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Abstract—The evaluation of network intrusion detection
systems requires a sufficient amount of mixed network
traffic, i.e., composed of both malicious and legitimate flows.
In particular, obtaining realistic legitimate traffic is hard.
Synthetic network traffic is one of the tools to respond to
insufficient or incomplete real-world datasets. In this paper,
we only focus on synthetically generating high-quality legit-
imate traffic and we do not delve into malicious traffic gen-
eration. For this specific task, recent contributions make use
of advanced machine learning-driven approaches, notably
through Generative Adversarial Networks (GANs). However,
evaluations of GAN-generated data often disregards pivotal
attributes, such as protocol adherence. Our study addresses
the gap by proposing a comprehensive set of metrics that
assess the quality of synthetic legitimate network traffic. To
illustrate the value of these metrics, we empirically compare
advanced network-oriented GANs with a simple and yet
effective probabilistic generative model, Bayesian Networks
(BN). According to our proposed evaluation metrics, BN-
based network traffic generation outperforms the state-of-
the-art GAN-based opponents. In our study, BN yields sub-
stantially more realistic and useful synthetic benign traffic
and minimizes the computational costs simultaneously.

1. Introduction

High-quality, fully labeled, and recent network traf-
fic datasets are essential for evaluating network security
methods. However, constructing such datasets typically
presents three main challenges. Firstly, capturing real
network traffic may raise concerns regarding data pri-
vacy protocols. Secondly, labeling real network traffic is
a time-intensive process that requires significant manual
investigation efforts. Additionally, network traffic data
can be generated and labeled using well-controlled and
configured network testbeds [1], [2]. Labeling network
traffic within simulation testbeds is straightforward and
does not raise privacy concerns for data sharing. However,
simulating network activity can be complex and costly,
particularly when attempting to simulate a large number
of users’ network activities. Conversely, synthesizing net-
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work traffic [3] avoids the limitations of simulation and
emerges as a promising solution to address the scarcity of
high-quality network traffic datasets.

In the past few years, there has been a growing interest
in applying Machine Learning (ML) techniques to gen-
erate synthetic benign traffic. Data generation methods —
widely successful in creating diverse types of data such as
images [4], [5], textual data [6], and tabular data [7], [8] —
have inspired researchers to adapt these techniques to gen-
erate synthetic network traffic data. Notably, Generative
Adversarial Networks (GANs) [4] have been applied in
numerous studies to create network data [9]-[19] but
other approaches that use auto-regression models [20]
have been used too. Among those studies, some opt to
create synthetic network packets [10], [12], [21], while
others chose to generate network flows [11], [14], [19],
[22] or network features [15], [16], [18].

In our study, we focus on generating only benign
traffic. Attack traffic can often be captured in testbeds with
pentesting or attack tools and then mixed with a dataset
of benign traffic [23]. In contrast, benign traffic is more
difficult to replicate due to the great diversity of benign
network usages. We also chose to generate only Network
Flows (NFs) because it has been widely used as input
data structure of NIDS [24].

NFs are composed of mixed types of features, in-
cluding both categorical and numerical, characterising
network traffics. For example, Transport Protocol is a
categorical feature, whereas Duration of the flows is a
numerical one (see Section 2.1 for more details). Network
communications follow the predefined protocols and pro-
grammed activities. As a result, different features in NFs
are usually strongly correlated, indicating clear patterns
differentiating network activities. For instance Destination
port can have a strong influence on Transport Protocol
(NFs targeting the port 80 have a high chance to use the
TCP transport protocol).

How to encode these inter-feature correlations is hence
the key to generate realistic benign NFs. To reach this
goal, inspired by Goncalves et al. [25], we propose to use
Bayesian Networks (BNs) [7] as a novel network flows
synthesizing solution. BNs are by design a probabilistic



generative model, explicitly modelizing the conditional
dependency between various attributes, which in turn
achieves a computationally economic estimation to the un-
derlying joint distribution. According to Goncalves et al.,
BNs have been used successfully in generating patients’
medical records.

Compared to the end-to-end data generation methods,
e.g. GANSs [4], BNs have two merits in synthetizing NFs.
First of all, BNs directly capture the correlation between
NF features from training data by estimating the inter-
feature conditional probability. It provides a lens to in-
vestigate and clone the statistical profile of NFs. Second,
BNs has a significantly lower computational overheads
compared to the GANs based methods. Besides, GAN-
based methods suffer from their black-box and non-linear
nature of data generation. As reported in [26], GANs are
prone to mode collapse, where only a subset of the real
distribution is generated, due to the non-convex adversar-
ial learning objective. It is hence difficult to control the
quality of the generated NFs [11].

Our work demonstrates the use of BNs for synthesiz-
ing NFs. We organise an empirical comparison involving
the proposed BN-based method and the state-of-the-art
GAN-based network flows generation methods. To reach
a comprehensive comparative study, we propose to build
a set of evaluation metrics that cover multiple aspects
of synthetic data quality, like its Realism, Diversity and
Novelty, but also its Compliance to network protocols.
We employ the measurement metrics to demonstrate the
superior quality of the BN-based NFs generation solution
over those of the state-of-the-art GAN based methods, yet
only requiring a small fraction of computational costs.

The paper is structured as follows. Section 2 in-
troduces some preliminary concepts. Section 3 presents
previous works on generating NFs and evaluating that
generation. In Section 4, we unveil a comprehensive set
of scoring functions which, to the best of our knowl-
edge, constitutes the most exhaustive and comprehensive
benchmark for evaluating the quality of NF generation.
Section 5 introduces a novel generation method based on
BNs. Finally, in Section 6, we demonstrate the superiority
of our model compared to various GAN-based methods.

2. Background

2.1. Network flows (NFs)

Network traffic comprises all the packets exchanged
between hosts communicating within a given network
during a given period of time. Subsets of packets sharing
the same values for 5 common features are grouped into
a network flow. Those common features are: source IP
address, destination IP address, source port, destination
port, and transport protocol. Besides this 5-tuple, a NF
can also countain some statistical information about the
communication between the two hosts, like for example
its Duration or the Number of Bytes exchanged.

In this paper, NF generation means the generation of
the 5-tuple as well as the statistical information. You can
find the information describing each NF in Appendix E.
As noted by [27] and [28], network traffic in the format
of NFs is therefore similar to tabular data, as each line

corresponds to a specific NF and each column to a specific
network feature.

2.2. Generative Adversarial Networks (GANs)

GAN is a class of deep learning models [4] com-
posed of two neural network modules: a generator and
a discriminator, trained adversarially. They are adept at
generating data resembling the training dataset. In com-
puter vision, GANs successfully approximate complex
distributions of real-world image data. However, their
application to generating categorical tabular data is less
explored. The discrete nature of categorical data poses an
NP-hard challenge in replicating joint distributions [29],
[30], compounded by strong statistical correlations among
categorical features in tabular data. Moreover, as a black-
box model, ensuring accurate encoding of inter-feature
correlation by the generator module in GANSs is challeng-
ing [31], [32].

2.3. Bayesian Networks (BNs)

BNs are statistical models that represent the proba-
bilistic relationships among variables [33]. A general in-
troduction to BNs can be found in Appendix A. In contrast
to GANs, BNs excel in capturing relational structures
inherent in tabular data, explicitly modeling probabilistic
dependencies between features. Previous studies [25], [30]
have highlighted this advantage. Goncalves et al. [25]
extensively compared GANs and statistical methods for
generating medical patient data, finding BNs superior
across diverse datasets, with lower computational over-
heads compared to GANs. Additionally, BNs mitigate the
mode collapse issue inherent in GANs, ensuring stability
during training. In our study, we propose using BNs for
synthesizing network flow data.

