
HAL Id: hal-04871463
https://hal.science/hal-04871463v1

Submitted on 7 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Parser-Based Data Collector for Intrusion Detection
Grégor Quétel, Eric Alata, Pierre-François Gimenez, Laurent Pautet, Thomas

Robert

To cite this version:
Grégor Quétel, Eric Alata, Pierre-François Gimenez, Laurent Pautet, Thomas Robert. A Parser-
Based Data Collector for Intrusion Detection. RESSI 2024 - Rendez-Vous de la Recherche et de
l’Enseignement de la Sécurité des Systèmes d’Information, May 2024, Eppe-Sauvage, France. pp.1-2.
�hal-04871463�

https://hal.science/hal-04871463v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A parser-based data collector for intrusion detection
Grégor Quétel1, Eric Alata2, Pierre-François Gimenez3, Laurent Pautet1, and Thomas Robert1

1LTCI, Télécom Paris, Institut Polytechnique de Paris, {firstname.lastname}@telecom-paris.fr
2LAAS CNRS, eric.alata@laas.fr

3CentraleSupélec, Univ. Rennes, IRISA, pierre-francois.gimenez@centralesupelec.fr

Abstract—Intrusion detection systems often struggle to identify
attacks directed at applications. A contributing factor is the
various syntactical forms these attacks can take. This paper
introduces a methodology to design and adapt applicative data
collectors (DCs) to software projects by integrating them into
the application’s parsers. This data collector aims to enhance
applications’ security by providing semantic information to
intrusion detection mechanisms.

Index Terms—Application-level data collector, Semantics, In-
trusion Detection System

I. INTRODUCTION

Intrusion Detection Systems (IDS) are tools designed to
monitor information systems and detect any abnormal con-
tent. Typically, an information system is equipped with DCs
positioned to protect valuable assets. They transmit their
observations to a central intrusion detection mechanism, which
analyzes the received data and triggers alerts in the event
of detecting abnormal behavior. IDSes based on observations
at the network or host level fail to detect attacks targeting
applications. The former because the traffic is mostly en-
crypted nowadays [1], the latter because observations made
at the host level fail to reflect events taking place at the
application level [2]. We intend to detect attacks targeting
applications and therefore intend to position our DC at this ab-
straction level. Attacks directed towards applications generally
have multiple syntactical variants with equivalent semantics:
they possess the same impact on an application but are
expressed differently. For instance, with MySQL, the queries
Select * from users where role=’admin’; and
Select * from users where role=’adm’ ’in’;
are semantically equivalent but syntactically different. Existing
works that base their analysis on applicative data mostly focus
on syntactical features such as string matching or signature
analysis.

However, the malicious nature of inputs is fundamentally
determined by their impact on the system. Producing informa-
tion regarding the impact of user input on an application rather
than the specifics of how it is formulated would allow better
anomaly detection [3]. Furthermore, prevalent approaches are
usually integrated into the internals of one specific application
and can hardly be applied to a different software project.
In this paper, we present the methodology to integrate data
collectors in applications’ parsers to produce application-
level information for security purposes. Specifically, we fo-
cus on generating semantic information associated with the

(a) Host-based architecture (b) Network-based architecture

Fig. 1: The position of DCs for intrusion detection

application inputs. The DC utilizes the application codebase
to minimize integration costs and to automate most of its
deployment. The paper is organized as follows. Section II
presents widespread data collection approaches. Section III
describes the characteristics of our DC. Finally Section IV
highlights the goal of the first author’s PhD thesis.

II. RELATED WORK

Generally, IDSes are characterized according to the nature
of the data they utilize to perform detection. DCs most often
provide either network or host information to the detection
mechanism[1], [4]. Network-based IDS (NIDS) DCs typically
consist of dedicated networking hardware added to a net-
work to monitor a multitude of hosts. Their ability to detect
application-level attacks is hindered by increasingly encrypted
traffic. Most often, Host-based IDS (HIDS) collection mech-
anisms involve a software component (agent) that analyzes
the system on which they are deployed. An agent is installed
on each host within a network that needs to be monitored.
Information provided to the detection mechanism usually
consists of system call sequences, file system access or system
logs. Figure 1 illustrates the difference in DC positioning
between HIDS and NIDS. Application-based IDS utilize their
domain knowledge to provide information about events taking
place at the application level [1], [5]. Typically, they consist of
the native audit functions provided by applications. However,
these mechanisms impact the performance of applications
because they are not optimized for production deployment.
Finally, these features are rendered useless in the scenario
where a privileged user has been compromised, as they can
disable them. [1], [5].

