the outer layer drag speed.
Identifying the basal friction law is a complex task and has
led to different strategies depending on the studied geome-
try [97–99].

In our case, we formulate these statements. (i) First, by
construction, μ + μd = μr = tan〈θ〉, where μ = τ/P, with
τ the shear stress extracted from σ. Since it is known that
μ = μ(z) evolves linearly with z in the drum geometry [36]
(see also Appendix A), then μd = μd (z). More accurately
μd is linear with z. (ii) Second, μd is assumed to vanish at
the free surface for a sufficiently large system, meaning that
μd |z=H = 0. (iii) Third, near the bottom wall μd |z=0 = μw,
with μw ∈]0, tan〈θ〉[ an effective coefficient of friction be-
tween the flowing layer and the bottom. All these conditions
lead to the following:

μd (z) = μw

H − z

H
. (12)

Consequently, substituting this expression of μd in Eq. (11)
gives

τd(z) = −μwP(z)
H − z

H
. (13)

Interestingly, Eq. (13) is reminiscent of the shear stress pro-
files induced by the walls in vertical-chute flows [2,100–102].
This implies a nontrivial analogy where, at least for stresses,
the flow within a rotating drum can be viewed as an intricate
combination of heap flow and pipe flow. Finally, noting that
the basal conditions near the wall are necessarily the same for
μ and μd (i.e., μ|z=0 = μd |z=0), we get that μw = 1

2 tan〈θ〉.
Thus, inserting this last expression into Eq. (13), together
with Eq. (9b) [recalling that P(z) = Pr (z)], we get an explicit
formulation of τdrum of the form

τd(z) = −ρg
(H − z)2

2H
cos〈θ〉. (14)

A sketch of τdrum(z) is shown in blue in Fig. 1(a). Then,
combining Eqs. (14) and (9) together with (8), the shear stress
component τ within a rotating drum can be written as:

τ (z) = ρg
H2 − z2

2H
sin〈θ〉. (15)

Finally, we define the granular flow density at coordinate z,
ρ(z), using the packing fraction of the assembly φ(z) and the

grain density ρ0: ρ(z) = ρ0φ(z). We are then able to scale the
shear and normal stresses within a rotating drum to get their
theoretical expression as follows:

τ (z)

ρ0gd
= φ(z)

H2 − z2

2Hd
sin〈θ〉, (16)

P(z)

ρ0gd
= φ(z)

H − z

d
cos〈θ〉. (17)

C. Velocity profile: A nonlocal model based
on the packing fraction

In this section, based on recent work using the PFT ap-
proach, we develop a nonlocal velocity model that is (i)
compatible with Bagnold’s scaling law and (ii) accounts for
the effect of the grain shape.

1. Preliminary step: Equivalence between fluidity and packing
fraction profiles

We start from the Ginzburg-Landau–type phenomenolog-
ical equation [Eq. (4)] presented in Sec. II C 1. Following
Aranson and Tsimring [50], the source term can be chosen
as I ( f ) = f (1 − f )( f − δ), where δ is a function with value
between 0 and 1 defined as δ = (μ − μdyn)/(μsta − μdyn). It
is built from μsta and μdyn the dynamic and static friction
coefficient respectively, i.e., the friction coefficient of a given
granular material measured at small and high inertial number,
respectively. This choice is motivated by the simple fact that
the source terms must have extrema both at f = 0 (fluidlike)
and f = 1 (solidlike). The parameter δ is introduced to control
the range in which both static and dynamic phases coexist. In
practice, δ is set to 0.5. Under the hypothesis of a steady and
fully developed flow given in Eq. (5), and the definition of the
source term given above, an explicit expression for f can be
derived with the form [50]

f (z) = 1

2

{
1 − tanh

(
z − z0√

8l

)}
, (18)

where z0 is such that f (z0) = 1
2 . This corresponds approxi-

mately with the depth at the transition between the quasistatic
and the inertial flow regimes (see Fig. 3). Note that, unlike
Aranson and Tsimring [50], we do not assume that the char-
acteristic length l is related to the mean diameter d of the
grains. On the contrary, we assume that l is a critical length
depending on the shape of the grains. Therefore, this length
scale is considered as a free parameter in our approach.