BN training involves constructing Conditional
Probability Tables (CPTs) for features, requiring
discretization of numerical features like flow duration in
network traffic data. However, BN scalability is limited
by model size, with CPT size scaling exponentially
with feature cardinality. High-cardinality network flow
features like IP addresses or ports pose challenges in
model scalability, as noted by [20].

3. Related works

In this section, we first introduce the previous work
on GAN-based generation of synthetic benign NF data,
and how the quality of generated NFs are evaluated.

3.1. GAN-based generation of network traffic

Since the groundbreaking work of Ring et al. [22],
the application of GANs to NF generation has garnered
significant attention. Ring et al. proposed addressing dis-
crete distributions and feature-wise dependencies by intro-
ducing a specific embedding called IP2Vec. Recognizing
the similarities between NF and tabular data (see subsec-
tion 2.1), Anande et al. [27] and Bourrou et al. [28] both
suggested GAN-based approaches tailored to preserving
feature-wise dependencies during generation. More re-
cently, Lin et al. [18] utilized GANs to generate time series



corresponding to NFs. Their work laid the foundation for
NetShare [19], which improved upon their methods and
extended them to learn not only dependencies between
individual flow features but also temporal dependencies
among entire datasets.

Beyond the realm of GANSs, it is worth mentioning
STAN [20], that employs an autoregressive neural network
to predict one feature’s value based on others, thereby cap-
turing the distribution of NF traffic. This underscores the
importance of capturing statistical correlations between
network traffic attributes when generating informative net-
work traffic data. However, certain challenges arise when
using GANs for this purpose. Firstly, due to the multi-
modal distributions of many numerical NF features, GANs
are susceptible to mode collapse, wherein the generated
data only covers a portion of the training data distribution.
Secondly, certain categorical features of NFs, such as
Source Port, span a large range of categories, leading to
high-dimensional and sparse data. Given that GANSs rely
on a discriminator to distinguish between generated and
real examples, this sparsity can lead to discriminators pri-
oritizing sparseness over realism, resulting in suboptimal
generation. Furthermore, NFs contain highly correlated
features, such as Protocol and Destination Port, due to
network protocol regulations, hardware architectures, and
user behavioral patterns. GANs struggle to explicitly cap-
ture these intrinsic correlations between different network
attributes.

Despite efforts to adapt GANs for NF generation,
anomalies persist in the generated data. For example, in
Table 2 of [11], multiple NFs exhibit ephemeral ports for
both the source and destination, and one NF displays mul-
tiple packets with null duration, which should only occur
when a single packet is transmitted. Similar anomalies can
also be found in the results of the most recent GAN-based
method, NetShare [19], as demonstrated in Appendix F.

3.2. Quality evaluation of data generation

The evaluation of synthetic tabular data quality spans
various domains [6], [34], [35]. Tabular data generation
entails synthesizing observations of n features (X}, )i<n
to align with the joint distribution (X, c.)i<n. Eval-
uation typically involves three approaches: comparing
marginal distributions, assessing inter-variable correla-
tions, and examining joint distributions. Marginal distri-
bution comparison utilizes metrics like Jensen-Shannon
Divergence (JSD), Earth Mover’s Distance (EMD), or
the Kolmogorov—Smirnov test [25], [30], [36]. Assessing
inter-variable correlations ensures that real dataset corre-
lations are captured in the generated dataset [16], [18],
[31], [37], often through Pairwise Correlation Matrices
or Chi-squared Tests [25], [36]. Comparing joint distri-
butions involves examining sample distributions, typically
using precision and recall metrics or utility assessment in
subsequent machine learning tasks [34], [38]-[42]. In the
latter, the generated data is used to train machine learning
algorithms, with performance compared to using training
data. A line of research efforts [25], [34], [39], [43]
encompass three major criteria to define a good tabular
data generation approach:

¢ Realism: a synthetic sample should be sampled
from the same distribution as the real data.

« Diversity: the distribution of the synthetic samples
should have the same or close variance level as
that of the real data.

« Novelty (named as authenticity in [43]): a gener-
ated sample should be sufficiently different from
the samples of the real distribution. To avoid any
confusion with the classical definition of authen-
ticity in security, we prefer the term “novelty”.

Given the resemblance between tabular and NF data,
the evaluation methodology for NF generation closely
mirrors that of tabular data. This entails utilizing metrics
such as JSD [20], EMD [11], [18], [19], [28], or assessing
downstream classification model performance [18]-[20],
[28], [38]. We have summarized these metrics and their
corresponding evaluation criteria in Table 1. Additionally,
some studies [20], [22] propose a Domain Knowledge
Check (DKC), where generated NF are evaluated for
adherence to fundamental network protocol rules. Con-
sequently, we introduce the “Compliance” criterion to
gauge how well a generated NF conforms to protocol
specifications, distinct from “Realism”, which measures
how closely a sample aligns with real data distributions.
For instance, a NF consisting of a single packet with a
duration close to zero might seem realistic, yet it does not
meet Compliance standards as it diverges from protocol
specifications (wherein a single-packet NF should indeed
have a duration of zero).

As depicted in Table 1, the evaluation of conditional
distributions, which ensures the preservation of correla-
tions between attributes in synthetic data, is often over-
looked. Only a few studies [18], [28] emphasize the
importance of maintaining correlations within generated
network traffic flows through dedicated evaluations. Fur-
thermore, a notable gap in current evaluations pertains to
Novelty assessment. Specifically in NF generation, only
DoppelGANger [18] addresses concerns related to over-
fitting and the risk of duplicating training data. Despite
its crucial role in assessing tabular data generation [25],
[34], [39], [44], its significance remains underestimated
for NFs.

4. Evaluation Metrics

In this section, we present a comprehensive set of
evaluation metrics for assessing the quality of generated
NF data. Our evaluation framework addresses three key
criteria outlined in Section 3.2: Realism, Diversity, and
Novelty of the generated NFs. Additionally, we intro-
duce the Compliance measurement in Section 3.2, which
evaluates the adherence of generated NFs to network
specifications. This evaluation system provides detailed
insights into the quality of the generated NF data. Its main
features include:

o Criterion-based assessment: Our evaluation pro-
cess incorporates benchmarks for four predefined
criteria: Realism, Diversity, Novelty, and Compli-
ance. Each of these criterion is assessed individu-
ally to provide a comprehensive evaluation.

« Attribute-level and Sample-level Evaluation:
Given that NF data is tabular data (refer to Sub-
section 2.1), we evaluate Realism and Diversity
at both the attribute level (examining marginal



TABLE 1: Summary of the functions used to evaluate generated network flows.

Evaluation method Criteria Descriptions
Realism | Diversity [ Novelty [ Compliance Ref. [ Input

Euclidian Distance v [22] Marg. Distr.
Domain Knowledge Check v [20], [22] Joint Distr.
Classifier performance loss v v [18]-[20], [28], [38] Joint Distr.
EMD v v [11], [18], [28], [19] | Marg. Distr.
JSD v v [20], [19] Marg. Distr.
False Negative Test v [28] Joint Distr.
Correlation Matrix Comparison v [18], [28] Cond. Distr.
Chi-Squared Test v [28] Cond. Distr.
Membership disclosure v [18] Joint Distr.