III. APPROACH

We present a data collector integrable to multiple appli-
cations with minimal engineering integration costs. The DC
produces information characterizing each application input and
is strategically positioned within parsers. Parsers break down
inputs into structured data using a specification on how to

Fig. 2: The position of our DC in a typical information system

analyze and verify the syntax of the input: the grammar file.
This grammar file is composed of parsing rules. By inferring
the semantics associated with each rule before the application
deployment, we can at runtime, construct each parser input’s
associated semantic.

A. Position within applications

Information systems are made of the interconnection of
different applications. Consequently, when an attacker targets
an application or the resources it manages, they have access
to multiple means to carry out their attack. The parser is an
application component that remains unavoidable regardless of
the input’s origin. We ensure to produce information for every
application input by placing our DC into this component.
Finally, most often, the parser is automatically generated
using parser generator tools such as Bison or ANTLR, which
facilitates the generalization of our approach. In Fig 2 we
illustrate the positioning of our parser-based DC.

B. Information produced by the data collector

The data collector position allows it to transmit both seman-
tical and syntactical information such as details about utilized
keywords or processing rules for each received input, to the
intrusion detection mechanism. However, our methodology
focuses on the production of semantic information. Existing
formal semantic approaches are mostly designed for safety and
correctness purposes. Therefore, we defined different semantic
meta-models adapted to our security concerns that aim to
abstract the impact of inputs through different characteristics:

• Meta-model A - < action >: at the most basic abstrac-
tion level, each input is characterized by an action: a verb
in natural language describing the impact of the query on
the system, e.g. create, delete, modify.

• Meta-model B - < action, object >: with this model, we
also provide the information of the object on which the
action is performed, e.g. file, user, database.

Applications we plan to instrument belong to different
software categories and allow different actions on a system.
For instance, a Database Management System allows creating,
deleting, and modifying data, while a web server allows
receiving and sending data. Actions and object classes relevant
to the former might not be relevant to the latter. Therefore,
for each project (or project family), a relevant semantic model
will be instantiated (i.e. an application using the meta-model
B will need to be instantiated with action and object classes).

Subsequently, given the semantic model, we plan to have our
data collector automatically associate a semantic to each parser
input.

C. Deployment

Automatically generated parsers are built from a standard-
ized grammar file containing the parser rules. Therefore, we
can easily inject into the grammar file, code consisting of the
semantics associated with each rule. Additionally, we inject
a routine that aggregates them to construct the overall input
semantic and transmit it to the detection mechanism.

IV. CONCLUSION AND GOAL OF THE PHD

In this paper, we introduced the idea of a novel approach to
produce applicative-level information for detection purposes.
The Ph.D. thesis of the first author centers on designing the de-
scribed DC and the associated intrusion detection mechanism.
Before providing DC prototypes two major challenges must
be addressed. First, because many security tools are simply
ignored due to their deployment complexity, we plan to define
a process to automatically instantiate the semantic model for
each application. Then we plan to establish a methodology
whereby, given a semantic model and a set of parser rules, we
can automatically associate a semantic to each rule. To perform
this task we can leverage software project information such as
grammar files, application codebase or online documentation.
Various techniques are available to infer a label from these
sources such as the computation of similarity measures on text
data or automatic source code summarization on codebase [6].

ACKNOWLEDGMENTS

This work has been partially supported by the French
National Research Agency under the France 2030 label (Su-
perviz ANR-22-PECY-0008). The views reflected herein do
not necessarily reflect the opinion of the French government.

REFERENCES

[1] R. A. Bridges, T. R. Glass-Vanderlan, M. D. Iannacone,
M. S. Vincent, and Q. (Chen, “A Survey of Intrusion
Detection Systems Leveraging Host Data,” ACM Com-
puting Surveys, 2019.

[2] X. Jin and S. L. Osborn, “Architecture for Data Collec-
tion in Database Intrusion Detection Systems,” in Secure
Data Management, 2007.

[3] S. Mathew, M. Petropoulos, H. Q. Ngo, and S. Upad-
hyaya, “A Data-Centric Approach to Insider Attack De-
tection in Database Systems,” in Recent Advances in
Intrusion Detection, 2010.

[4] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzza-
man, “Survey of intrusion detection systems: Techniques,
datasets and challenges,” Cybersecurity, 2019.

[5] X. Jing, Z. Yan, and W. Pedrycz, “Security Data Collec-
tion and Data Analytics in the Internet: A Survey,” IEEE
Communications Surveys & Tutorials, 2019.

[6] C. Zhang, J. Wang, Q. Zhou, et al., “A Survey of Auto-
matic Source Code Summarization,” Symmetry, 2022.