It is also well documented in the literature that the evo-
lution of the packing fraction φ(z) within a rotating drum
follows a relatively simple trend as a function of z, as depicted
in Fig. 3 [35,94]. In this figure, φ is constant and equals to φs

in the solid phase of the drum. Then, it decreases linearly with
z in the liquid phase from φs at z = zs (i.e., at the transition
from the static to the liquid regime) to φc at z = zc (i.e.,
at the transition from the liquid to the collisional regime).
Finally, it tends towards zero at the surface, for z > zc. Since
z0 is assumed to be the depth at the transition between
the quasistatic and inertial regimes, we define λ = z0 − zs

the thickness of the quasistatic flow zone (see Fig. 3). From
these definitions, it is easy to obtain the following expression
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FIG. 3. Illustration of the packing fraction profile φ(z) as ex-
pressed by Eq. (19), where zs, z0, and zc are the depths at the
transition from solid to quasistatic and finally collisional states, re-
spectively. λ = z0 − zs is the thickness of the quasistatic flow zone.

that gives the evolution of the packing fraction with depth:

φ0 − φ(z)

φs − φ0
= z − z0

λ
, (19)

where φ0 = φ(z0). Now, multiplying the left- and right-hand
sides of Eq. (19) by ξ = λ/(

√
8l ) and inserting it into Eq. (18)

we obtain a definition of the fluidity f , where the dependence
on z appears only through φ(z). This permits to define a
functional F depending only on φ:

F (φ) = 1

2

{
1 − tanh

(
ξ

φ0 − φ

φs − φ0

)}
≡ f (φ(z)) (20)

Thus, we see that the fluidity parameter can be described
in terms of the packing fraction φ only, by considering the
functional F through the global parameter ξ . This latter al-
lows linking of two, a priori, unknowns parameters that both
depend on the grain properties (i.e., shapes, sizes, ...): the
thickness of the quasistatic flow λ and the characteristic length
parameter l . Considering that F (φ) → 1 when φ → φs, to-
gether with the form of the tanh(ξ ) function, this suggests
that ξ can be chosen to be greater than at least 2, but at the
same time cannot tend to infinity since λ < zc − zs. Thus, ξ

is a fitting parameter that has to be determined numerically
by adjusting Eq. (20) on (18), and, contrary to λ and l , it is
not expected to depend on the grain properties. Thus, it can be
called a “universal” parameter.

2. Velocity profile built from the fluidity

Now we aim to generalize the Bagnold scaling by coupling
it with the fluidity function. Based on the works mentioned in
Sec. II B, two remarks can be made.

On the one hand, it appears that in its general Bagnolian
form, the shear stress is related to the flow rate through a func-
tion f1(φ) that depends on the packing fraction [see Eq. (1a)].
Actually, several studies have evidenced that the function f1

exhibits a divergence as the packing fraction φ approaches its
maximum value φs. More precisely, there is evidence that it
is necessary for f1(φ) to scale with (φs − φ)−2 in the vicinity
of φs [6,29]. Thus, incorporating the concept of fluidity into
Eq. (1a) together with the aforementioned conditions on f1(φ)

a natural expression of f1(φ) is

f1(φ) = k2

[1 − F (φ)]2
, (21)

where k is a dimensionless constant that does not depend, a
priori, on the grain properties that are naturally captured by
φ. k can be considered as a second “universal” parameter. The
square form of k in this equation will be justified.

On the other hand, and as already discussed, several au-
thors have proposed to modify the Bagnolian equation by
introducing a characteristic length scaling, through a param-
eter α, with the particle diameter lm(z) = α(z)d . This scaling
depends, a priori, on the flow depth z [see Eq. (3)]. Thus, by
assuming that this description relies essentially on the same
physical mechanisms as those of Eq. (1a), we can assume that
α2(z) = f1(φ(z)), and thus we get

α(z) = k

1 − F (φ(z))
= k

1 − f (z)
. (22)

Therefore, we can generalize the Bagnold scaling from
Eqs. (3) and (22), which elucidates the intricated interplay
between shear stress, shear rate, and packing fraction in the
form

[1 − f (z)]2τ (z) = ρ(kd )2

(
∂vx(z)

∂z

)2

. (23)

Finally, inserting the expression of the shear stress
[Eq. (16)] and the expression of the fluidity [Eq. (18)] into
Eq. (23), and remembering that λ = z0 − zs = ξ

√
8l , we ob-

tain the following expression for the derivative of the velocity
profile:

∂vx(z)

∂z
= 1

2kd

√
g

H2 − z2

2H
sin〈θ〉

[
1 + tanh

(
ξ

z − zs

λ
− ξ

)]

− �. (24)

Thus, we are able to give a theoretical expression for the
velocity field of the flow within a rotating drum. The above
equation is based on four parameters that must be adjusted.
Two of them, k and ξ , are presumed to be independent of the
grain properties. On the contrary, the two others, zs and λ, de-
pend on the grain shape and describe the different thicknesses
and depths of the flow zones. For instance, zs can be easily
determine from the packing fraction profile. To determine
the three other parameters, we can rely on the relationship
between f (z) and F (φ) in Eq. (20) since Eq. (18) can be
simply rewritten as a function of ξ and λ only.

