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CONDITIONAL APPEARANCE OF DECAY FOR THE NON-CUTOFF BOLTZMANN

EQUATION IN A BOUNDED DOMAIN

CYRIL IMBERT & AMELIE LOHER

ABSTRACT. This work is concerned with the appearance of decay bounds in the velocity variable for solutions
of the space-inhomogeneous Boltzmann equation without cutoff posed in a domain in the case of hard and
moderately soft potentials. Such bounds are derived for general non-negative suitable weak subsolutions.
These estimates hold true as long as mass, energy and entropy density functions are under control. The
following boundary conditions are treated: in-flow, bounce-back, specular reflection, diffuse reflection and
Maxwell reflection. The proof relies on a family of Truncated Convex Inequalities that is inspired by the
one recently introduced by F. Golse, L. Silvestre and the first author (2023). To the best of our knowledge,
the generation of arbitrary polynomial decay in the velocity variable for the Boltzmann equation without
cutoff is new in the case of soft potentials, even for classical solutions.
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1.1. The Boltzmann equation. We consider the Boltzmann equation posed in bounded C!' domain

Q Cc R? (with d > 2),
(1.1) (O +v-Va)f =Q(f, f), t€(0,T),z€QueR

where the unknown function f = f(¢, z,v) is non-negative; Q(f, f) denotes the Boltzmann collision operator,

(1.2) QN = [ () = £ @) Bl = v.l.) dods,

where v' and v/, are given by

;o vtu. v — v , vt vl |u—uy
= o = —
2 2 ’ * 2 2 ’
and the collision kernel B satisfies
B(|v—wvs],0) =[v—v.|"b(cosh) with c059=|_7v*|-0,
v — v
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1



for v € (—d, 1] and
b(cos 6) ~ |g| T2

for s € (0,1). This means that there exists constants Ci such that 0 < C_ 0] 7% < b(cosf) <

—d+1-2 . .
Cy 10 1725 More precisely, we can reformulate this as

b(cos) = v — o]V p — v, | [ — ol T b(cos 6),

— v,
where b(cosf) is such that 0 < b_ < b(cos#) < by for constants b+ > 0. We are concerned with the case
when v + 2s > 0 corresponding to so-called moderately soft potentials.

The equation is supplemented with an initial condition f(0,2,v) = fin(x,v) for (z,v) € Q x R? and a
boundary condition. In order to describe the latter, we let n denote the outward unit normal vector on the
boundary and T' denote the domain that considers boundary points in space, that is T := 9Q x R%, by T'_
the incoming part of the boundary, and by I';. the outcoming part of the boundary, that is I'_ := {(z,v) €
I:v-n(z) <0}, and Ty := {(x,v) €T :v-n(x) > 0}.

The Boltzmann equation (1.1) is supplemented with the following boundary conditions that are commonly
considered in the literature,

(i). IN-FLOW: f(t,2,v)|r_ = fp(t, z,v) for a given function fj.
(ii). BOUNCE-BACK: f(t,z,v) = f(t,x,—v) on I
(iii). SPECULAR REFLECTION: f(t,z,v) = f(t, z, Rev) with Ryv =v — 2(v - n)n.

(iv). DIFFUSE REFLECTION: f(t,z,v)|lr_ = cuu(v) [r, f(t,z,v") n) dv’, where p(v) = e~ 1"* is the
Maxwellian, and ¢, is a normalisation constant, such that ¢, fr (W -ndv =1.
(v). MAXWELL REFLECTION: f(t,z,v)|lr_ = (1 —¢)f(t, 2, Ryv) + tepp(v fr ft,z,0") (v - n)dv” where

t:90Q — [0,1] is the accomodation coefficient.

1.2. Hydrodynamical quantities. L. Silvestre [39] showed that when some hydrodynamical quantities are
under control, the collision operator enjoys elliptic properties. It was further investigated by L. Silvestre and
the second author in [29]. Throughout this work, we assume that there exist positive constants mg, Mo, Eo, Ho
such that for almost every (¢,z) € (0,T) x Q, the function f(v) = f(¢,z,v) satisfies,

(1.3) mo < f(v)dv < My, / f)|v|* dv < Ey, / f()In f(v) dv < Hy.

In particular, the entropy production estimate yields some integrability in (¢, x,v) with a negative weight in
velocity [11, Theorem 0.1].

1.3. The collision operator. In order to present the Truncated Convex Inequalities satisfied by our weak
solutions, it is necessary to recall some facts about the collision operator and its kernel representation.
Using Carleman coordinates, the collision operator can be written as follows [41] — see also [39],

QU f)v) = /Rd [fW)K(v,0") = f(0)Kp(v',0)] df
where the kernel K (v, ) is given by
Ky(v,0') =207 o — o7t /L f(v+w)B(r,cos 0)r~ 42 dw
=2 = [ ) [ eos0) du

|w|?~|v—v|?

T Fo—v 2 The function b is bounded from above and below by positive

for r2 = v/ — v|*+|w|” and cos § =
constants.



1.4. Truncated Convex Inequalities. We derive decay estimates by studying the evolution along time
of some L%-Lebesgue norm of the function (f — A). It is convenient to consider a general convex function
©o(r) instead of % and more generally, a general function ¢ = (¢, z,v,r) that is convex in r instead of
wo((f — A);). With such a general function ¢, a formal computation yields,

d
a//ﬂkdxﬂ o(t,v, fdvde = //]Rde Oro(t,z, v, YOS, f) dvdgc—i—//wXQ Oro(t,x,v, f)dvda
= // Orp(t,x,v, f) {/ [f(W")Kf(v,0") = f(0)K ¢ (0, 0)] dv’} dvdz
Rd x Q) Rd
// Oro(t, x, v, f)dvda.
RdxQ

We denote in the sequel f' = f(v') and f = f(v). We can then add and subtract
Dw(faf/) = (P(t,I,U af)_w(tax vaf) (t z vaf)(f/_f)a
so that

i)
— o(t,z,v, f)dvdx
dt RIxQ ( )
—/// Dy(f, f)K(v,v") dv’ dvdz
RIXRIXQ

+ ///]RdXRdXQ [ar(p(tvxvvv f)f - cp(t,ac,v, f) - 5r90(7/a f/)f/ + (p(vlvf/)] K(va/) d’l}/ dvdx

//Rdxﬂatcpt:v v, f) dvd:v—// (v-n)dvdS(z).

