

Bayesian spatial mixture of experts for a flexible dose-response assessment after brain radiotherapy

Théo Silvestre, Florence Forbes, Sophie Ancelet

► To cite this version:

Théo Silvestre, Florence Forbes, Sophie Ancelet. Bayesian spatial mixture of experts for a flexible dose-response assessment after brain radiotherapy. The International Society for Bayesian Analysis, Jul 2024, Venise, France. hal-04871355

HAL Id: hal-04871355 https://hal.science/hal-04871355v1

Submitted on 7 Jan 2025

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Liberté Égalité Fraternité

Bayesian spatial mixture of experts for a flexible dose-response assessment after brain radiotherapy

Théo Silvestre

Laboratory: PSE-SANTE/SESANE/LEPID (IRSN) **PhD supervisors:** Sophie Ancelet (LEPID, IRSN), Florence Forbes (Statify, INRIA)

Context and motivation

- I High-grade glioma: The most frequent high-grade brain tumor in adults.
- **Radiotherapy (RT):** One of the most important treatments, generally combined with surgery and/or chemotherapy: increased patient survival,
- but also an increase in side effects like cognitive impairments [Bompaire et al., 2018].

I Clinical question: Potential neurotoxicity of brain RT on the central nervous system?

I Aim: To estimate the potential association between the occurrence of white-matter hyperintensities (WMH) and the absorbed dose after brain RT.

Data

There are three types:

- I Segmentation map (binary data) of WMHs observed from one 3D brain MRI, observed at multiple time.
- Dosimetric CT-scan, giving the absorbed dose to each voxel of the brain during RT.

Background: Mass univariate analysis (voxel-based t-tests, voxel-based logistic regression).

I Our idea: Model-based approach at the voxel level \implies Extensions of GLliM models [Deleforge et al., 2015] to the context of binary outcomes and zero-inflated mixture components.

I Clinical variables (sex, age, etc).

Aim: use our model on the EpiBrain-Rad cohort [Durand et al., 2015].

Modelling

For an individual i and a voxel v and a time t, let Y_{ivt} be the outcome variable describing the presence/absence of a WMH, D_{ivt} the absorbed dose, $W_i^{1:P}$ some individual-specific covariates and C_{ν} the unknown class label of the voxel. Pour $k \in \{1, ..., K\}$:

$$Y_{ivt} \mid D_{ivt}, W_i^{1:P}, C_v = k \sim \text{Bern}(p_{ivt})$$

$$\begin{split} &\text{logit } p_{i\nu t} = \eta_{i\nu t} = \beta_0^k + \beta_1^k d_{i\nu t} + \beta_{2:P+1} w_i^{1:P} \\ &\text{D}_{i\nu t} | C_\nu = k \sim \begin{cases} \delta_0 & \text{si } k = 0 \\ \text{Log-}\mathcal{N} \left(\mu_k, \tau_k^{-\frac{1}{2}} \right) & \text{si } k \neq 0 \end{cases} \end{split}$$

$$C_{v} \sim Multinomial(1, \{\pi_{1}, \ldots, \pi_{K}\})$$

Bayesian inference

Variational Bayes I Gibbs Sampler [Durante and Rigon, 2019] [Polson et al., 2013]

Difficulties

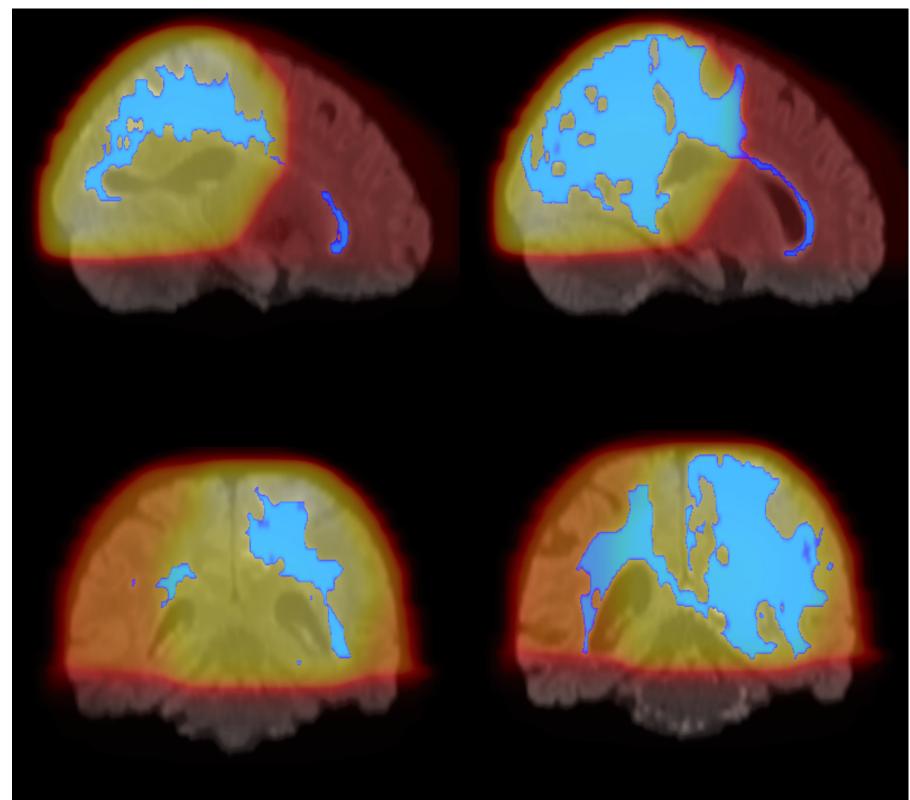
Large amount of data: $512 \times 512 \times 121 \sim 10^7$ voxels per MRI, 250 individuals with multiple times.