V. NUMERICAL VALIDATION

A. Discrete-element modeling, system parameters,
and steady state

Two-dimensional simulations were carried out using the
contact dynamics (CD) method [103]. The CD method is a
discrete-element method (DEM) in which small-scale effects
are considered into nonregularized contact laws together with
a nonsmooth formulation of the particle dynamics. In other
words, contrary to the strategy adopted by the molecular dy-
namic approaches (also called soft-DEM) [104], no elastic
repulsive potential nor smoothing of the Coulomb friction law
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FIG. 4. (a) Example of 2D star-shaped particles with varying
concavities (η). (b) Snapshot of the rotating drum in the permanent
rolling flow regime. The red zone shows the area 	 in which the
averages are calculated. (c) Zoom within the rotating sample for
η = 0.9. The arrows show the velocity field.

is used to determine contact forces. The unknown variables
are the particle velocities and contact forces simultaneously
found using a (parallelized [105]) iterative algorithm based
on a nonlinear Gauss-Seidel scheme. Finally, the equations of
motion are integrated by an implicit time-stepping scheme.
This method is numerically unconditionally stable and par-
ticularly well adapted for simulations of a large assembly
of frictional particles. This is particularly true for complex,
nonconvex-shaped particles where there may be multiple
points of contact between two particles. The method has been
extensively employed for the simulations of granular mate-
rials in two and three dimensions. For a detailed description
of the CD method, see [103]. For our simulations, we used
the simulation platform LMGC90 developed in our labora-
tory [106,107].

In this study, we consider cross-shaped particles with
rounded-cap ends on each branch extremities as illustrated
in Fig. 4(a). Such shapes can be easily described using a
“concavity” parameter [65] defined as

η = r − r0

r
, (25)

where r is the radius of the circumscribed disk and 2r0 is the
branch thickness. For technical reasons, we consider two ways
of modeling particles. In the cases where η � 0.5, the grains
are modeled as four overlapped disks of radius r0 whose
centers lay at the corners of a square of edge r0

√
(2). In the

cases where η > 0.5, the grains are built with two rectangles

of length L = 2(r − r0) and four disks of radius r0 at the
ends of the rectangles. The contacts between two cross-shaped
grains can be reduced to a combination of contacts between
disks for η � 0.5. In contrast, for η > 0.5 three situations
may arise: cap-to-cap, cap-to-line, and line-to-line contacts.
Cap-to-cap and cap-to-line contacts are considered as one
contact point (i.e., disk-disk or disk-polygon contacts, respec-
tively). In the framework of the CD method, it is common
to represent line-to-line contacts as two contact points. This
is what is done here by considering two cap-to-line contacts.
The implementation of line-to-line contacts in the framework
of the CD method is described in detail in Ref. [72]. In the
following, the concavity parameter η is varied from 0 (disk)
to 0.9 in steps of 0.1.

Np randomly oriented grains of radius r are first laid under
the action of the gravity within a drum of radius 150r [see
Fig. 4(b)]. The number Np of grains ranges from 9104 for η =
0 to 20 707 for η = 0.9 so that the drum is half-filled whatever
η. A small particle size distribution is introduced around the
mean radius r̄ to avoid crystallization. Typically, the smallest
particles have a radius of r = 1.6 mm while the largest have
r = 2.4 mm. The friction between grains is set to 0.2 while
the friction between the grains and the drum is set to 0.9.
This prevents slipping at the boundaries. Finally, in order to
isolate the effect of grain shape, in all the simulations the grain
mass is kept constant by adjusting the material density ρ0 for
each η.

Then, a constant angular velocity � is applied to the drum.
� is varied in [2,4,6,8,10] rpm for each values of η. For every
configuration, we make sure that a permanent steady-state
regime is reached. Under rotation, all systems dilate slightly.
The free surface is then no longer parallel to the reference
frame but inclined with an angle θ as illustrated in Figs. 4(b)
and 4(c). Figure 5(a) shows the evolution of θ for � = 2 rpm
(� = 10 rpm in the inset) as a function of the number of
revolutions and for different values of η. For each pair (η,�),
on average, θ remains constant. This evidences that the flow
remains in a steady-state regime, also called the “rolling” flow
regime. For every simulation, this steady state is maintained
for approximately five revolutions before stopping the simu-
lations. Moreover, Fig. 5(b) shows that 〈θ〉 (i.e., the value of
θ averaged between revolutions 1 and 5) is an increasing, but
nonlinear, function of η that seems to saturate for η > 0.7, for
all �.

In the following subsections, the data we present are av-
eraged over time in the steady-state regime. These averaged
profiles are computed within the 	 zone at the drum center
whose thickness is fixed to 40r [see Fig. 4(b)]. This zone is
then vertically divided into layers of thickness equal to δz =
1.5r. This choice is motivated by a preliminary sensitivity
study of the profiles not presented here. Averages are taken
over 480 states saved between the first and the last revolution
in the steady-state regime.