We now consider

(14) (I)(f) = r(p(tvvvf)f - (p(tvxvvvf)'

and we get,
// o(t,z,v, f)dvde
Rde
——/// Dy(f, fHK(v,0v") dv' dvdz
RIXRIXQ
+/// [@(f) — ®(f)] K(v,0")dv' dv dz
RIXRIxQ
// Btgotxvfdvdx—// )(v - n)dvdS(x).
R4xQ
Due to the cancellation lemma, see (2.5), we are thus lead to,
i// <P(taxavaf) dvdx :_/// D@(f, f/)K(’U,’U/) dv/dvdx
de R4 x R xR% x )
+Cb// S(f)(f x|") dvda
RIx

+//Rdxﬂ[3t<p](t,x v, f) dvdx—// (v-n)dvdS(z).

We can now use the special structure of the function ¢ that we are going to use. More precisely,

p(t,v,r) = @((r — At v)+)

for some convex function @ vanishing at 0 together with its derivative ¢. Then we compute,

o(f) = ((f — 4)+)
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and

(L5) Dyl f) = dpl(f = A)as (F = A)4) + (] = AV (A = [y = G((] = A)s)(A — A),

where

(1.6) da((f = A, (f = A)1) = o((f' = A)4) = 2((f = A)) = 2((f = A ((f' = A)s = (F = A)4).

We remark that the first two terms for D, are non-negative, while the third one is an error that we will have
to handle.

1.5. Suitable weak subsolutions. In order to define suitable weak solutions, we consider elementary
functions @. Precisely, we consider the family of convex functions ¢, (r) = (r — a)+ associated with a > 0.
These functions are commonly used in the theory of entropy solutions for scalar conservation laws and are
known as Kruzhkov’s semi-entropies, see for instance [4,25]. In this case [19],

r ) = (s—a);y ifr<a
(L.7) diou 1) {(a—s)+ ifr>a

and @, (r) = alyssay-

As far as integrability of solutions is concerned, we remark that the upper bound on the mass density —
see condition (1.3) — and the bound on the time-integrated entropy production (see Theorem 2.3) suggest to
consider solutions that are L7 in all variables with go = 1 + 275 — see Lemma 2.2.

In accordance with the formal computation that we performed above, we introduce the following notion
of weak subsolutions for the inhomogeneous Boltzmann equation.

Definition 1.1 (Suitable weak subsolutions). Let T € (0,+o0o] and let Q be a C' domain of R%. A non-
negative function f € LY((0,7) x Q x R?) is a suitable weak subsolution of (1.1) if

(i). IN-FLOW: given g: (0, T)xT'_ — [0, +00), for any real number a > 0 and any function A: (0,7)xR? —
(0,400) such that 9,4 and 631,11,],14 exist and are bounded continuous in (0,7") x R%, there holds in
D'((0,7)),

o/
— (f—A)dvdx
T e of (f—4)

+ ///Rdede Ao, (f = A)s, (f = A) ) Ky (v,0") dvdv da

(18) = A £ B o

//Rdm {0b< (f = A) + Aa(f — A>> (f *o |- [) = @alf — A)atA} dv dar
///]Rdede o(f — A)(A A)Kf(v,v')dvdv'dx—//i oalfo — A)(v - n) dvdS(z)

with g (r) = (r —a)4 and ®4(r) = al{ss,y and dy, is given by (1.7).

i). BOUNCE-BACK: it satisfies the (1.8) with f, = 0.

(iii). SPECULAR REFLECTION: it satisfies (1.8) with f, = 0

(iv). DIFFUSE REFLECTION: it satisfies (1.8) with fu(¢,z,v) := ¢, pu(v fF flt,z,0") (0 n) dv’.
)

. MAXWELL REFLECTION : it satisfies (1.8) with fu(¢, z,v) := wc pu(v fF ft,z,v") (v - n)dv'.

Remark 1.2 (General convex functions). The family of inequalities (1.8) is only imposed for elementary
(non-decreasing non-negative) convex functions ¢, (r) = (r — a);+. But this implies that such inequalities
hold true for general Lipschitz convex functions ¢ such that p(0) = ¢(0) = 0 by simply integrating in the
parameter a. Indeed, as already mentioned in [19], a general C? convex function ¢ satisfies,

—+oo
(1) = (0) + Oy + / Ha)(r — a), da
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and we can easily check that

+oo +oo
O(r) = /0 P(a)Pq(r)da and dy(r,p) = /0 @(a)dy, (1, p) da.
We will follow such an idea through a truncation procedure (see Section 3).

Remark 1.3 (Link with renormalized solutions). R. J. DiPerna and P.-L. Lions [15] constructed weak solutions
of the Boltzmann equation in the cutoff case by considering the (Lipschitz) concave non-linear change of
variables ¢(f) with ¢(r) = In(1 4 r). We consider here (Lipschitz) convex functions ¢.

Remark 1.4 (Positive terms). The first positive term in the left hand side of (1.8) corresponds to the
classical entropy production term. The second one is reminiscent of the “good extra term” first exhibited
by L. Caffarelli, C. H. Chan and A. F. Vasseur in [6]. It also plays a crucial role in the recent work by
Z. Ouyang and L. Silvestre [36].

Remark 1.5 (Error terms). We remark that right-hand sides of time differential inequalities are well-defined
and integrable in time. Indeed, ¢, and ®, are bounded and f *, | - |7 is integrable in (¢,2,v). The term
involving the difference A’ — A comes from the dependance of the barrier function A on the velocity variable.
It did not appear in the work of Q. Ouyang and L. Silvestre [36]. It is reminiscent of (and treated as) the
“bad terms” that were treated by C. Mouhot, L. Silvestre and the first author in [26].

1.6. Main result.

Theorem 1.6 (Conditional decay estimates). Let the parameters v € (—d, 1] and s € (0,1) of the non-cutoff
collision kernel satisfy v+ 2s € (0,1), Let fin (and fi,) denote the initial data (and the boundary data in the
in-flow case).

Let T € (0,+0c] and f be a suitable weak subsolution of the Boltzmann equation (1.1) in (0,T) x Q x R?
with either in-flow, bounce-back, specular / diffuse / Mazwell reflection boundary conditions satisfying in

D'((0,7)),
d
E//Qdeflnfdxdv—i-/QD(f)dxgo,

where D(f) > 0 denotes the entropy production. We also assume that f satisfies Condition (1.3) about mass,
energy and entropy density functions.
Then for all ¢ > 0, there exist Cq > 0 and By > 1, depending on mg, My, Eo, s,d,, Cy and q such that, if

folt,z,v) < Cp (1+ t_'@q) (W)™? a.e. in (0,T) xT'_
(only in case of in-flow or diffuse / Mazwell reflection), then the solution f satisfies,
ftzv) <Cy (1 —l—t*ﬁq) ()77 a.e. in (0,T) x Q x RY,

Remark 1.7 (Entropy production). The definition of the entropy production D(f) is recalled in the prelim-
inary section, see (2.7).

