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Context and motivation
High-grade glioma: The most frequent high-grade brain tumor in adults.
Radiotherapy (RT): One of the most important treatments, generally combined with surgery and/or chemotherapy:

increased patient survival,
but also an increase in side effects like cognitive impairments [Bompaire et al., 2018].

Clinical question: Potential neurotoxicity of brain RT on the central nervous system?
Aim: To estimate the potential association between the occurrence of white-matter hyperintensities (WMH) and the
absorbed dose after brain RT.
Background: Mass univariate analysis (voxel-based t-tests, voxel-based logistic regression).
Our idea: Model-based approach at the voxel level =⇒ Extensions of GLliM models [Deleforge et al., 2015] to the
context of binary outcomes and zero-inflated mixture components.

Data
There are three types:

Segmentation map (binary data)
of WMHs observed from one 3D
brain MRI, observed at multiple
time.
Dosimetric CT-scan, giving the
absorbed dose to each voxel of the
brain during RT.
Clinical variables (sex, age, etc).

Aim: use our model on the EpiBrain-
Rad cohort [Durand et al., 2015].

Modelling
For an individual i and a voxel v and a time
t, let Yivt be the outcome variable describing
the presence/absence of a WMH, Divt the ab-
sorbed dose, W1:P

i some individual-specific co-
variates and Cv the unknown class label of the
voxel. Pour k ∈ {1, . . . , K}:

Data modelling

Yivt | Divt,W
1:P
i , Cv = k ∼ Bern (pivt)

logit pivt = ηivt = βk
0+βk

1divt+β2:P+1w
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Cv ∼ Multinomial (1, {π1, . . . , πK})

Prior distributions

For all k ∈ {1, . . . , K}:
βk ∼ N2

m0 = 0, σ0 = 103


µk ∼ N
µ0 = 0, λ0 = 103



τk ∼ G
a0 = 10−3, b0 = 10−3



πk ∼ sym-Dirichlet (α/K)

Bayesian inference
Variational Bayes
[Durante and Rigon, 2019]

Gibbs Sampler
[Polson et al., 2013]

Difficulties
Large amount of data: 512 × 512 × 121 ∼ 107

voxels per MRI, 250 individuals with multiple
times.
Registration of MRI longitudinally and inter-
individuals when brains deal with deformations.

Further modelling
Add a temporal interaction with the dose in the
regressor :

ηivt = βk
0 + (βk

10
+βk

11
t )divt + β2:P+1w

1:P
i

Add spatiality
through a residual ξv:

ηivt = βk
0 + βk

10
divt + . . .+ξv

with ξv | ξ−v ∼ N

∑

u∈∂v ξu
n(∂v) , σ2

n(∂v)


through a centred autologistic model using
the pseudo-likelihood:
ηivt = βk

0+βk
10
divt+ . . .+γ

∑
u∈∂v

(yiut − µiut)

with µiut = E [Yiut | γ = 0].

Data illustration

Figure 1: Example of a patient FLAIR, WMH in blue and dose from
black=0 through a red to yellow grandient finishing with white∼ 60 Gy.
On the left 6 months after RT and on the right 47 months after RT.

Preliminary results on one patient from simulated data . . .
Our model is fitted on 100 simulated datasets. Coverage rate (CR) of the true regression
parameters are displayed on the right, estimated mixture parameters are not shown:

Markov chains obtained using
MH sampler are strongly auto-
correlated, effective sample size
is almost 0 and assessing the
convergence is not possible.
Gibbs sampler with Pólya-
Gamma latent random variables
yields much better Markov
chains,
VBEM: much more faster but
a far worse coverage rate com-
pared to the Gibbs sampler.

µ τ π Mode (Gray)
Class 1 −1.21 1.00 0.57 0.11

Class 2 2.63 0.48 0.18 11

Class 3 3.72 0.17 0.11 40

Class 4 4.17 0.15 0.14 63

Table 1: True mixture parameters

β1
1 = 0.02 β1

0 = −3.90

Method CR 95% Relative bias Var CR 95% Relative bias Var
VBEM 50 2.20e01 1.39e00 54 2.80e-03 2.32e-02
Gibbs 93 2.81e01 8.92e00 93 3.80e-03 1.49e-01

β2
1 = 0.10 β2

0 = −4.30

Method CR 95% Relative bias Var CR 95% Relative bias Var
VBEM 82 1.36e-01 1.90e-04 75 5.12e-02 4.03e-02
Gibbs 99 1.39e-01 4.80e-04 96 5.25e-02 1.32e-01

β3
1 = 0.15 β3

0 = −5.45

Method CR 95% Relative bias Var CR 95% Relative bias Var
VBEM 88 4.78e-02 8.00e-05 88 4.34e-02 1.08e-01
Gibbs 92 4.86e-02 1.40e-04 94 4.42e-02 1.77e-01

β4
1 = 0.20 β4

0 = −7.70

Method CR 95% Relative bias Var CR 95% Relative bias Var
VBEM 82 4.66e-02 9.00e-04 83 7.51e-02 3.24e-00
Gibbs 98 4.45e-02 3.90e-03 98 7.26e-02 1.29e-01

Table 2: Statistics computed on 100 simulated datasets

. . . and from real data

Figure 2: Six classes obtained with the model. Grey voxels indicate a WMH.

The model assigns a class to
each voxel (figure 2).
To each class is assigned a
dose response-relationship,
which leads to a piece-wise
logistic association (graph 3).
Thus, it becomes possible to
have a relation at the scale of
an organ, the white-matter or
the whole brain.

Figure 3: Dose-response relationship estimated (with the as-
sociated uncertainty), depending on classes.
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