Marg. Distr.: Marginal Distribution, Cond. Distr.: Conditional Distribution, Joint Distr.: Joint Distribution

TABLE 2: Summary of the function that we used in our evaluation systems.

Criterion Distribution type Data type
Real. | Div. | Nov. | Comp. | Marg. | Cond. | Joint | Cat. | Num.
JSD v v v v
EMD v v v v
CMD v v v
PCD v v v
Density v v v v
Coverage v v v v
MD v v v v
DKC v v v v
[Global | v [ v [ 7V [ v [ 7V [ v [ v [ 7 7]

Real.: Realism, Div.: Diversity, Nov.: Novelty, Marg. Distr.: Marginal Distribution, Joint Distr.: Joint Distribution

distributions of individual attributes) and the sam-
ple level (analyzing joint distributions of all at-
tributes). Additionally, we introduce an assess-
ment of the similarity in inter-feature correlation
between synthetic NF data and the underlying
correlation patterns present in real data.

« Data Type Specificity: To identify potential chal-
lenges in modeling specific data types (numeri-
cal/categorical), our evaluation protocol includes
metrics tailored to each data type.

Assessing the proximity of the joint distributions be-
tween generated NF data and real NF data provides in-
sights into their distributional consistency. However, direct
comparison of joint distributions is statistically unstable
due to the sparsity of generated data. To address this issue,
we advocate for evaluating marginal and conditional distri-
butions as well. When the generated and real data exhibit
highly similar conditional and marginal distributions, they
are likely to demonstrate close joint distributions.

Table 2 provides an overall view of evaluation func-
tions used in our study. In this table, we can find the eval-
uation criteria (Realism, Diversity, Novelty and Compli-
ance), the distributional divergence (marginal, conditional
or joint distribution) and the type of data (categorical or
numerical data) that these metrics assess.

4.1. Comparing marginal distributions

First, we assess that the generated data follow the
same marginal distribution than the real data. Following
the insights in [28], we propose an evaluation strategy
that separately measures the distributional closeness of
numerical and categorical features. This approach allows
us to apply the quality measurement to both numerical
and categorical features.

We use the Jensen Shannon Divergence (JSD) for
discrete attributes of network traffic (such as Protocol) and
Earth Mover’s Distance (EMD) for numerical attributes
(like Duration or Bytes). These two metrics have been
widely used to compute quantitative measurements of
the distribution divergence [18]-[20]. Compared to the
statistical tests, Kolmogorov-Smirnov Test or Chi-squared
Test, JSD and EMD are derived without posing any as-
sumption over the feature distribution. Beyond that, the
statistical tests can only provide qualitative measurement
of the distribution difference, i.e. similar or not similar
distributions. In contrast, JSD and EMD offer a continuous
estimation to the distribution closeness. Larger JSD and
EMD scores indicate more sigificant divergence between
the distributions of the generated and real NF data. There-
fore, JSD and EMD can reach more accurate comparisons
in the quality of generated data using different methods. A
formal definition of JSD and CMD is given in Appendix B

4.2. Comparing conditional probabilities

Assessing a match in independent feature distributions
is however insufficient, we also need to assess that the
generated NFs keep the feature-wise dependancies of the
real NFs. For this problem, popular correlation metrics
like Spearman or Pearson coefficients are typically appli-
cable to ordered features. However, certain attributes, such
as the Protocol attribute, belong to unordered categorical
feature. Therefore, we also need a metric for such features.

For numerical features, we can analyze how their
ordering correlates using the Spearman correlation coeffi-
cient, or we can explore the existence of linear relation-
ships among them using the Pearson correlation coeffi-
cient. Since there exist linear correlations between features
in NFs between the number of packets, the total size of



packets and the NF duration, we consider the Pearson cor-
relation coefficient to be more relevant. While Spearman
correlation coefficient can encompass more complex cor-
relations, it only verifies if two features are monotonically
correlated. So, if there is a linear relationship X = 2Y in
the actual data and a quadratic relationship X’ = Y2
in the generated data, the Spearman correlation coeffi-
cient would be identical and the generated data would be
deemed as high quality, even if it is clearly not. This issue
would not happen with the Pearson correlation coefficient.

Pairwise conditional distribution (PCD) [25], [28],
[45] is the L? norm of the difference between two pairwise
correlations matrices, as in Eq. 1:

PCD(S,G) = ||Corr(S) — Corr(G) ||, (€]
where S = (X! ce)ieqik) 18 the set of numerical
features of the source data, G = (Xge,)ic[1,4] 1S the set
of numerical features of the generated data, and Corr(.)
is the correlation matrix with Pearson coefficients.

For evaluating the preservation of dependencies amon
unordered categorical features, we need to study the dif-
ference between the contingency matrix in both the real
data, and in the generated data. Therefore, we propose
Contingency Matrix Differences (CMD), which is is the
difference of the contingency matrices of a pair of features
on the synthetic data or on the real dataset:

CMD(Sv G) = Z (ZlP(Xsiource = u|ijource = ’U)
(4,5)€[k+1,n]2 v,u
—P(Xf, =ulXL, =v)) @

gen

where S = (X7,,,cc)je[k+1,n] 15 the set of categorical
features of the real data, and G = (X.,,)je[k+1,n] 18 the

set of categorical features of the generated data.

4.3. Comparing joint distribution

The metrics based on PCD and CMD only consider
first-order dependencies. However, in the context of NF
data, the conditional dependency between features usually
include higher-order information, i.e. the value of one
NF feature may depend on multiple other features. For
example, the Number of Bytes feature depends on both
the Number of Packets and the Protocol type. Therefore,
to capture high-order dependencies, it is crucial to assess
the joint distribution.

There are two methods in the literature for evaluating
the joint distribution: comparing the generated and real
data distribution manifolds or using the difference in the
performance of a machine learning (ML) algorithm on a
classification task as a proxy for measuring the similarity
between the two distributions [38], [42]. Using ML as a
proxy to measure the closeness of joint distributions is
not accurate. The performance of the ML model heavily
depends on the definition of the classification task and
the concrete choice of the ML model architecture. There-
fore, we opt to compare real and generated distribution
manifolds. To achieve this, we decide to use the Den-
sity/Coverage solution, implemented by Naeem et al. [40],
because it evaluates Realism and Diversity independently,
thus enforcing the granularity requirement of our bench-
mark.

Realism is evaluated by a function called Density.
For each synthetic sample, we count how many real-
sample neighborhood spheres contain the synthetic sam-
ple. The neighborhood spheres are computed using k-
nearest neighbors. A low score indicates that real and
synthetic data are far from each other, implying that the
synthetic data is unrealistic.

Similarly, Diversity is evaluated by a function called
Coverage. To compute Coverage, for each real sample, we
count the number of synthetic neighborhood spheres that
include this sample. A low score suggests that several real
samples lack a synthetic counterpart in their vicinity, indi-
cating that the synthetic distribution does not adequately
capture the variance of the real distribution.

Coverage and Density both rely on a specified number
k of neighbors. Thankfully, Naeem et al. [40] led an hyper-
parameter optimisation: according to their results, when
we consider a generated dataset and a real dataset of both
10000 samples, the optimal k should be set to 5. We
therefore use this value for k£ and this number of NFs
in our comparative study.