Remark 1.8 (Integrability of solutions). A suitable weak subsolution of the Boltzmann equation is merely
integrable in all variables. In the proof of our main theorem, we need more integrability. The entropy
production estimate from Lemma 2.2 implies that f € L'((0,7) x ;L (R?)) for o= =1~ 2 and ko =
v+ 25 — %S. Consequently, when combined with the hydrodynamical bounds (1.3), we obtain that the

functions f we work with are such that f € LZ% (0,7) x Q x RY) with g = ¢£2* and some kj € (0,2).

Remark 1.9 (Algebraic time decay in v). For ¢ € [0, gns1], With ¢ue given in (vii) below, the time decay
exponent is given by the formula g, = 4 For large ¢’s, it is proportional to a power of g. Precisely,

2s
Bgox (1+5)%.

Remark 1.10 (Large times). We emphasize that the estimates hold true uniformly in time, even in the case
T = 4o0. This is important in the conditional regularity program. Obtaining bounds that are uniform in
time will imply that the large time behaviour can be studied in the class of regular solutions, see in particular
the work by L. Desvillettes and C. Villani [13].



Remark 1.11 (Generation of moments). We emphasise that the generation of any pointwise moments was
unknown in the case of moderately soft potentials, even for classical solutions. In [26], the first author
together with C. Mouhot and L. Silvestre established pointwise generation of moments for ¢ € [0, gug ] for
classical solutions on the torus with rapid decay.

1.7. Comments. This work makes part of the large body of literature dealing with velocity decay of so-
lutions of kinetic equations. Before reviewing the literature, we make several comments about our main
theorem and its proof.

CONDITIONAL DECAY ESTIMATES. The conditional decay estimates that we obtain for the space-inhomo-
geneous Boltzmann equation in the non-cutoff case are to be compared with the ones obtained by C. Mouhot,
L. Silvestre and the first author (2020). It extends them in two directions. First and most importantly, the
Boltzmann equation is posed in a domain and is supplemented with boundary conditions. Second, we
consider some weak (sub)solutions instead of classical ones. It is not only a technical challenge to be able to
deal with solutions that are more likely to be constructed. The statements are also significantly improved
since we generate any polynomial decay, even for moderately soft potentials.

We already mentioned that deriving decay estimates, such as pointwise or moment bounds, is a classical
theme in kinetic theory, it is key if the conditional regularity program by L. Silvestre and the first author
(see [30] and also [28]) is to be extended to the case of bounded domains.

BARRIERS AND ENERGY METHODS. The methods of proofs are developed after the article by Z. Ouyang and
L. Silvestre [36] about conditional pointwise bounds of weak solutions: in order to prove that the solution f
decays at a certain algebraic rate at infinity in velocity, a barrier method was used in [26] and a maximum
principle argument was set up. More precisely, letting A(t,v) denote the barrier, the method amounts to
consider the first time of contact between f and A, as continuous functions. The technique used in [36]
is closer to De Giorgi’s truncation argument (revisited for instance by B. Perthame and A. F. Vasseur for
evolution equations [37]): prove that the L?-norm of the positive part of (f — A), denoted by (f — A)4,
vanishes for all times. In order to do so, we study the time evolution of this L?-norm along the flow of the
equation.

TRUNCATED CONVEX INEQUALITIES. In this work, we choose to consider solutions with the mere integrabil-
ity given by the control of the mass density and the entropy production (see Remark 1.8). We also choose the
framework of weak solutions satisfying a family of inequalities associated with convex functions. Such weak
solutions were recently introduced by F. Golse, L. Silvestre and the first author in the homogeneous case
for very soft potentials [19]. It turns out that classical subsolutions of the Boltzmann equation satisfy them.
We thus call them suitable weak subsolutions. We emphasize that we do not use the equation but only this
family of inequalities. It is reminiscent of the notion of De Giorgi classes from classical elliptic regularity.
This notion was introduced in [31] and the interested reader is referred to [32] for a modern presentation.

COERCIVE TERMS. In these inequalities, there are coercive terms, that is to say positive terms in the left
hand side, and error terms, corresponding to all terms appearing on the right hand side (some of them are
positive, others have a priori no sign). There are two types of coercive terms. Some are clear counterparts
of the H'-norm in De Giorgi’s original article. They ensure that the subsolution enjoys better integrability.
These terms are typically the ones that are exploited in [19], thanks to the techniques developed in [11,29].
They are non-local in nature, but also linear. Indeed, they all rely on the property of the kernel K that are
derived from the hydrodynamical bounds — see Subsection 2.1. The second type of coercive term is what
we call the “good extra term”, in reference to [6], where an additional “coercive” term exhibited in the
non-local setting. This term was exploited for kinetic equations for the first time in [33]. It turns out that
this additional term is the most important in the proof.

ERROR TERMS. Error terms are of two types too. First, there is the error term coming from the dependance
of the barrier A in the velocity variable. In order to control it, we rely on ideas from [26]. They have to be
adapted since we use a different type of argument (pointwise contact vs. truncation) and a different way of
splitting the collision operator. The other terms come from the cancellation lemma. In particular, they are
non-linear in nature: they make appear a product with the convolution of f with |- |7.
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GENERATION OF POINTWISE DECAY. Our main result asserts that, as long as mass, energy and entropy
densities are under control, suitable subsolutions satisfy a polynomial decay in the velocity variable of any
order q. The result is first proved for some exponent ¢ng (for not-so-large), by using the estimates from
below for coercive terms and from above for error terms. We then use this first decay to improve iteratively
the exponent ¢ measuring the polynomial decay rate.

1.8. Review of literature. The study of velocity moments of solutions to kinetic equations plays a central
role since Boltzmann’s (and Landau’s) collision operator integrates the velocity variable in the open space R<.
It has a long history, mostly in the space-homogeneous setting, that goes back to the article by T. Carleman
[9]. Tt is precisely described in the introduction of [26]. Let us give references, summarize the review of
literature from [26] and review the literature written since then. The reader is also referred to references
contained in the articles that are quoted in this subsection.

VELOCITY MOMENTS. We first review contributions to the study of moments of solutions in the velocity
variable. Maxwell potentials are treated in [24,40]. In the case of hard potentials and angular cutoff,
Povzner’s inequalities [38] are commonly used: see works by T. Elmroth [16], L. Desvillettes [12], S. Mischler
and B. Wennberg [35], X. Lu [34] and B. Wennberg (in the non-cutoff case) [42]. A. Bobylev considered
exponential moments in [5], see also [17], and in particular the work [2] in this direction, where they establish
the creation and the propagation of exponential moments to the spatially homogeneous Boltzmann equation
for hard potentials. The case of moderately soft potentials and angular cutoff is addressed by L. Desvillettes
[12], see also [14,41] in this direction. We finally mention the work by M. Gualdani, S. Mischler and
C. Mouhot [20] that focusses on hard spheres and makes assumptions on hydrodynamical quantities that are
similar to what is assumed in this work. More recently, C. Cao, L. B. He and J. Ji [8] studied the propagation
of exponential moments in L? for (very) soft potentials in a perturbative regime.