B. Stress profile prediction

In this section we aim to validate the predictions of σzz(z)
and σxz(z) given by Eqs. (17) and (16), respectively. To do so,
we first need to evaluate the evolution of the granular stress
tensor and the packing fraction as a function of z.
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FIG. 5. (a) Evolution of the free-surface angle θ as a function of
the number of revolutions for a drum speed � = 2 rpm (� = 10 rpm
inset) and different particle shapes. (b) 〈θ〉, the value of θ averaged
between revolutions 1 and 5, as a function of η after one revolution
at drum speeds � = 2, 6, 10 rpm. The droplike symbols give (verti-
cally) the histograms of θ values at drum speeds � = 2 and 10 rpm.

1. Definitions

To compute the stress profiles within the assemblies,
we first construct the granular stress tensor σ. For each
particle p, we calculate the internal moment tensor M p

i j =∑
c∈p F c

i rc
j [97], where F c

i represents the ith component of
the force applied on particle p at contact c, and rc

j denotes the
jth component of the position vector of contact c. The sum
runs over all contacts c of particle p. Subsequently, a Voronoi
tessellation, covering the volume (or area in 2D) occupied
by the grains (see Appendix D), is employed to measure
the effective volume V p

v occupied by particle p. Finally, the
components of the granular stress tensor σ(z) at an altitude z
are given by [97]

σc(z) = 1

Vz

∑
p∈[z,z+δz]

M p, (26)

where the sum runs over all the particles p, with their center of
mass within [z, z + δz]; and Vz is the sum of the local volumes
V p

v of the corresponding particles. Finally, along the same line,
the packing fraction profile φ(z) is built using the Voronoi
tesselation as

φ(z) = 1

Vz

∑
p∈[z,z+δz]

V p, (27)

FIG. 6. Packing fraction profile φ(z) for η = 0.8 and 0 (inset)
for all rotation speed � (color level). The solid lines are linear
approximations of the packing fraction in the static regime (vertical
line) and in the flow regime (sloping line). The intersection of these
two lines, marked with a black disk, corresponds to the height zs,
which we use to mark the transition height between the static and the
flow regimes inside the drum.

where V p is the volume (area in 2D) of a particle p whose
center of mass belongs to the slice [z, z + δz].

2. Profiles

Figure 6 shows the packing fraction profiles φ(z) for η =
0.8 and 0 (inset) for all rotation speed � simulated in this
study. φ(z) is in good agreement with the description given in
Sec. IV C. Indeed, φ(z) is nearly uniform in the bulk and equal
to φs until it declines nearly linearly in the flowing layers,
from φs at zs to φc at zc and tends towards zero at the free
surface, i.e., for z > zc. Yet, close to the drum boundaries, the
packing fraction is also found to significantly decrease within
a small region one or two grain diameters thick. These profiles
also evidence an expansion of the assemblies at large-η val-
ues: φ declines as η increases. An expansion is also noticeable
with � but only in the flowing zone.

Figure 7(a) shows the variation of zs as a function of η

for the different rotation speed �. This quantity is measured
from a linear fit of the packing fraction profiles as explained
in Sec. IV C and illustrated in Fig. 3. As a reminder, zs is
a characteristic depth of the system that is the input to the
velocity profile equation [Eq. (24)]. zs evolves nonlinearly
with η: it first increases and, beyond η = 0.4, remains rel-
atively constant. Meanwhile, zs declines as � increases but
conserves its trend as a function of η. Figure 7(b) shows the
variation of quantities φs and φ̄ as functions of η for � = 2
and 10 rpm. We recall that φs is the packing fraction averaged
in the solidlike zone, while φ̄ is the packing fraction averaged
in the liquid zone between zs and zc. These quantities coin-
cide regardless of the rotation speed �. Interestingly, these
packing fractions slightly increase with η, reach a maximum
for η = 0.5, and then quickly decline as η further increases.
A similar nonmonotonous behavior has been observed in pre-
vious works with elongated [65,108], angular [65,66,75], or
slightly nonconvex [66,72,75] grains in both two and three
dimensions.

Then, Fig. 8 displays the normal stress σzz(z) (a) and shear
stress σxz(z) (b) profiles for different values of η, and for
different loading speed � = 2 and 10 rpm. We observe that
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FIG. 7. (a) Evolution of zs (the depth of the boundary between
static and quasistatic zones) as a function of the shape parameter η.
(b) Evolution of φs (the packing fraction averaged in the solidlike
zone) and φ̄ (the packing fraction averaged in the liquid zone, be-
tween zs and zc) as functions of the shape parameter η for � = 2
(dashed line) and � = 10 (plain line).