4.4. Novelty evaluation

Inspired by Goncalves et al. [25], we decide to use the
Membership Disclosure (MD) for measuring the Novelty
criterion. This score has been previously employed for
NFs. The objective of MD is to identify synthetic samples
exhibiting characteristics that suggest they were copied
from training instances.

To compute the MD score, we need a generated set,
a training set, and a testing set (the last two sets being
subsets of the real dataset). We begin by calculating
the matrix of Hamming distances between every pair of
generated and real samples. If a synthetic sample has
a Hamming distance to a real sample below a certain
threshold r, we flag the corresponding real sample as a
leaked trained sample. Since we know which real samples
are part of the training set or the testing set, for each r,
we obtain a detector of training samples. Consequently, we
can calculate the F1-score of such a detector and compute
the integral of that Fl-score depending on . We do this
calculation for all r. If the generated data includes in-
stances copied from the training set, these copied samples
would be detected even with a low threshold r, leading to
an increase in the classifier’s F} integral.

The interpretation of the value of this metric differs
between the medical and network contexts. Medical data,
being highly sensitive, necessitates synthetic data genera-
tion that respects the privacy of the patients whose data
is used for learning. Thus, the MD score should be as
low as possible. On the other hand, in a network context,
encountering duplicated NFs, such as common DNS or
NTP requests, is normal. Thus, we argue that Novelty in
synthetic data should be close to Novelty observed in real
data: synthetic data with a low MD score fails to capture
the inherent duplication of network data.

4.5. Compliance evaluation

To evaluate the Compliance of the generated NFs,
we opt to adapt the Domain Knowledge Check (DKC)
proposed in [22] to our context by adapting the test to



TABLE 3: List of Tests carried out by the metric DKC,
with the network rules they are assessing and the
Experiment they are associated with

Rule Features Experiments
Short | Long | UGR

If the flow
has flags, Flags, v v
then the Protocol Protocol
is TCP
At least one
IP Address Src IP Addr, v v
of the flow Dst IP Addr
must be private
If one of the ports
is either Dst Port,
80, 443 or 8080, Src Port, v v v
then the Protocol Protocol
is TCP
E (5)r31§: of the ports Dst Port,
then the Protocol %’rrf)tzz(r)tly v v v
is UDP
If Source Port is 53,
then the Dst IP Addr, v v
Destination IP Address Source Port
is private
i public, then Sre P Add

. Dst IP Addr, v v
Destination Port Dst Port
is not 137/138 )
If Destination IP Address
is public, then Src Port, v v
Source Port is not Dst IP Addr
80/443/8080
If one port is
ephemeral, Src Port,
then the other is not Dst Port v v v
an application port
UDP or TCP flows Protocol,
don’t have 0 byte Bytes v v v
An ICMP flow Protocol,
have 0 byte Bytes v v v
If the number of
Packets is greater Packets,
than 1, then Duration Duration v v v
is greater than 0
The Duration is not Packets,
greater than the sum IATs, v
of the inter arrival times Duration

Short: CICShortFeatureSet, Long: CICLongFeatureSet,
UGR: UGR

our dataset. It consists in a set of test that the generated
NFs should pass, which verify that the generated NF does
respect some common network rules (Flags only on TCP
NFs, ICMP NFs should be empty...). It is essential to
emphasize that the set of tests, or set of rules, is feature-
dependent and should be customized accordingly for each
set of feature one might want to generate. The specific test
that we have used on the different feature set described
in Section 6 are presented in Table 3. For each test, the
table indicates what are the feature tested on on which
dataset we have performed it. This list is not an absolute
list, depending on the feature on is generating some test
might varies.

5. BNs for NF generation: strategic choices

We present now how a BN can addresses the chal-
lenges of NF generation, as raised in subsection 2.3.

5.1. Choice of the Structure Learning algorithm

For choosing the type of structure learning algorithm,
we test various algorithms from Python’s bnlearn li-
brary, we have implemented an experiment detailed in
Appendix C. Based on the result we have chosen Hill-
Climbing as the structure algorithm for our study.

5.2. Discretization of numerical features

As said in Subsection 2.3, applying BNs to NF gener-
ation requires discretizing the numerical features of NFs.
To this end, we introduce two discretization strategies. The
first strategy, named BNy,ys, regroup values in quantiles.
The second strategy, named BNgw, leverages a Variational
Gaussian Mixture Model (VGMM) [46] fitted on the
marginal distribution of the numerical features in order
to map the numerical values to the index of their nearest
Gaussian kernel. Both strategies are experimentally com-
pared in Section 6. To convert back the discretized values
into the original continuous space: with BNp;ps, the values
are drawn uniformly from the corresponding bin’s range;
with BNgwm, the value is sampled from the corresponding
Gaussian kernel.

5.3. Reducing cardinalities of categorical features

As said in Subsection 2.3, cardinalities of discrete
features has a huge impact on the size of a BNs. However
some features of NFs have a really high cardinality, such
as IP addresses (4 billion values) and ports (65536 values).
It is therefore necessary to reduce the cardinality of those
features.

Ports. While port values vary from 0 to 65536, most
high values hold negligible information regarding commu-
nication content. This is especially relevant for ephemeral
ports. To reduce the number of distinct port values, we
assign a single value to all ephemeral port instances. Even
among non-ephemeral port, the distribution of ports is
highly concentrated on a few ports, which appear much
more frequently in practice than others (like port 80, 443
and 53 for example). In our work, we consider the minimal
number n of most frequent port values such that the set
of ports up to the n-th actually covers a majority NFs.
In UGR’16 and CIC-IDS2017, n is 30.The distribution
of NFs according to the 30 most frequent port values is
displayed in Appendix D

IP Addresses. IP addresses can be divided into pub-
lic and private categories. For NIDS evaluation, private
IP addresses hold intrinsic significance as they denote
internal hosts requiring protection. Conversely, public IP
adresses, beside designating external hosts, do not convey
additional information. Therefore public IP addresses are
often anonymized in the NIDS research [47]-[49]. To
reduce the cardinality of IP values, we hence choose to
assign a single value to all public IP addresses.

6. Experiments

In this section, we present the quality evaluation re-
sults on three benchmark datasets using the proposed
metric system. We aim to compare the quality of the
synthetic NF data produced by the proposed BN-based
method and state-of-the-art GAN-based baselines.



6.1. Experimental protocol

To comprehensively evaluate the quality of the syn-
thetic NFs, we introduce seven data generation methods
in the comparative study:

o The two variants of the proposed BN-based NF
generation method, which differ on the discretiza-
tion preprocessing stage. These variants are the
two introduced in Section 5: BNgm and BNpins

o Three state-of-the-art GAN-based approaches':
E-WGAN-GP [22] because this method holds
significance as one of the foundational works
in the realm of GAN-based NF generation;
NetShare [19] because it utilizes a unique tool
of sequence generation for NF data, in addition to
being the most recent work; and CTGAN [32]
because, despite it being initially designed for
general tabular data generation, it was used in
several NF generation studies [27], [28].

e A naive approach (called Naive Sampler or Naive
in the rest of the article). This Naive Sam-
pler allows to assess the need for more com-
plex and costly methods. To generate data, the
Naive Sampler simply draws, for each attribute, a
value from the training set. The sampling process
of each attribute is independent. Consequently, the
generated data is not realistic nor compliant to
network protocols. However, we may expect them
to have a high Novelty level.

o Finally, a Real test set of real samples different
from the one used in training, but captured in
the same environment and therefore with the same
characteristics.