POINTWISE DECAY. There are fewer results about pointwise decay. It starts with works by T. Carleman [9,10]
and extended by L. Arkeryd [3]. Exponential pointwise upper bounds were obtained in [17], see also [18].

More recently, the work by C. Mouhot, L. Silvestre and the first author [26] addressed the question of
appearance and propagation of polynomial decay in the velocity variable under condition (1.3) on hydro-
dynamical quantities. In this vein, S. Cameron and S. Snelson [7] established similar results in the case
v+ 2s > 2. The study of polynomial decay is also central in [22] in which the authors are able to deal
with very soft potentials (v 4 2s < 0). See also [21] for results dealing with the Landau equation. In [23],
C. Henderson and W. Wang are interested in very soft potentials and short time existence. They work in
the class of solutions with polynomial decay.

1.9. Open questions. Solutions of the inhomogeneous Boltzmann equation converge to Maxwellians for
large times [13]. We recall that under the condition (1.3), C. Mouhot, L. Silvestre and the first author [27]
proved that solutions stay above a Maxwellian. It is thus natural to ask ourselves if they can be bounded
from above by another Maxwellian. Unfortunately, our proof does not yield neither such an (optimal)
upper bound nor any exponential decay (in v). The first open question is thus to show the propagation of
pointwise Gaussian bounds. It is unnatural to expect to be able to propagate the Maxwellian with the right
temperature.

Another natural open question is the possibility of bridging the gap between generating any polynomial
pointwise bound to the generation of pointwise Gaussian bounds. Is it possible to show that solutions to
the non-cutoff Boltzmann equation with moderately soft potentials generate Gaussian bounds of the form
—a®©)™* for some function a = a(t)?

The critical cases v+ 2s = 0 and v+ 2s = 1 are left open. Finally, the case of very soft potentials is also
another natural open question.

e

1.10. Notation. For p € [1,00] and k € R, the weighted Lebesgue space LY is given by

LP(RY) = {f RY - R s.t. fP(v) ()P dv < —I—oo} ,

Rd
where (v) := (1 + [v]*)2. When k = 0, we simply write LP.
For a € R we define a := max(a, 0).
The volume of the unit sphere of R™ is denoted by wy,—1.
7



1.11. Constants. We gather here parameters and constants that are used repeatedly in statements and
proofs.

(i). The dimension of the z and v variables is denoted by d. It is always larger than or equal to 2.
(ii). The parameters v and s from the kernel satisfy: v € (—d, 1] and s € (0,1) and 0 <y +2s < 1.
(iii). The Lebesgue exponent py > 1,

Do d
comes from the entropy production estimate.
(iv). The Lebesgue exponent g > 1,

is related to integrability of solutions.
(v). The moment exponent

ko= (v+2s)— —

appears in the entropy production estimate.
(vi). To any decay exponent ¢ > 1 is associated a moment exponent

2s 2s
lq—(’y—|—2$)+g—q<1—|—g).

(vii). The decay exponent ¢ns (for not-so-large) is given by

d—|—1—|—2%min(’y,0), if —dfgsgygl,
Gnsl = .
d—i—l—ﬁ@—w), 1f—2s<7<—d2f‘27ls.

It corresponds to the first decay that is generated by coercivity and error estimates.

2. PRELIMINARIES
We gather in this section known results and technical lemmas that will be used in next sections.

2.1. The collision operator. We recall that the use of Carleman coordinates allows us to write the collision
operator Q(f, f) and the kernel K as follows,

QN = [ @)K (0,0) = FK )]

R4
and
Ky(v,0') =21 o — v|71 / f(v+w)B(r,cos 0)r~4T2 dw,
wlov' —v

_ wP—fo—v?

where r2 = v/ — v|” + |w|® and cos§ = OmEmR g

2.1.1. Coercivity. Under the condition (1.3), we know that for any fixed (t,z) € [0,T] x Q there exists a set
Z(v) € R? for every v € R? such that Z(v) is a symmetric cone, and such that for v' — v € Z(v) there holds

(2.1) Kp(v,0') 2 M (o) o — o472,
with A\g = Ao(d, mg, Mo, Fo, Hy). Moreover, there holds
(2.2) |=(v) N Sdil‘ > co(v) 1,

for some constant ¢y = co(d, mo, Mo, Eo, Ho). The set Z(v) is the cone of non-degeneracy of Ky(v,v"). We
can also ensure that the following estimate holds,

(2.3) |Z(v) N Bz \ Ba| > co{v) ™.

2.1.2. Upper Bound. For (t,z) € [0,T] x £ there exists a postive constant Ay depending on mq, My, Eo, Ho, d
such that

(2.4) Yo € Rd, vr >0, / Kf(v,v’) |v’ — v|2 dv' < Ao<v>7+25r2_25.
B, (v)
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2.1.3. Cancellation. For (t,z) € [0,T] x Q there holds

(2.5) Yo e R : /]Rd (Kf(v,0") = Ky (v',0)) dv' = ¢ /]Rd Fve) Jv— v dos,

with

d+~
2

2
Cb:/ 7d+7_1 b(Ue)dU>O,
si-1 | (140-€) 2z

for any e € S71. See [1].

2.1.4. Symmetry. For any (¢,z) € [0,T] x Q and v, w € R? there holds

(2.6) Ky(v,v+w) = Ky¢(v,v—w).

2.2. Integrability of solutions. The following lemma is a consequence of Holder’s inequality and a proof
is given in [19)].

Lemma 2.1 (Holder’s inequality with weights). Let p,q,r € [1,+00] and p < r < q. Then,

171z, <715 11155

with o € (0,1) such that + = >+ PTO‘ and k, = aky, + (1 — a)kq.

We can use the previous lemma to derive the following one.

Lemma 2.2 (Integrability of solutions). If f € L>((0,T) x ; Ly(R?)) and f € L'((0,T) x ; L}°(R%))
with ko given by (v), then f € LZ%((O, T) x Q x R?), where qo and ki are given by

1 2s 25+ d(y +29)
—2-—=1+2€e(,2), k=117
q0 Do + ( ) 0 d+2s

0.
d >

2.2.1. Entropy production estimate. The entropy production of a function f is given by the following formula,

(2.7) _ 1 AT CONIC)) /
=3 ///Rdedxsdfl[f(v*)f(v) — f(v)f(v)]1n WBGU — v4],cos6) do dvdv’.