σzz(z) decreases linearly with z and decreases with η, from the
top layer, σxz(z) first decreases with depth, and then saturates
close to the drum border at a distance between 0.2H and
0.3H depending on η. When increasing this latter parameter,
the shear stress first increases (in absolute value), but beyond
η = 0.5 it goes back to values slightly lower than that of disk
assemblies, for η = 0.9.

The stress profiles σzz(z) are well approximated by Eq. (17)
for all pairs (η,�) used in this study. The prediction of σxz(z)
given by Eq. (16) also nicely reproduces the main variations
of the shear stress profiles across the drum for all pairs (η,�),
from the free surface up to deep in the solidlike phase. It
correctly captures the constant shear stress profile observed
close to the border. The minor mismatch with the numerical
data mainly comes from the fact we impose σxx = σzz to write
Eq. (16). This is valid in bulk, but not necessarily close to the
border, consistent with previous works [13,109]. discussion is
added in Appendix C on this specific aspect.

Finally, following of Eq. (16) the nonmonotonous variation
of σxz as a function η can be better understood from the
combined contributions of the evolution of φ̄ and 〈θ〉 with this
same parameter η. Indeed, for small-η values both sin〈θ〉 and
φ̄ increase, which explains the increase of σxz. For η > 0.5
the rapid decrease of φ̄ with η induces a decrease of σxz.
As a result, the product φ̄ sin〈θ〉 increases first with η but
declines from η = 0.5 up to values lower than that of disk
packings (see Fig. 9). The same holds for the variation of σzz

FIG. 8. Normal stress profile σzz (a) and the shear stress profile
σxz (b) for different values of η and for � = 2 rpm and � = 10 rpm
(inset). The simulation data are presented as symbols and the model
predictions [Eqs. (17) and (16), respectively] by dashed lines.

with η. In this latter case, the small increases of φ̄ at small η

are compensated by the decrease of cos〈θ〉. On the contrary,
at larger η, both φ̄ and cos〈θ〉 decline, so that their product
declines with η (see Fig. 9).

C. Velocity profile prediction and fluidity

In this section, we test the predictions of velocity profiles
given by Eq. (24). We discuss the effect that the grain shape η

and the rotation speed � have on the thickness λ of the inertial
flow zone.

FIG. 9. Evolution of the slopes φ̄ cos〈θ〉 (dashed line) and
φ̄ sin〈θ〉 (full line) of the corresponding normal [Eq. (17)] and shear
[Eq. (16)] stress profiles, as functions of η, for � = 2 rpm (circle)
and � = 10 rpm (squares).

043310-10



STEADY GRANULAR FLOW IN A ROTATING DRUM: A … PHYSICAL REVIEW RESEARCH 6, 043310 (2024)

FIG. 10. Velocity profiles measured in the numerical simulations
along the ex direction at drum speed � = 2 rpm (a) and � = 10 rpm
(b) for different η. In both cases (a) and (b), the plain line represents
the velocity profile of the model [Eq. (24)], and, the blue dashed line
represents the velocity profiles of the drum. The simulation data are
shown as scatter plots.

Figure 10 displays the x-velocity profiles vx, averaged in
the slice 	, for η ∈ [0, 0.5, 0.9] and at drum speeds � =
2 rpm (a) and � = 10 rpm (b). Symbols are direct measure-
ments of the numerical simulations while the plain lines are
the predictions given by Eq. (24). For every shape and drum
speed, a solidlike behavior is displayed deep in the packing.
This corresponds with the speed profile following the straight
blue dashed lines in Fig. 10. Then, in the upper layers, the
speed profiles increase and differ from the drum speed at
different depths, depending on the values of η and �.

The prediction of the relative velocity profile, given by
Eq. (24), is shown in black lines in Fig. 10 by fitting the
free parameters (k, ξ , λ). zs is fixed from the packing fraction
profiles curves (see Fig. 6). The theoretical prediction fits the
data well for every η and �. The way the fitting is carried out
is first by fitting the “universal” constant k by minimizing the
sum of residuals for all the fits, corresponding with all the sim-
ulations. We get k = 10. Then, the two unknowns ξ and λ are
solved using the two equations (24) (for the velocity profile)
and (20) (for the fluidity profile) simultaneously. Doing so,
we find that ξ = 2, independently of η and � (see also Fig. 17
in Appendix B). On the contrary, as shown in Fig. 11(a), λ

varies significantly with η and in a lower proportion with �.
More precisely, λ first decreases with η and then reaches a
plateau from η = 0.4 while it continuously increases with �.
From λ we can then compute the transition depths between
the quasistatic and inertial flow z0. Interestingly, as shown in

FIG. 11. The scaled characteristic thickness of the inertial zone
λ/H (a), and of the scaled critical depth z0/H (b) as functions of the
concavity η for different drum speeds �.