The comparative test between these seven approaches
is organized using the evaluation metrics we propose in
Section 4 and based on three datasets with a different
number of features.

Firstly, We build two datasets from CIC-IDS2017 [49],
using an updated version of CICFlowMeter [50], extract-
ing unidirectionnal features. We opted to use the CIC-
IDS2017 dataset as the reference [50] points out and
allows to correct errors in that particular dataset. This is
not the case with more recent datasets. We prioritized the
quality of the training data over its freshness. The first
dataset is named CICSmallFeatureSet. It is characterized
by a limited number of network features (11 features).
In contrast, the second dataset, namely CICLongFea-
tureSet, encompasses a larger feature set (30 features).
By comparing the results on CICSmallFeatureSet and
CICLongFeatureSet, we have two objectives. First, we
aim to verify the impact of feature dimensions over the
quality of generated NFs. Second, as CICLongFeature-
Set embodies a more intricate dataset characterized by
a greater number of numerical features (as shown in
Appendix E), this inherent complexity poses a greater
challenge for BNs.

Lastly, we condifer a third dataset from UGR’16 [47],
which contains real-world NFs (represented using 8 fea-
tures) recorded by a Spanish ISP. We choose to work with

1. We initially wanted to include STAN [20] in our experiment, but
were unable to reproduce the results. Unfortunately, we had to rule it
out.

a subset that has been preprocessed by NetShare authors
and ranges within the third week of March 2016 [19]. We
denote this subset as UGR in our study. We choose this
specific subset to facilitate a more equitable and meaning-
ful comparison with NetShare. Making comparison over
that dataset will show how the data generation meth-
ods perform with real-world traffic, compared to testbed-
produced simulations.

Before using these three datasets, we apply to them
the data preprocessing technique described in Section 5.
Therefore, we restrict the possible values of ports to the
30 most frequent ones: if a port value is not among them,
we assign the arbitrary value 99999 to it. This value will
serve for all port values that are not frequent enough in our
dataset. Similarly, we apply the default IP 0.0.0.0 to all
public IP addresses. This value is the default route, so it
could be used to represent all external IP addresses. This is
done for CICSmallFeatureSet and CICLongFeatureSet.
Since UGR is solely composed of external IP NFs, we
decide not to consider the IP features for this dataset.

6.2. Experimental results

In this section, we present our results on the
three datasets: CICSmallFeatureSet, CICLongFeature-
Set, and UGR. For each of them, we report the data qual-
ity measurement using the 4 criteria (Realism, Diversity,
Novelty, and Compliance) and discuss the corresponding
observations.

6.2.1. Results on CICSmallFeatureSet Data. We train
the 7 models on CICSmallFeatureSet and use these
models to produce synthetic NFs. The network traffic
generated by each model is evaluated according to the
metrics presented in Section 4. The results are presented
in Table 4. For each metric and each model, the evaluation
was done on 20 different generated sets, and the value in
Table 4 are the medians of the measurement. The color
indicate the ranking in respect to every metric.

Realism. In evaluating the Realism of synthetic NFs,
the Density metric reveals that Bayesian Networks (BNs)
outshine GAN-based methods by more closely aligning
synthetic data distributions with those of real data. Fur-
ther examination using CMD and PCD metrics, which
assess the preservation of statistical correlations among
attributes, shows that BNs excel due to their design
for learning variable dependencies, evidenced by their
consistently lower scores, indicating superior correlation
preservation. In contrast, the Naive Sampler and NetShare
struggle with higher CMD and PCD scores, reflecting
poor correlation capture, while E-WGAN-GP and CT-
GAN demonstrate improved but varying performance in
these metrics. This establishes a clear ranking across the
Density, CMD, and PCD evaluations, with BNs at the
forefront for their robustness in maintaining the integrity
of real data’s distribution and correlations, followed by
GAN-based methods, which still manage to surpass the
lesser performances of NetShare and the Naive Sampler.

Diversity. For Diversity, Coverage offers an initial
global perspective, with BNs notably outperforming other
techniques. When delving into the Diversity of feature
marginal distributions through JSD and EMD metrics,
the Naive Sampler emerges as exceptionally proficient,



TABLE 4: Comparison between 7 traffic generation methods on CICSmallFeatureSet using all the quality metrics .

Description Real data | Naive | BNpins | BNgm | CTGAN | E-WGAN-GP | NetShare

JSD Realism and Diversity 0017 | 0.017 0031 | 0.148 0.090 0.23
for categorical features ()

EMD Realism and Diversity 0.002 | 0.002 0.080 | 0016 0.055 0.062
for numerical features ({.)

CMD Realism of correlation 0.013 0.160 | 0.018 | 0.018 | 0.126 0.257
between categorical features ()

PCD Realism of correlation 0.761 1.186 | 0.630 0.949 1.152 1.191
between numerical features ({)

Density Realism of data distribution (1) 1.000 0.079 | 0.906 0.867 0.862 0.391

Coverage Diversity of data distribution (1) 0.967 0.161 0.955 0.903 0.655 0214

MD Novelty (=) 7175 5.766 6.987 6.862 6.864 5.247

DKC Compliance () 0.003 0.088 | 0.004 0.008 0.002 0.023

[ Global Rank [ Average Ranking (]) [ - [ 4375 [ 175 ] [ 3625 ] 3.375 [ 55 |

The Test columns serves as a standard. For each metric : Red indicates the worst model,
(1): Higher is better, (J): Lower is better, (=): Closest to the real data is better. The last line gives the average rank given by all metrics to each
model, and is here just as an indication of overall performance.

achieving low scores due to its strategy of directly sam-
pling from real marginal distributions. Despite BNgm
showing commendable performance with a JSD of 0.031
for discrete features, it falls behind GAN-based methods in
accurately capturing the distribution of numerical features,
evidenced by an EMD score of 0.080, possibly attributed
to its GMM-based discretization process not adequately
learning the marginal distribution of numerical features.
Howeyver, the limited number of numerical features in the
dataset (3 out of 11) minimizes the impact on the overall
Density performance of BNy, which still achieves a Cov-
erage score of 0.955. This highlights the effectiveness of
BNgu in generating synthetic data with close resemblance
to the real distribution, albeit with some limitations in
capturing the diversity of numerical feature distributions.

Novelty. MD is employed to detect that some gen-
erated samples are copies of source samples. A higher
MD value suggests a greater likelihood of copied training
data in the generated NFs. For the Real data, the MD
is 7.175, indicating that some amount of copying should
be expected in generated data. The BNs have thus the
MD value closest to the Real data (6.929 and 6.987
for BNy;,s and BNgym, respecitvely). E-WGAN-GP and
CTGAN seem less prone to data-copying. NetShare has
the lowest MD: this is due to the generation of unrealistic
samples, which therefore have a lower chance to be copied
from the source data.

Compliance. We evaluate the Compliance by sub-
mitting the generated NFs of our different models to a
series of tests defined in subsection 4.5. The DKC score
is defined as the percentage number of failed tests over the
whole set of Compliance tests. A higher DKC score, such
as for NetShare (2.3%) and the Naive Sampler (8.8%),
indicates that the generated traffic is less compliant to the
network protocols. Except for NetShare, all models have
a pretty low DKC score. We can also notice that the DKC
score of the real data is not null. That means that some
abnormal NFs are present in the initial dataset.