Theorem 2.3 (Entropy production estimate — [11, Theorem 0.1]). Let vy € (—d, 1] and s € (0,1). Then, for
any non-negative solution f of (1.1) verifying the bounds (1.3), the entropy production D(f) satisfies

1f1l 7o (may < CoD(f),
0
where py is such that pio =1- 275 and ko = v+ 2s — 275. The constant Cy only depends on mass, energy and
entropy of f.
In particular, as a consequence of the entropy production estimate and Lemma 2.2, we note that for any

solution of (1.1) satisfying the hydrodynamical condition (1.3) there holds f € LZ% ((0,T) x Q x RY).

2.3. Interpolation estimates. This subsection is devoted to the proofs of interpolation estimates that will
be used in the proof of the main theorem.
Holder’s inequality with weights (see Lemma 2.1) applied to p = r = ¢ = 1 yields the following result.

Lemma 2.4 (First weighted L! estimate). Let f : R — [0,00) have a finite 2-moment. Then there holds,

k—2aq 1—ap
ek vaoe 0, [ rowtassr ([ jomTRae)

Second, we use that o € (1,2) to get 1 € [go — 1,qo] and interpolate f € L' between f € L% and
f € Lo~ (with weights). Since gy — 1 < 1, the interpolation is applied to f(%*l)fl.
9



Lemma 2.5 (Second weighted L' estimate). Let f: R — [0,00) have a finite 2-moment. Let gy = “£25 €

(1, 2) =1—-=2 ky=v+2s— %5. Then there holds,

d(d2 252) 452+d2
ek [ e ([ mowemae)

M{2_d(d—2s) ]

with

mo =

4sd 452+ 2 0]
Proof. We interpolate

a3
Po

L (v){v)™ dv < ( » ( g FO7 () (v)™ dv> -

where we need as, ayq and meo to satisfy,

P () (o) ao)

a
=t =1, azqo + ag(go — 1) =1, agko + cumo = ka.

Po
This yields
Qe = p(2 - CIO) _ d(d — 28) o — qoPo — 1 _ 4sd
Paopotl-qo A+ P amo+l-q 482 +d
1 4s% + d? d(d —2s) 2s
mo a4(2 a30) dsd [2 152 1 2 v+ 2s ¥

We can then apply Lemma 2.1 with p = 1 and ¢ = poqo-
Lemma 2.6 (General weighted LP! estimate). Let f : RY — [0,00). Then for all p1 € [1,poqo] and all

k1 € R,
d+2s—pq(d—2s)
d(m;sl) m p1ds
iz, <1l ([ s ao) ,
1/pP1 ko Rd
with A o 0
S b1 —
= ki — ——ko| .
m1 d+2s —pi(d —2s) { ! 4s O}

Proof. We interpolate

/]R )t de < ( /]R e (u) ) cw>c’jé ( o™ dv) o

where we need a1, as and m; to satisfy,

%-ﬁ-az:l, a1qo + a2 = p1, arkg + agmy = k.
0
This yields
_(pr—=1po  d(p1—1) _qopo—p1 _ d+2s—pi(d—2s)
— — ) 2 — — )
qopo — 1 4ds qopo — 1 4s
1 4s d(pr — 1) 2s
= k1 —aqk ki — 2s — — | | . [l
" ag(l aiko) = d+2s—p1(d—2$){1 4s vt es d

Finally, as a consequence of Lemmas 2.4, 2.5 and 2.6, there holds the following estimate.

Lemma 2.7 (Weighted L% estimate). Let f : R? — [0,00) have a finite 2-moment. Then there holds for
any ks € R and any € € (0,1)

[ o < el + B ([ e ),

d d
m3—<1+£)k3—£k0—2,

10
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and C(e, Ey) only depends on Ey, €, s and d.

Proof. We first interpolate with Lemma 2.6 for p; = qp and k; = ks,

L@t <tz ([ o )

where a1, ao, m1 are given by

1 d+2s 2d i 1 49 2s
a1 = — a9 = mq = — = - .
1=y 27 Toq Voates |2\ Ty

Then apply Lemma 2.4 for any ag € (0,1) and with k = m;.

—2aq 1—ap
s < g ([ fow T w)
Rd Rd

ml 20([)
— Q0 ’

/Rd F(0) () 5" dv < L7075 (/R Fo~ (v) ()™ dv) o

d(d — 2s) 4sd 482+ d? [m1 — 209 d(d — 2s) 4o 2s
_— @ mg = - s—— 1.
1+ 2’ ‘T2 r 2 2 Asd 1—ay 42+ \!

Next we interpolate with Lemma 2.5 for ke =

where

a3 = d

Finally we combine the three previous inequalities

(1—ap)aza
/fqo kg dv < Eazao quonéoJr(l ag)asas (/fqo 1 7TL2 d’U) o/t

we use Young’s inequality for some 6 > 1 and for any ¢ € (0, 1),

0(1—ag)agay
61

< el fe AT 4 O, By) ( /R T ) ) dv)
0

agagl

with C(e, Ey) = E,°* e~ 7 1. We choose 6 and ayq such that

O(a1 + (1 — ap)aaz) = 1, —— (1 — ap)asay = 1.

Then we showed
/ fao (v)<v>k3 dv<e qu0||L£o + C(e, Ep) (/ fq“71<v>m2 dv> .
Rd 0

Note that we find
az+ag  d+2s a1 — 1+ ag(as + as) 4sd

= - 3 Qg = - )
o3+ ooy d 0 as(as + ayg) (d+ 2s)?

(in particular 6 > 1), so that

(d+2s)ko —d (v +2s — %)
2s

-2

m3:m2:

This yields the result for « = 1. To get it for any ¢, apply the result to £/t and recall the definition of

C(e, Ey). We get M T (with # — 1 = 2&) in front of the second term. O
11



3. TRUNCATED LEBESGUE NORMS

In order to get the decay estimates from Theorem 1.6, we aim at proving that the following quantity
equals zero,

//Rdmﬁf (t,2,0) — A(t,v)% dv da

with A(t,v) = a(t)(v) 9 for some well chosen C! function a > 0 and some exponent g > 0. We recall that
go = 1+ % (see Lemma 2.2) and that r, denotes max(0,r) for any real number r. In order to prove that
this functional vanishes when applied to a solution of the space-inhomogeneous Boltzmann equation, we
investigate how it evolves with time.