Registration of MRI longitudinally and interindividuals when brains deal with deformations.

Further modelling

- Add a temporal interaction with the dose in the regressor :
 - $\eta_{ivt} = \beta_0^k + (\beta_{1_0}^k + \beta_{1_1}^k t) d_{ivt} + \beta_{2:P+1} w_i^{1:P}$

Data illustration



Data modelling For all $k \in \{1, ..., K\}$: $\beta^{k} \sim \mathcal{N}_{2}(m_{0} = 0, \sigma_{0} = 10^{3})$ $\mu_k \sim \mathcal{N}\left(\mu_0 = 0, \lambda_0 = 10^3\right)$ $\tau_k \sim \mathcal{G}(a_0 = 10^{-3}, b_0 = 10^{-3})$ $\pi_k \sim \text{sym-Dirichlet} (\alpha/K)$ **Prior distributions**

• Add spatiality • through a residual ξ_{v} : $\eta_{ivt} = \beta_0^k + \beta_{1_0}^k d_{ivt} + \ldots + \xi_v$ with $\xi_{\nu} \mid \xi_{-\nu} \sim \mathcal{N}\left(\frac{\sum_{u \in \partial \nu} \xi_u}{n(\partial \nu)}, \frac{\sigma^2}{n(\partial \nu)}\right)$. through a centred autologistic model using the pseudo-likelihood: $\eta_{ivt} = \beta_0^k + \beta_{1_0}^k d_{ivt} + \ldots + \gamma \sum (y_{iut} - \mu_{iut})$

with
$$\mu_{iut} = \mathbb{E}[Y_{iut} | \gamma = 0].$$

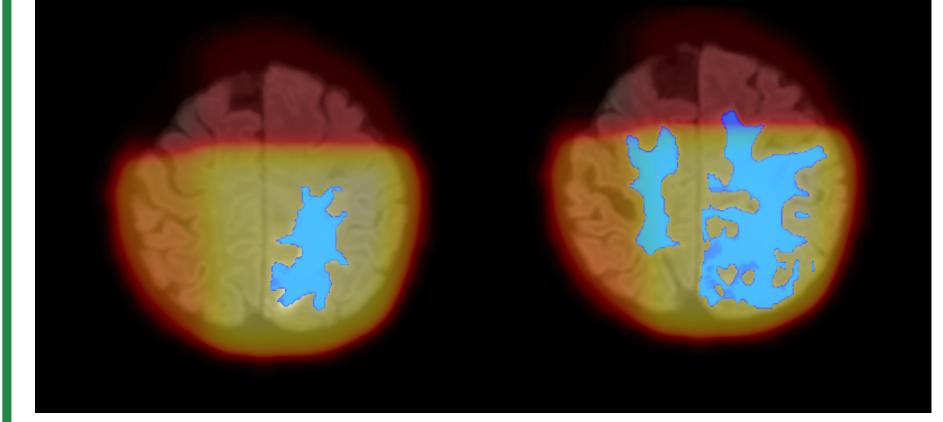


Figure 1: Example of a patient FLAIR, WMH in blue and dose from black=0 through a red to yellow grandient finishing with white \sim 60 Gy. On the left 6 months after RT and on the right 47 months after RT.

Preliminary results on one patient from simulated data ...