Fig. 11(b), this latter remains independent of η but decreases
with �.

The strength of the model we propose in this paper lies not
only in the correct modeling of the velocity, density, and stress
profiles for any grain shape and loading speed but also in the
ability to predict the thickness of the different flow layers and
their depth.

VI. EXPERIMENTAL VALIDATION

In this section, we develop a series of grain flow experi-
ments in a rotating drum. We used molded rigid cross-shaped
3D grains with different levels of convexity to test our theo-
retical velocity model experimentally.

A. Experimental setup

The rotating drum is shown in Fig. 12(a). It is a homemade
device that has an inside diameter of 28 cm and a lateral
thickness of 5 cm. It is filled with monodisperse particles of
shape varied from spherical to highly concave as presented
in Fig. 12(b). All the particles are circumscribed in a sphere
of diameter d = 12 mm. The concave ones consist of three
spherocylinders that extend toward the direction of the faces
of a regular cube. The radius of the spherocylinders r0 grad-
ually increases from 0.75 to 6 mm (sphere). These particles
are made by injection molding of high-density polyethylene
(HDPE). A dedicated mold producing clusters of 20 particles
has been custom made [110]. This material’s friction coeffi-
cient is very low, close to 0.1, and its Young modulus is quite
high, around 1 GPa. This makes the particles rigid and slip-
pery. The concavity parameter η [see Eq. (25)] is varied such
η ∈ [0, 0.33, 0.5, 0.58, 0.67, 0.71, 0.75, 0.79, 0.83, 0.875].

The drum has smooth transparent glass on both axial sides,
and the radial inner surface has regularly raised band to pre-
vent particle sliding. A constant volume of 900 mL of particles
is loaded into the drum for each experiment. The drum is
illuminated with LED light, and a camera [111] is positioned
perpendicular to the front glass to image the system at a high
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FIG. 12. (a) Illustration of the experimental setup: A camera, B
drum, C stepper motors, D lighting. (b) Particles with varying shapes,
ranging from spherical (η = 0%) to highly concave (η = 87.5%).
When the concavity η increases, the spherocylinder diameter grad-
ually decreases from 12 to 1.5 mm. (c) Velocity field obtained from
particle image velocimetry (PIV) superimposed on a photo of the
flowing grains for particles with concavity η = 79%. The dark blue
dotted line represents the studied slice 	, which has a width of six
particle diameters (7.2 cm).

frequency (60 frames per second). The rotation speed of the
drum is controlled by tuning the speed of two synchronized
stepper motors below it [see Fig. 12(a)]. We tested three an-
gular velocities � ∈ [1.93, 2.91, 4.83] rpm. For each couple
(η,�) the drum is first rolled for 2 min to reach the steady
state, while image recording lasted 5 min.

The mean behavior for each set of parameters η and � is
obtained by averaging over three independent data sets. Each
experiment was repeated 3 times, so in total 33 experiments
were performed. Image analysis shows that the flows stay
in the rolling regime for these pairs of parameters: (η,�) ∈
{([0, . . . , 0.58], 1.93) ; ([0, . . . , 0.67], 2.91) ; ([0, . . . , 0.79],
4.83)}. In the following, only these data sets are used.
Figure 13 shows 〈θ〉 as a function of η for the three � rotation
speeds. Obviously, the experimental and numerical values
[see Fig. 5(b)] of 〈θ〉 cannot be directly compared since
these are 2D simulations vs 3D experiments with different
grain shapes. However, in both cases the measured 〈θ〉 is an
increasing function of both η and �.

FIG. 13. The time-average free-surface angle 〈θ〉 as a function
of η and for different drum speed � ∈ [1.93, 2.91, 4.83] rpm. The
vertical histogram represents the distribution of the surface angles
for a rotational speed � = 4.83 rpm.

FIG. 14. Velocity profiles measured experimentally along the ex

direction at drum speed � = 1.93 rpm (a) and � = 4.83 rpm (b) for
different η. In both cases (a) and (b), the black line represents the
velocity profile of the model [Eq. (24)], and the blue dashed line
represents the velocity profiles of the drum. The experimental data
are shown as scatter plots.

B. Velocity profile prediction

From the images, we deduce the instantaneous velocity
field v using particle image velocimetry (PIV) as shown in
Fig. 12(c). Then, we decompose this velocity field into direc-
tions parallel (ex) and perpendicular (ez) to the free surface.
The so obtained x-velocity component vx is averaged in time
within the slice 	 to obtain the velocity profiles vx(z) (see
Fig. 14). The blue dashed line shows the drum velocity as a
function of the depth. The black line is the velocity profile
fitted by the analytical model [see Eq. (24)].