3.1. Truncated Convex Inequalities. Keeping in mind that gy > 1, we thus consider the convex function
@o(r) =% and we would like to apply the definition of suitable weak subsolutions — see (1.8) — and integrate
against ¢o (see Remark 1.2). Unfortunately, we are not sure that the right hand side of (1.8) is integrable
with respect to a against @o(a). For this reason, we follow [19] and approximate ¢o(r) with g .(r) defined
for k > 0 by

(3.1) 0o,r(r) = (ry AR)™ + qor® (r — k)4

In particular ¢q ,(0) = (<p(.)1,ﬁ)(0) = 0. We can now apply the definition of suitable weak subsolutions and
integrate with respect to ¢g . (a) for a € [0, k]. What we obtain is expressed in the following statement.

Lemma 3.1 (Truncated Convex Inequalities). Let f be a suitable weak subsolution of the Boltzmann equation
with either in-flow, bounce-back, specular/ diffuse / Mazwell reflection boundary condition. Then,

% //Md o (f = A)dvde + ///Q o B0 (= A (' = A) ) Ky (0,0 do/ dv da
+ ///anw Qo (f—A) (A = f) Ky(v,0") dv' dvde
<o //Qx]Rd S(f) (f*]") dvdz + ///Qx]R?d 0ou(f—A) (A — A) Ky¢(v,v")dv' dvda
- //Q o POl = A9 Advde — // von(f — A - n(z)) dvdS(z),

OO xR
with ® given by,

(33) (I)(f) = Spd,n(f - A)f - (pO,n(f - A) = (I)O,n(f - A) + A‘pd,n(f - A)

3.2. Useful properties associated with ¢ .. The derivatives of the approximate convex function g .
are given by the following formulas,

. -1 . _
(po)H(T) = qo (T‘+ A\ H)qo and 900,;-;(7”) = qo(qO — 1)T‘q0 21{0§T§R}'
Moreover, we compute for r > 0,
o,k (r) = (p0.x) (1) = po.e(r) = (a0 — 1) (r A #)™,
and for r,s > 0,
(3.4) depo, . (r,8) = @o,u(8) = @o,u(r) — iu(r)(s — 1),
so that, if 0 <7, s <k,
deo . (r,8) = 87 —r? — qor® (s — ).
Note that if » < k, then for gp > 1
Ay, (T, g) =cgr?®  with ¢g =277 -1+ %O > 0.

In particular,

(3.5) dpo(r,8) > cgor®®  in {0<s<r/2}
12



with ¢q, = dg,(1,1/2) =27% — 14 go/2 > 0. We also have for r > 0,

A q
(3.6) deo . (r, %) = ¢qo (r A H) g

4. COERCIVITY ESTIMATES

This section is devoted to the study of positive terms appearing in the left hand side of the family of
convex inequalities associated with the approximate L%-norm, see (3.2). The term in which (A" — f')4
appears is referred to as the “good extra term” (see the introduction).

4.1. First coercivity estimate. In order to get our first coercivity estimate, we follow the method intro-
duced in [11] and used in [36] and [19]. Precisely, the proof of the following proposition is adapted from the
proof of [19, Lemma 3.1] in which kg < 0. We recall that ko = (y + 2s) — 2.

Proposition 4.1 (Coercivity estimate for kg > 0). Assume f satisfies (1.3). If ko > 0, then there exists a
constant Ceor > 0, depending on d,v, s and constants in (1.3), such that for all f,g: R® — [0, +00),

a
(4.1) //R o (99K (00) Q0 2 Coor (97 1)" 050
Proof. For R > 0 (to be chosen), we define
Bry2(v) if [v] > R
Tr = .
BgR(’U) \ BQR(’U) if |’U| S R.

In particular, for v/ — v € Tg, we have |v| < 2|v|, which implies (v) < 2(v').
Then we use the non-degeneracy cone =(v) associated with the kernel K; and get from (2.1) and (3.5)

// dpo., (9,9 ) Kf(v,0") dodo
R2d
> qu/ / (g/\ K)qO(U)Kf(U,U/) dv’ dv
Rd g'< 9/2\'{}ﬁ{v/*U€E(v)ﬁTR}

Z C/ / (g A I{)‘IO (v)<v>7+25+1 |1) _ v/|fd72s dv' do
R J{g'<g/2}n{v'—veE(v)NTR}

KR

> C/]Rd (g H)qf’ (v)R 428 (p)rH2stl Hg’ < %} N{v+Z@w)NTr} dv

where ¢ = ¢4, \g. Moreover, for any v € R%, we use either (2.3) or (2.2) and Chebyshev’s inequality to
estimate the Lebesgue norm of the sub-level set as follows,

{g < 255} n o +20) T}

= o +E@) nTa} - [{g' > QAT’””} N {v+ Z() N Tr)

9po(q0—ko)
(v)koro (g A k)P (v)

The last line uses that kg > 0. Then, we choose R such that

> coRY(v) ™t — / (g’ A k)T0P0 (yYRoPo dy
Rd

(4.2) R'=¢ llg* 1172 (v) Rt (g A k)" (v),
0
with ¢; = w and get
A\
Hg' < %} N{v+Z(v)N TR}] > coR4Yw) ! — %Rd@—l = %Rd@)‘l.

13



Therefore, with such a choice of R,
I o t0.5 (0,0 v
R2d

> cc—20 (9 AK)" (0)R™2(0) 772 dv

Rd
co —2s _2sp0 2s(kgpo—1) qo (14220
= 0501 d ||gq0||L£0d /Rd<v>’7+2s+ 4 (g/\ Iﬁ) 0( d )(U) dv,
0
and remarking that pg and kg are such that po =1 + 2550 and kopo = v+ 2s + %,
cop —2s 1—po qo ||Po
= €54 ‘ ||9q0||L’;3(Rd) [ (g A ) HLig(Rd)'
_2s
We reach the desired conclusion with Ceor = cFc; . O

Proposition 4.2 (Coercivity estimate for kg < 0). Assume kg < 0. Then there exists Ceor > 0, depending
on s,d, My, Ey, such that for all f,g: R — [0, +00),

(4.3) dyo (9.9 Kf(v,0")dvdv’ > Coor H (g N Ii)qo H po pay — Ceor (g A K)T (V)7 do.
R2d ' Lko(R ) Rd

In particular,

(4.4) //de dey.. (9,9 ) Kf(v,0") dvdv’ > Coor |[(g A K)™ Hng(Rd) — Ceor |[(g A K)

L, (R

¢Io*1H

Proof. The estimate (4.3) follows the same lines as the proof of Proposition 4.1 and is proved in [19,
Lemma 3.1].
We can obtain (4.4) by applying Lemma 2.7 to g A k and ¢ =1 and k3 = v and get for all € € (0, 1),

/]Rd (g N /@)%(v)" dv <el[(gn I{)qOHLig(Rd) + C(e, Ey) H(g A Ii)q[)il’

with mg =~v—d—1. O

Ll

m3

We now prove another coercivity estimate for v < 0.