General Observation. The analysis of the CICSmall-
FeatureSet data reveals that BN-based methods outper-
form the GAN ones in terms of both generation quality
and computational efficiency, with NetShare underper-
forming even compared to the Naive Sampler. Despite the
occasional superiority of GAN models in specific metrics
like EMD, BNs demonstrate robust performance across

the second-best model and Green the best model.

a range of evaluations, securing a favorable average -
the mean of the ranks across all the metrics- ranking
highlighted in the global assessment. The struggle of
GAN-based methods to maintain strong performance in
metrics that evaluate the preservation of variable depen-
dencies, such as CMD and PCD, underscores the ongoing
challenge these models face in accurately capturing corre-
lations among variables, a challenge BN-based approaches
seem better equipped to handle.

6.2.2. Results on CICLongFeatureSet Data. This exper-
iment aims to illustrate how the data generation methods
behave with more network features in the training dataset.
CICLongFeatureSet data has 20 more numerical features
than CICSmallFeatureSet (see Appendix E). This is ex-
pected to bring challenges to the involved data generation
methods, especially to BNs. The results are shown in
Table 5.

Realism. The Density score shows that CTGAN and
E-WGAN-GP learned well the joint distribution of the
training data point. Looking at PCD and CMD, we can
see that the correlation between features are well learned
by the BNs and CTGAN. Surprisingly, the Naive Sampler
reproduced well correlation among discrete features, as
indicated by its CMD of 0.079. For marginal distributions,
JSD indicates that the BN methods did learn the marginal
distribution better than the other methods. EMD shows
that BNgMm did not handle the numerical features, surely
due to its discretization (0.087, the highest of all the
models).

Diversity. BNgy and CTGAN have the highest Cover-
age score (0.778 and 0.809, respectively). They managed
to capture the important variance of the data distribution.
Other methods are not as good, especially NetShare and
the Naive Sampler (0.022 and 0.014, respectively).

Novelty. As per the MD metric, all the involved mod-
els produce synthetic samples that are not direct clones
of training data. Compared to the previous experiment
with CICSmallFeatureSet, which contains less features
to learn, our different models introduce little novelty when
compared to the real data.

Compliance. The increased number of numerical fea-
tures does not bring any impact to the DKC metric. This
shows producing unrealistic values for the features do



TABLE 5: Comparison, according to all our metrics, of 7 data generation methods using CICLongFeatureSetDat.

Description Real data | Naive | BNpins | BNgm | CTGAN | E-WGAN-GP | NetShare
JSD Realism and Diversity 0018 | 0.018 | 0.116 0.139 0.109 0.359
for categorical features ()
EMD Realism and Diversity 0.001 | 0.001 0.087 | 0017 0.065 0.031
for numerical features ({.)
CMD Realism of Correlation 0.010 0.175 | 0.032 0.124 0.096 0.384
between categorical features ()
PCD Realism of Correlation 2.345 6.517 | 2.761 3.700 4.843 8.404
between numerical features ({)
Density Realism of data distribution (1) 0.997 0.057 | 0320 | 0.4%6 0.647 0.263
Coverage Diversity of data distribution (1) 0.969 0.085 | 0.647 0.809 0416 0.120
MD Novelty (=) 7.612 5297 | 4.251 5522 5.835 2.539
DKC Compliance () 0.003 0.128 | 0.060 | 0.051 0.092 0.055
[ Global Rank [ Average Ranking (]) [ - [ 3875 ] 35 [ 2375 ] [ 3.375 [ 5125

TABLE 6: Comparison, according to all our metrics, of 7 data generation methods using UGR Data.

Description Real data Naive BNpins | BNgmMm | CTGAN | E-WGAN-GP | NetShare
JSD Realism and Diversity 0.067 0.066 | 0.070 | 0218 0.105 0.399
for categorical features ({)
EMD Realism and Diversity 0.002 0.002 | 0018 | 0.007 | 0.029 0.029
for numerical features (|)
CMD Realism of Correlation 0.037 | 0223 | 0.031 0.209 0.050 0.578
between categorical features ({.)
PCD Realism of Correlation 0.373 1222 | 0452 | 0738 | 0.863 1.219
between numerical features ({.)
Density Realism of data distribution (1) 0.951 0.355 0.701 0.855 0.486 0.027
Coverage Diversity of data distribution () 1.000 0.805 0.792 0.998 0.802 0.076
MD Novelty (=) 8.692 7.519 8.312 7.447 8.341 5.675
DKC Compliance ({.) 0.006 0.079 0.019 0.004 0.129
[ Global Rank [ Average Ranking (}) [ - [ 375 ] [ 225 | 4375 ] 3.0 [ 50
TABLE 7: Computing costs of the three experiments.
Duration
Model 1: CICShortFeatureSet 2: CICLongFeatureSet 3: UGR
Prep. | Train. | Samp. | Prep. | Train. | Samp. | Prep. Train. Samp. | Epochs | Hardware
BNoMm 00:22 | 00:36 - 1:48 00:44 - 00:19 00:32 - - (1)
BNbins - 00:39 - - 00:45 - - 00:32 - - [€))
E-WGAN-GP - 00:11 00:46 - 00:35 0:55 - 00:20 0:21 100 (1)
CTGAN - 15:02 - - 19:30 - - 13:27 - 300 2)
NetShare - 20:42 00:39 - 27:31 00:56 - (~100:00) - 100 2)

The format is hours:minutes. Prep.: Preprocessing of the data, Train.: Training of the model, Samp.: Sampling from the model. Hardware
configurations: (1) Laptop CPU / 32 GB RAM; (2) A40 GPU / 48 GB VRAM. The training of NetShare on UGR is the order of magnitude given by
the authors in their paper. A cell with ”-” denotes that either this step does not occur or that it is so short that we consider its time to be negligible

not hinder the compliance of the data, as discussed in
Subsection 4.5.

General Observation. In our experiment with the
CICLongFeatureSet Data, BNgy, while proficient in
learning discrete features, generates less realistic sam-
ples compared to CTGAN, attributed to the challenge
of handling numerous numerical features. Interestingly,
NetShare demonstrates that generating unrealistic samples
does not compromise Diversity or Compliance. This un-
derscores the need to individually assess the four evalua-
tion criteria. Comparing BNgy and CTGAN reveals that
evaluating Realism and Diversity solely based on marginal
and conditional distributions is insufficient. Despite out-
performing CTGAN on many metrics, BNgy falls short
in modeling joint distributions due to its struggle with
numerical feature distribution learning. Overall, BNgm
excels across more metrics, affirming Bayesian Networks’
superiority in this experiment, with CTGAN showing
promising results albeit at a high computational cost.
Additionally, BNgy yields higher quality samples at a
lower training expense.

6.2.3. Results on UGR Data. In the two previous experi-
ments, the training dataset is composed of traffic generated
inside the same physical testbed. By using a real-world
dataset, we want to observe if the evaluation results of
the synthetic traffic are consistent with real traffic as the
training data. The results are presented in Table 6

Realism. Aligned with the experiment on CICSmall-
FeatureSet, the BN-based methods exhibit high Realism
in Density, CMD and PCD scores. Among GAN ap-
proaches, NetShare reaches good results in EMD (0.003),
while E-WGAN-GP manages to achieve good global Re-
alism on Density (0.702).