The velocity profiles obtained experimentally follow the
same trends as those obtained numerically. From experiments,
we cannot measure the evolution of the packing fraction. So
we cannot determine the parameter zs a priori, and Eq. (20)
cannot be used based on the evolution of the solid fraction.
Consequently, the parameter ξ cannot be estimated pre-
cisely. Nevertheless, remembering that λ = z0 − zs = ξ

√
8l ,

Eq. (24) can be rewritten as

∂vx(z)

∂z
= 1

2kd

√
g

H2 − z2

2H
sin〈θ〉

[
1 + tanh

( z − z0√
8l

)]
− �.

(28)
In this new form, Eq. (28) is based on three parameters, i.e.,

k, z0, and l that have to be determined. The same strategy as
previously is used to determine these three parameters. First,
k is fixed to 4 by minimizing the sum of all residuals for all
fits. Once k is determined, the two last parameters are fitted
for each experiment. As it is seen in Fig. 14, the prediction of
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FIG. 15. The scaled characteristic thickness of the inertial zone
λ/H (a) and the scaled critical depth z0/H (b) as functions of the
concavity η for different drum speeds � in the experiments.

the relative velocity profile, given by Eq. (28) (lines) by fitting
the free parameters (k,z0, l) is good for all η and �.

C. Discussion and comparison with numerical results

In order to compare the 2D and 3D values of the fitting
parameters, Fig. 15 displays the variations of the scaled char-
acteristic thickness of the inertial zone λ/H (a), and of the
scaled critical depth z0/H (b) in the experiments. Both are
plotted as functions of the concavity η for different drum
speeds �. Two comments: (1) to calculate λ it is necessary
to have an estimate of the parameter ξ . As explained in
Sec. IV C, ξ is a purely numerical parameter used to ensure
the equality of Eq. (20). In this sense, it does not depend on the
dimensionality of the problem and consists simply in studying
the convergence of the function tanh ξ to 1. For this reason,
we can rely on the 2D results and assume ξ = 2 as a first
approximation. (2) To support this choice, an inverse analysis
can be performed, consisting of taking Eq. (24) and imposing
ξ = 2, which allows to find values for λ and z0 similar to the
previous method, giving confidence in the measurement of the
fitting parameters.

Thus, consistently with the numerical results, the critical
depth z0 decreases when the rotating speed � increases. Yet,
for a given �, it is almost constant as long as η is low enough,
and increases (faster as in the 2D numerical simulations) with
this latter parameter for values above 0.5. The thickness of
the inertial flow zone λ/H is quite independent of the rotation
speed �, as already observed numerically. On the other hand,
its variation as a function of η in the experiments slightly
differs from the simulations. Specifically, λ/H decreases less
steeply than in the numerical simulations. We also observe an
increase for the highest η values, whereas it tends to plateau in
the simulations. Finally, in addition to the very similar trends
observed for these parameters as a function of η and �, we
note that similar (or at least very close) values are obtained

for the η = 0 case. For example, for � = 2 rpm, λ/H is close
to 0.3 in the 3D experiments and close to 0.35 in the 2D
simulations. The same holds for z0/H close to 0.90 in both
approaches.

VII. CONCLUSION

In this paper, we have presented an analytical model to
describe the evolution of the steady granular flow in a rotating
drum. Our approach relates the shear stress τ to the angle of
repose of the free surface θ and introduces the shear rate γ̇

and packing fraction φ into the generalized Bagnold equa-
tion through the “fluidity” f . We have found f to depend only
on the packing fraction φ.

To test our model, we designed a series of 2D numerical
simulations (based on a discrete-element method) and 3D
experiments involving grain flow in a rotating drum. In ad-
dition, to test the robustness of the theoretical model, we went
as far as considering the case of granular systems made of
very nonconvex grains. Grains with a very nonconvex shape
have the peculiarity of being entangled and thus present flow
patterns that can be radically different from those of convex
grains.

Our numerical and experimental results confirm the valid-
ity of the model for steady granular flows and its ability to
accurately describe the velocity profile, regardless of the grain
shapes. Furthermore, our simulations confirm the model’s
efficacy in predicting stress and packing fraction within the
assembly. The combination of experiments and simulations
compared to the model demonstrates the power of an approach
introducing the concept of “fluidity” in the analytical study.
Additionally, we provide an explicit form for this fluidity
function [F (φ(z))] for cross validation.