Proposition 4.3 (Second coercivity estimate). There exists two positive constants Ceopr and ko, only de-
pending on s,d,~y and hydrodynamical bounds from (1.3), such that for all k > ko and all f,g: R?*? — [0, +-00),

(4.5) //R o (9,9 K 7(0,0") do v’ > Cogp 4N~ . (g(v) — k)4 (V)7 do.
with N = [4(g A )0~ (p)~d=1) dy,

Proof. We explain how to adapt the proof of [19, Lemma 3.2]. The only difference lies in the choice of R.
In our case, we choose R = R(v’) such that

R? B N
Wy Oﬂq071<v/>f(d71)'
We can argue as in [19] by remarking that N < k%~2M,. We thus choose Cy and kg such that
M,
Cog — <1
€gko

to ensure that R < go(v’), which allows us to use [19, Lemma 2.6]. The idea is to consider the cone of
non-degeneracy for fixed v’

S('U') = {U € R%: K(Uﬂﬂ) > MO<U/>V+25+1 |U _ v/l—(d+2s)} -

Then Lemma 2.6 in [19] proves the existence of g > 0 depending only on the hydrodynamical quantities
such that
S() A Br(v)] = joR%(v) ™"
14



The weight in N implies that the estimate of the sub-level set is modified as follows:

2d90—1
gAKk>rk/2}NS(W)NBr()| < —— / gW) AR)PTI L dy
onn>s2hn st Bal) < s [ om0

92q0+d—2 <’Ul>d_1/ (g(’U) A ﬁ)q0_1<v>_(d_1) do
Ko~ S(v)NBr(v') '

We used that for v € Br(v') and R such that R < g¢(v’), we have (v) < 2(v') (since g9 < 1).
Following the proof of [19, Lemma 3.2] and keeping in mind that ¢g .(g") = gor® (¢’ — k) in {g’ > K},
we get

2
I e ta s o) dode = Cog B2 [ gy R v
R2d {g'>r}

2 s s
= Ca g %Co TN~ gorto k00— /Rd(gl — k)4 (V)T dv'.

In view of the definition of kg and gg, we obtain the announced lower bound for some constant C., equal
2 _2s
to 021%%00 4 q0. O

4.2. The good extra term. We exhibit a third coercivity term. It controls the weighted L%~ !-norm of
(f — A)+. This lemma is similar to [19, Lemma 5.3], but more general since A depends on v. In contrast
with the previous coercivity estimates, it is nonlinear in nature, it cannot be stated for two general functions
f and g.

Proposition 4.4 (The good extra term for not-too-large ¢’s). Let q € [0,d+1]. Then there exists a constant
Cget > 0 depending on mo, Mo, Eo, Ho, d, such that if a satisfies

(4.6) a(t) > ager  with  agey = 2" (Mo + Ep)cy '

with ¢ from (2.2), then for any f satisfying (1.3), there holds,

(4.7) //R2d 0o(f—A) (A — f’)Jr Ky(v,v")dvdv’ > Caet al T / ((f — A A fi)qu(v)lq dv.

Rd

Proof. Let R > 0 (to be chosen). We denote the “good” set of velocities by G := {v: (v) > 2R}. For
v € Br(v) and v € G, we have (v') < 2(v) and (v) < 2(v’). In particular, A(v") > 277A(v) for such v’s and
v"’s. We now use the non-degeneracy cone Z(v), see in particular (2.1), in order to write,

//de(pd’”(f —A) (A" = f), Ky(v,v") dvdv'

> @/ / (f = A4 A Ii)qo_l(’l})Ale(U,U/) dv’ dv
2 Ja J{p<a Y n{v+E()nBr}

A qo— / A =
;]((JIJr(lJ /GR—d—2s<v>'y+25+l ((f —A); A /Q) 1A ‘{f < ?} N{v+Z(v) N Bgr}

>

dv.

We then use (2.2) and Chebyshev’s inequality to bound the sublevel set from below for v € G as follows,

Hf’<%/}m{v+5(v)mBR}

=|{U+E(v)mBR}|—Hf’2 A?/}m{quE(u)mBR}
2

sarl) - [ Ly
v+Z2(v)NBr
>ari) -2 [ e
a4 Jyu+E(w)NBr

15



we use again that (v') < 2(v) if ¢ > 2 and (v) < 2(v') if ¢ < 2 to get,

> coRY(w) 7t — Lq—ﬂ/ F W2 d'
Av)(v)? Jra
2d
2 CQRd<’U>71 — W(MO + EQ)
We choose next R = R(v) such that

coA(v){v)
Then

{f’<%l}ﬂ{v+5(v)ﬁBR}

> %ORd<U>_1.

With such an estimate of the sublevel set at hand, we can finish to justify the estimate from below of the

good extra term,

[ il = A (4 = ) K o) ! o

> B [ s (7 a) ) A

=y [ @R (= ) n0)" T @A ) o

2s
d

with Cyeq = 992950 (244 ey (M, + Ej))
Finally, since A(v) = a{v)~?, we have

a1 5 2T (Mo + Eo)
- coa

G—{v:<v>22R}—{v:<v>

If ¢ < d+ 1 and if a is such that a > 291 (M + Ep)cy ! then G = R%.

O

We conclude this section devoted to coercivity estimates by exhibiting an improved lower bound for the
good extra term in the case of large decay exponents ¢ (in contrast with assumptions of Proposition 4.4) by

taking advantage of the fact that the function is already known to decay at some rate.

Proposition 4.5 (The very good extra term). Let ¢ > 0. Let f: R? — [0,+00) and A(v) := a{v)~? for

some a > 0 and assume there is b, > 0 depending on mgy, My, Eo, s,d,~ (and time) such that

fv) < bufv)™.
for some q. > 0. If a satisfies
a> 224-11—11*6*7

then
[ o8 = D) (4 = 1), Ky (v dwar

> %alws/ (f = A+ A m)qo_l(v)<v>7+25_q dv
* R4

for some a constant Cygey > 0 depending on mo, Mo, Eo, Ho, d, s.

(4.8)

Proof. The proof follows the same lines as for Proposition 4.4. We find

[ isld = D = 1), Ko doa

qo— / A/ —_
> T /GR—d—2s<v>7+2s+l ((f — A4 A k) 'A Hf < ?} N{v+ Z(v) N Br}| dv,
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where G := {v: (v) > 2R} for some R € (0,1) to be chosen. Then we use Chebyshev’s inequality, so that
forv e G,

'{f’ < %/}ﬁ{v+5(v)ﬁBR} = [{v+Z(v) N Br}| - Hf’z %/}m{wa(v)mBR}

2

> |(v+E0) N Ba) - - [ (W) F ) ) !
a Jy+=(w)NBr

_ 21+(g—qx) _
> {v+E(v) N Br}| — fb* {v+ E(v) N Br}|.
We pick a sufficiently large, so that
9214+(q—aqx) 1
1——0b,> =
a 2

Then, using (2.2), we bound

‘{f/ < %/} N {U +E(U) ﬁBR} > %CoRd<’U>_1.