Our model is fitted on 100 simulated datasets. Coverage rate (CR) of the true regression parameters are displayed on the right, estimated mixture parameters are not shown:

I Markov chains obtained using

]
MH sampler are strongly auto-		$\beta_1^1 = 0.02$			$\beta_0^1 = -3.90$		
correlated, effective sample size	Method	CR 95%	Relative bias	Var	CR 95%	Relative bias	Var
is almost 0 and assessing the	VBEM	50	2.20e01	1.39e00	54	2.80e-03	2.32e-02
convergence is not possible.	Gibbs	93	2.81e01	8.92e00	93	3.80e-03	1.49e-01
Gibbs sampler with Pólya-	$\beta_1^2 = 0.10$				$\beta_0^2 = -4.30$		
Gamma latent random variables	Method	CR 95%	Relative bias	Var	CR 95%	Relative bias	Var
yields much better Markov	VBEM	82	1.36e-01	1.90e-04	75	5.12e-02	4.03e-02
chains,	Gibbs	99	1.39e-01	4.80e-04	96	5.25e-02	1.32e-01
■VBEM: much more faster but	$\beta_1^3 = 0.15$			$\beta_0^3 = -5.45$			
a far worse coverage rate com-	Method	CR 95%	Relative bias	Var	CR 95%	Relative bias	Var
pared to the Gibbs sampler.	VBEM	88	4.78e-02	8.00e-05	88	4.34e-02	1.08e-01
	Gibbs	92	4.86e-02	1.40e-04	94	4.42e-02	1.77e-01
μ τ π Mode (Gray)			$\beta_1^4 = 0.20$			$\beta_0^4 = -7.70$	
Class 1 -1.21 1.00 0.57 0.11	Method	CR 95%	Relative bias	Var	CR 95%	Relative bias	Var
Class 2 2.63 0.48 0.18 11	VBEM	82	4.66e-02	9.00e-04	83	7.51e-02	3.24e-00
Class 3 3.72 0.17 0.11 40	Gibbs	98	4.45e-02	3.90e-03	98	7.26e-02	1.29e-01
Class 4 4.17 0.15 0.14 63		Table 2:	Statistics com	puted on	100 simu	lated datasets	1
Table 1: True mixture parameters							

... and from real data

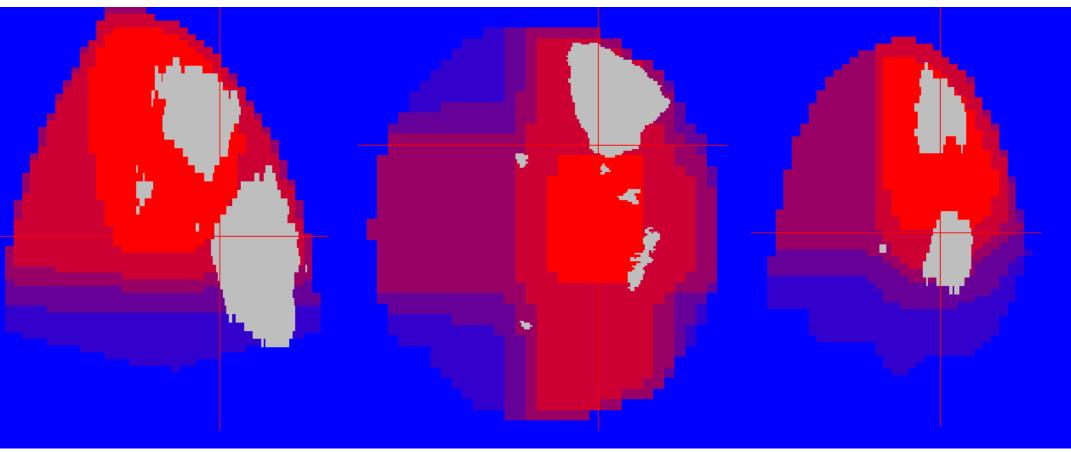


Figure 2: Six classes obtained with the model. Grey voxels indicate a WMH.

observe a WMH in a voxe I The model assigns a class to each voxel (figure 2). To each class is assigned a dose response-relationship, which leads to a piece-wise ^ہ و logistic association (graph 3). Thus, it becomes possible to have a relation at the scale of an organ, the white-matter or the whole brain.

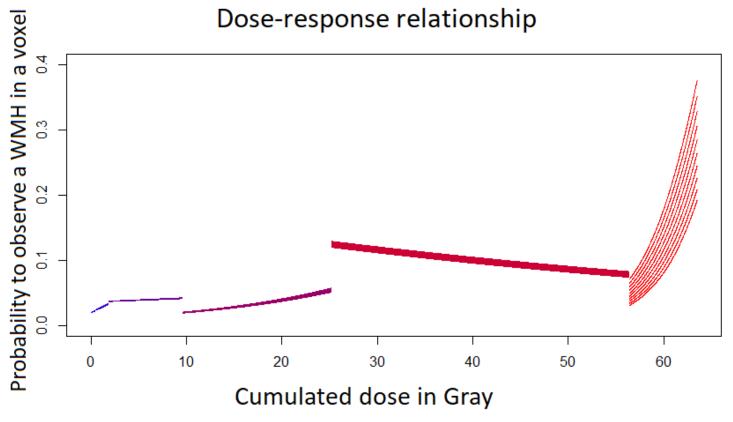


Figure 3: Dose-response relationship estimated (with the associated uncertainty), depending on classes.

MEMBRE DE ETSON

International Society for Bayesian Analysis ISBA | 01/07-07/07 2024