Diversity. Globally, BN-based methods are better than
the GAN-based methods in learning the marginal distri-
bution of features, as we can see with JSD and EMD. The
Coverage metric ranks E-WGAN-GP first, and NetShare
last. Most of the evaluated models (apart from NetShare)
produced diverse samples, with BNgy on top. Same as
for the first experiment, this might be due to the simpler
distribution, which is therefore easier to cover. It can
be worth to note that CTGAN, while having a good



Coverage (0.802), has a rather low Density (0.486). This
induces that while managing to cover pretty much all
of the real distribution, CTGAN does create unrealistic
samples: a phenomenon known as mode invention [39]. A
more extensive illustration of this phenomenon is given in
Appendix G.

Novelty. Due to the simpler distribution (fewer fea-
tures, and smaller cardinality per discrete feature) in the
UGR data, it is easier for a data generation model to
produce synthetic data close to a training data sample.
As a result, the MD scores of all models except NetShare
are close to the Real data’s MD. This experiment shows
that the the simpler the dataset is, the more likely the
generated model will produce copy of the original data.

Compliance. All the data generation methods, except
for NetShare and Naive Sampler, have a good DKC score.
It shows that they are able to produce traffic NF compliant
to network protocols. NetShare fails to generate valid
traffic, due to its inability to encode correlation between
numerical features.

General Observation. Our results show that BN-
based approaches are better in preserving Realism, Diver-
sity, and Compliance in generated NFs compared to GAN-
based methods, particularly when dealing with datasets
with smaller feature dimensions. Independent evaluation
of each criterion revealed that CTGAN is particularly
prone to mode invention, a common GAN problem de-
tailed in Appendix G. Moreover, NetShare showed subpar
performance in this experiment, even when assessed using
data provided directly by its creators, highlighting the
strengths of BN-based methods in terms of efficiency and
effectiveness in data generation tasks.

6.2.4. Computational Costs. Table 7 summarizes the
computational costs across three key steps: preprocessing,
training, and sampling, along with the hardware configura-
tions used in our experiments. In our analysis, BNp;,s con-
sistently emerges as the most efficient model for synthetic
sample generation. In Experiment 1, BNy, BNgm, and
E-WGAN-GP exhibited the fastest performance. However,
due to the complex IP2Vec embedding reconstruction
in E-WGAN-GP and BNgy’s Gaussian Mixture Mod-
els (GMMs) training requirement for numerical features,
BNyns proved to be the most efficient in terms of time and
resources. Conversely, CTGAN and NetShare demanded
significantly higher computational resources. This trend
persisted in Experiment 2, where the rise in numerical
features notably extended preprocessing times for BNgm
and training times for all GAN models, with CTGAN’s
training time increasing by approximately 50%.

7. Key takeaways and conclusion

We provide in this paper a comprehensive and
interpretable benchmark system to evaluate the qual-
ity of synthetized network flows from multiple as-
pects: in Section 4, we introduce a comprehensive evalua-
tion framework assessing Realism, Diversity, Novelty, and
Compliance of the generated network flows. This bench-
mark system encompasses 8 distinct metrics for network
flow generation assessment, which allows pinpointing the
limitations and statistical bias existing in the synthesized
network flows. Empirical observations across popularly

used network traffic datasets highlight the necessity of
evaluating synthetic network flows using multiple criteria
to avoid bias towards specific metrics yet ignoring the
others. For instance, while E-WGAN-GP shows the lowest
DKC score on CICShortFeatureSet, it performs worse
than our BN-based methods in terms of Realism and
Diversity, as seen in JSD, EMD, and PCD scores. Focus-
ing on a single criterion may lead to erroneous choices
among different network flow data generation methods.
Our novel benchmark helps to prevent such mislead model
selections.

We propose a novel approach for network flow
generation using BNs and show their superiority over
GAN:-based approaches. Empirical comparisons in Sec-
tion 6 consistently demonstrate that GANSs, despite their
high model complexity and intensive training cost, are
outperformed by our BN-based network flow generation
methods. Despite their success in computer vision, GANs
appear less effective in generating tabular data with mixed
feature types, e.g. network flows. Besides, as a black-
box model, GANs can not capture the correlation between
different network features explicitly. In top of that, despite
many upgrades, GANs are still prone to mode collapse
phenomenon.

Our study advocates for BNs as the preferred solu-
tion to network flow generation. As network traffics are
usually produced by programmed activities and restricted
by network protocols, the conditional dependency be-
tween network flow features characterizes network traffic
patterns. The interpretability of BN also allows us to
directly estimate these conditional dependency relations,
facilitating human users to monitor and understand the
data generation process.

The results obtained from the two CIC-IDS-2017 and
UGR’16 datasets are promising, but remain on datasets
with low cardinality, as discussed in Section 5 . Future
studies could extend our findings by incorporating IPv6
addresses and additional Ports. Moreover, while this initial
study does not incorporate temporal dependencies, we
hypothesize that our BN-based approach has the potential
to capture such dynamics if well encoded. Addressing
temporal correlations explicitly in network traffic synthe-
sis will be a direction for future research. Lastly, another
interesting future work could consist in using the NFs
generated by our method in an evaluation pipeline for a
real NIDS system. This will assess the “usability” of our
generated data in a specific cybersecurity context.
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A. Formal definition of Bayesian Networks

BNs are statistical models that represent the proba-
bilistic relationships among variables [33]. They are com-
posed of a directed acyclic graph, where each node N

Figure 1: Example of Bayesian Network trained on
UGR’16 with Hill-Climbing

td

¢ et
Pkt dstport
- —
srcport ¢
“Sa proto

Nodes are features, arrows are dependencies.

is labelled by one feature X and is associated with a
conditional probability table that describes the distribution
P(Xn | Xpany) where Xpg(ny are the features of
the parents of N. A BN can represent any probability
distribution due to Bayes’ theorem:

P(X):HP(XN | Xpa(ny) (3)
N

In order to learn the dependencies among the features of
a given dataset, there are multiple families of BN learning
algorithms: constraints-based (that rely on statistical tests),
score-based (that optimize a likelihood-based score), and
hybrid. On Figure 1 we can see an example of BN (BNp;ns)
that was trained on UGR’16 with the Hill-Climbing struc-
ture learning algorithm

B. JSD and EMD

JSD quantifies the similarity between the probability
mass functions of real and synthetic data for a given
discrete feature. It is a symmetric variant of the Kullback-
Leibler divergence. Importantly, JSD is calculated inde-
pendently for each variable, thus focusing solely on in-
dividual variables without capturing inter-variable depen-
dencies. Eq. 4 gives the formulation of JSD for a discrete
feature.

Dy (X M) + Dy (X M
JSD(Xeource || Xgon) = KL (Xsource || )2+ KL(Xgen || M)
(€3]

where M = %(Xsoume + Xgen) and D (P || Q) =

S rex P)log (52).

EMD is calculated by analyzing the real and synthetic
Cumulative Density Functions (CDFs) of a specific vari-
able. This metric quantifies the amount of mass required
to be displaced in order to transform the source CDF into
the generated CDF. Eq. 5 gives the EMD between the
value distributions of a continuous feature for source NF
data and generated NF data.

E‘MD(XSOHI‘CE7 Xgen) = / |P(Xsource Sx) - P(Xgen Sx)l dz
(5)

C. Selection of a structure learning algorithm

For choosing the type of structure learning algorithm,
we test various algorithms on the UGR’16 dataset and
compute their respective BIC scores. Our Bayesian Net-
work will try to represent the different dependencies
among the feature of that dataset with the lowest possible
number of parameters.
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TABLE 8: Comparison of different structure learning
algorithms from Python’s bnlearn library on UGR’16.