In our analytical model, the “fluidity” can be viewed as
an approximate solution to the diffusion equation based on
Landau’s theory. To avoid the artificial building of a source
term in the diffusion equation, we introduce a constant k into
the fluidity. This fluidity is then incorporated into the Bag-
nold scaling with the Prandtl mixing length scale to correct
the mixing length. The successful combination of Landau
theory and Prandtl mixing length in a macroscopic system
primarily governed by inertia provides us with a more intu-
itive understanding of phase transitions and fluid mechanisms.
This hyperbolic logistic function appears in many statistical
problems related to phase transitions and provides a highly
approximate solution to bridge the different states of the or-
der parameter. It is widely used not only in physical phase
transitions but also in ecological [112], epidemiologic [113],
and chemical phase transitions. We apply a hyperbolic tan-
gent function to the order parameter fluidity in granular flow.
This approach may have applications in similar rheological
systems of amorphous glassy materials, such as concentrated
emulsions, pastes, and molecular glasses.

In addition, our analytical framework incorporates most
of the key physical quantities in particle flow. In particular,
we evidenced a critical height zs, which marks the transition
between the solid and fluid regimes, and a critical thickness
λ characterizing the inertial flow zone. Our approach, through
the concept of fluidity, highlights a characteristic length scale
specific to the grain shape l , which is explicitly linked to the
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critical thickness by the relationship we establish λ = ξ
√

8l .
In other words, our model explicitly incorporates the grain
shape through this intrinsic grain length scale l .

In this paper, we have focused on the modeling of the
macroscopic flow. However, a lot of work remains to be
done to characterize the microscopic properties, particularly
in the presence of very nonconvex grains. As mentioned
above, these grains can become entangled and most likely
form complex clusters connected by multiple contacts. Such
a description remains an open research topic and will be the
subject of a detailed study in forthcoming publications.

Finally, it would be interesting to reexamine the results
presented in this paper with other grain shapes, in particular
anisometricor elongated grain shapes, and different fill rates.
In general, elongated grain shapes, such as spheroids and
spherocylinders, tend to develop an orientational order that
affects force transmission and friction behavior [82]. This
“nematic” ordering occurs even when the grains interact only
by contact and friction. It is hoped that the theory developed
in this paper for predicting stress and velocity profiles will
remain valid for more simple and convex grain shapes as
well as for different filling. It would then be interesting to
quantify the thickness of phase changes (solid to liquid) as a
function of both grain elongation and filling, in order to char-
acterize the underlying microstructures in each of the phases
involved.
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APPENDIX A: MACROSCOPIC FRICTION PROFILE

Figure 16 shows the variation of the macroscopic friction
profile μ(z) as a function of z. As we can see, μ(z) evolves
approximately linearly with z in our numerical simulations (as
also reported in [36]).

APPENDIX B: NUMERICAL APPROXIMATION
FOR SOLVING EQ. (20)

Figure 17 shows the evolution of f (z) (lines) and F (φ(z))
(symbols) for η = 0 (a) and η = 0.9 rpm (b). The data always
collapse when ξ is chosen equal to ξ = 2 and λ given in
Fig. 11(a).

APPENDIX C: REWRITING EQ. (16) WITHOUT
NEGLECTING EXTRA TERMS

When developing Eq. (16) we assumed that the stresses
σxx and σzz were equal. This assumption is valid in the bulk
but may be too strong near the walls, more precisely at the
bottom of the drum. Although the approximation proposed

FIG. 16. Effective friction coefficient μ. (a) μ is plotted for dif-
ferent values of η and for � = 2 rpm. (b) μ is plotted for different
values of η and for � = 10 rpm.

by Eq. (16) reproduces the shear stress profiles very well,
for all shapes and drum angular speed, it can be significantly
improved without the previous assumption. In this case, the

FIG. 17. Fluidity profile f (z) (plain line) and the specific form of
fluidity profile as a function of the packing fraction F (φ(z)) (scatter
plot) for η = 0 (a) and η = 0.9 (b).
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FIG. 18. Corrected shear stress, for different values of η and for
� = 2 rpm (a) and for different values of η and for � = 10 rpm (b).

shear stress model reads as

τ (z)

ρ0gd
= φ(z)

H2 − z2

2Hd
sin〈θ〉 +

√∣∣σ 2
xx(z) − σ 2

zz(z)
∣∣

σzz(z)
. (C1)

Figure 18 shows the evolution of the normalized shear stress
profile τ for all shapes at � = 2 rpm (a) and � = 10 rpm
(b). It also shows the approximation proposed by Eq. (C1),
where σxx(z) and σzz(z) are measured directly from the sim-
ulations. As we can see, the approximation is more accurate
than that given by Eq. (16) in the region close to the drum
border.

FIG. 19. Voronoi tessellation in a snapshot of simulation. (a) For
concave particles with η = 0.5. (b) For highly concave particles with
η = 0.9.

APPENDIX D: VORONOI TESSELLATION

To compute the packing fraction and stress, we used
Voronoi tessellation to partition and determine the packing
volume of each particle. Figure 19 shows the Voronoi meshing
for highly nonconvex grains.
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