Structure Learning Method ‘ BIC score (Lower is better)

Naive Bayes 1.94 x 107
Chow-Liu 1.80 x 107
Hill climbing 1.68 x 107

TABLE 9: Distribution of the 30 most frequent port
numbers in CIC-IDS-2017 and UGR16 dataset

# Port Numbers  Occurrence
1 53 24.193 %
2 80 12.427 %
3 443 9.601 %
4 123 0.944 %
5 137 0.502 %
6 25 0.434 %
7 0 0.224 %
8 22 0.185 %
9 8080 0.163 %
10 21 0.147 %
11 110 0.144 %
12 389 0.104 %
13 6000 0.083 %
14 88 0.082 %
15 445 0.077 %
16 3306 0.075 %
17 138 0.062 %
18 22001 0.059 %
19 8000 0.052 %
20 22011 0.049 %
21 3268 0.047 %
22 5060 0.045 %
23 143 0.045 %
24 161 0.044 %
25 8888 0.044 %
26 139 0.044 %
27 5353 0.043 %
28 465 0.040 %
29 5210 0.039 %
30 64887 0.038 %
Sum 50.036 %

Given a collection of data points Q2 = (z;);<», a model
f, and k the number of parameters in ¢, BIC is defined
by Eq.6:

BIC(0| Q) = 72Zlog(P(zi|9)) + klog(n) (6)
=1

A low BIC score indicates a model that balances good fit
with few parameters (avoiding overfitting). As shown on
Table 8, Hill-Climbing is the structure learning algorithm
that yields the best BIC score on that experiment. We
hence chose this algorithm for our study.

D. Global Port Distribution

In Table 9, we have reported the 30 most used port
values in both the CICIDS-2017 and UGR’16, alongside
their global occurrences, ordered in descending order.
We can see that some values (like 53, 443 or 80) are
overwhelmingly represented. The 30th most frequent port
value is 64887 (an ephemeral port) and occurs only
0.028% of the time.

E. Description of the features of our datasets

We list in Table 10 the different features used to
describe network flows in all our experiments. In Experi-
ments 1 and 2, the feature Flags only contains information

TABLE 10: Description of the features of each flow in
the three datasets of Subsection 6.1

Feature Type Dataset
Short | Long | UGR

Source IP Address categorical | v v
Source Port categorical | v v v
Destination IP Address categorical | v v
Destination Port categorical | v v v
Protocol categorical | v v v
Timestamp numerical v v
Day of the week categorical | v/
Hour of the day numerical v
Duration numerical v v v
Number of packets numerical v v v
Number of bytes numerical v v v
Maximum length of a | numerical v
packet
Minimum lenght of a | numerical v
packet
Average length of a | numerical v
packet
Standard deviation of the | numerical v
length of packets
Sum of inter-arrival times | numerical v
Average inter-arrival time | numerical v
Standard deviation of the | numerical v
inter-arrival time
Maximum of the inter- | numerical v
arrival times
Minimum of the inter- | numerical v
arrival times
Flags inside the flow categorical | v’
Number of PUSH flags numerical v
Number of URGENT | numerical v
flags
Number of RESET flags | numerical v
Sum of length of the | numerical v
headers
Average  Number of | numerical v
Packets per second
Average of segment sizes | numerical v
Average of Bytes/Bulk | numerical v
ratios
Average of Packets/Bulk | numerical v
ratios
Average of Bulk Rates numerical v
Number of packets inside | numerical v
a Subflow
Number of bytes inside a | numerical v
Subflow
Number of Bytes of the | numerical v
Init Window

Short stand for CICShortFeatureSet; Long for
CICLongFeatureSet; and UGR for UGR

about URG flags, RST flags or PUSH flags. Information
about other TCP flags like ACK, SYN or FIN were un-
available in the dataset. We can see that on top of having
the highest number of features, CICLongFeatureSet also
has the highest number of numerical ones.

F. Example of generated network flows

In Tables 11 and 12, you can see the network flows
generated in the context of Experiment 1 (see 6.2.1) by
BNpins and NetShare, respectively.

As said in the previous subsection, the Flags feature
contains only information on three types of TCP flags in
the source dataset. So it is completely expected that none
of our models produced any ACK flag or SYN flag for



TABLE 11: Example of network flows generated by BNy;,s on Experiment 1

TCP flows. This is a shortcoming of the Dataset, not of
our models.

We can see that the NetShare traffic exposes some
serious shortcomings, like HTTP traffic without any bytes
on line 3, or a flow with both Dst Pt and Src Pt as
ephemeral ports on line 2.

G. Illustration of mode invention

Figure 2: Two-dimensional tSNE representation of UGR
data and synthetic data generated by CTGAN.
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In Subsection 6.2.3, when analyzing the result of
CTGAN on the UGR dataset, we notice that its generation
was lacking Realism (Density of 0.486) yet had a pretty
high Diversity (Coverage of 0.802). This behaviour is a
known pitfall of generative models and is usually labelled
as mode invention.

In order to visualize mode invention, we decide to em-
bed both the training data and the synthetic data generated
by CTGAN in a tSNE representation. We also plot that
representation in a two-dimensional graph in Figure 2.

We can see that every part of the real data distribution
is pretty well covered by synthetic data (hence good
Diversity), but the model did also produce a consequent
amount of synthetic samples that are not close to any real
one (the little independent dots in the center of Figure 2),
indicating low Realism.

Day Time Duration  Proto  Src IP Addr Src Pt Dst IP Addr Dst Pt Packets Bytes  Flags
1|4 18:10:02  0.08 UDP  192.168.10.8 51504  192.168.10.3 53 1 8 ...
213 17:17:02  5.66 UDP  192.168.10.8 49231  192.168.10.3 53 3 161 ...
310 19:56:16  59.36 TCP 192.168.10.19 41967  152.209.204.1 443 16 1409  .P..
412 19:47:39  115.85 TCP 192.168.10.15 46219  99.29.138.167 443 22 2758  .P..
5|4 13:28:26  0.03 UDP  192.168.10.1 53 192.168.10.3 61719 1 119 ...
6| 4 13:38:46  119.01 TCP 192.168.10.5 53073  191.195.80.34 443 22 1235 .P..
711 19:35:224  0.07 UDP  192.168.10.3 53 192.168.10.17 58681 2 187 ...

TABLE 12: Example of network flows generated by NetShare on Experiment 1

Day Time Duration  Proto  Src IP Addr Src Pt Dst IP Addr Dst Pt Packets Bytes  Flags
1|2 16:45:42  0.02 UDP  192.168.10.5 49082 192.168.10.3 53 1 143 L.
2 11 12:12:14  2.49 TCP  157.69.249.80 51243  192.168.10.5 49653 5 1293 ..R.
312 18:29:28 295 TCP  192.168.10.16 47793  87.64.65.152 80 3 0o ..
413 12:33:07  0.09 UDP  192.168.10.3 64087  192.168.10.1 53 1 316 ...
510 14:09:52  70.28 TCP  192.168.10.25 61487  192.168.10.3 3268 26 1963  .P..
6| 4 16:25:51  0.05 UDP  192.168.10.1 53 192.168.10.3 53593 1 351 ...
710 17:09:37  6.06 TCP  192.168.10.8 49844  109.182.162.153 443 14 1199  .P..
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