Now pick R as follows,
93+(q—aqx) 1
R= 75* S 5
a 2
The fact that 2R < 1 implies in particular that the good set G is the whole space,
G={v:(v)>2R} =R%

We finally get

[ isld = D = 1), Ko doa

€oq A —2s s 0—1
> ;qi;/GR 202 ((f — A)p AR)TT Adw

_ €0goAo s 1425 B 01, \ 1125
= gt O ¢ |, ((f = Ay AR)" () do. 0

5. ERROR TERM DUE TO THE VELOCITY DEPENDANCE OF THE BARRIER

This section is devoted to the estimate of the first error term appearing in the right hand side of the
Truncated Convex Inequalities, see Lemma 3.1. We recall that it has the following form,

& = // ((f = A)g A m)qo_l(v) (A" — A) K¢(v,0") do’ do.
R2d
In the next paragraph, we use ideas from [26].

5.1. Not-so-large decay exponents.

Lemma 5.1 (Error term in the velocity variable). We consider a function f satisfying (1.3). Let q € [0,d+1]
and A(v) := a(v)~? for some a > 0. There exists C1 depending on d,mo, Moy, Eo, Hy such that
// ((f = A)4 A m)qo_l(v) (A(v") — A(v)) Ky(v,0") dv' dv
(5.1) R
qo—1 1
<Cia [ ((F =D A0 @) 0)1 do,
R4

with 1y given by (vi).
Recalling that the kernel K is given by,

1 ol -
Ki(v,v+2) = IId—”/ FL) o — o7 b(cos 0) dv,
z vl Evtzt
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we aim at estimating

&= [ (= a0 @)

with

Z(v) := /Rd (A(W') — A(w)) K¢(v,v") do’

- [ A AN [ ol Beos0) o | o
Rd |Z| vl €vtzt

= / fh) v — vi|V+2S {/ (A +di)2::14(v))1~)(cos 0) dz} dv’,,
R4 z€(v—v’)+ |Z|

where we changed the order of integration in the last equality.
We distinguish the singular part from the non-singular one,

I(v) = Ty (v) + Ta(v)

with

Ii(v) = / Fl) o — ol / X|z|> 1 (v) (Al —I—dz)z—_fl(v)) b(cosf) dz p dul.
R4 z€(v—v’ )+ 2 |Z| +as

I (v) = / Fl) o — ol / X|z|<(v) (Al +dz)2__fl(v))l~)(cos 0)dz p dv..
R4 z€(v—vl )+ 2 |Z| +as

We now estimate each part separately.

(5.2)

Lemma 5.2 (Estimate of the non-singular part).

CE y¥—2—min(q,d—1) : d—1
(5.3) Ti(v) < oa(v) y : ffq # :
CEpa{v)7~¢ ifg=d—1.
In particular, if ¢ < d+ 1, then
(5.4) T, (v) < Ca(v)'s,
where 1y is given by (vi).

Proof. For the non-singular part we further distinguish two cases: [v}| < g [v] and % |v| < |[v

Il (’U) = 1111(’0) + ILQ(’U)

a
* 1)

with
Ta() = Jugjaqio FOD 0 =0T Loy X gy AR (cos6) dz dv!
ILQ(’U) = f%\v\<\v;\ f(’l)i) |U - vi|’7+25 fze(vf'u;)L X|Z|>%<U> (A(|1;|Ciz+)2:i41(1))) E(COS 9) dz d’l}i

The idea for Z; ; is to show that |v 4 z| > |v| by exploiting the orthogonality v + z L v and the smallness
[v}] < % |[v|. In particular, Z; ; has a good sign. For the second term Z; 5, we exploit the 2-moment of f.

We start with 7,1 Since and 2 L (v~ ol) and Jul] < § ol and [2] > 3{v) > 3 o] , we find
o+ 2 = [of + |2 + 202 = ol + |2 + 20 -2
2 / 2 1
(5.5) > )"+ 2] (J2] = 2|VL]) > Jv|” + 2] [ ]2] — 2 10|
1 1
> Jol? + 7 21 o] > <1 ; g) 2.

Since ¢ > 0, A(v +2z) — A(v) = a[{v+ 2)~% — (v) 7] < 0, we conclude that Z; ; (v) < 0.
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For Z; 5 we find

s Alv+2z) — AWw)) ~
Ti2(v) = / Fl) o =o' / X215 (v) (A( d+)25—1 ( ))b(cos 0)dz dv),
zlvl<|vl] z€(v—vl )+ |Z|

we use that b(cosf) < by and A(v) >0,

IN

i +2 (V4 2)71
b+a[ f) o =] S/ X|21>1 (v) —aras—T 42 4V,
Lol<lvL| . ||

- (9 v )75 (w)?
Liol<lol] (W)? e (vmvl)t [2]>5 (v) |Z|d+2s 1

< (97+2582—v—2sj)+>a<v>v+2s—2/ f(vi)<ui>2/ X\z\>%<v>md2dvi
Liv|<[v] z€(v—vl)t |2|

8
since 2 > v 4+ 2s.
Finally, we compute,

(v+2)71
/ZE(U_U,H Xiel> o) |zt dz

(v+2)71 / (v+2)71
/ze(v—v;)L Xiel> 3 o) Xotel > 1ol | e PF ] ety X<l T

we let wg—o denote the volume of the unit sphere of dimension d — 2,

S wd_2<v>*Q/l T*d+172s+d72 dr + (<’U>/2)7d725+1/ X|v+z|<|v\<v + Z>7q dz

3 {v) z€(v—vi)*
< Clo)y 97% 4 C<v>_(d_1)_2s /UI 7Td_2 dr
- o (I+r2)a/2
for some positive constant C' only depending on d and s only.
We now distinguish cases. If ¢ > d — 1, then % € LY(R) and

(v+2)717 —(d—-1)—2s
ey b 82 Cua =

with
+oo Td72
C,1=C+C —_—
8 |
(split the domain integration between r < 1 and r > 1).
If ¢ < d — 1, then we simply write,

|v] Td_2 4 < || d—2—qd B |,U|d—l—q - <,U>d—1—q
A+ = " "Td-1-¢~d-1-¢
0 0 q q

(v+2)70 .
/ X|z/> 2 0) arasT 42 < Clu) 7172
z€(v— |2

dr <C+CA+279%g—(d—1)7Y)

This implies that

If g=d—1, then

ol pd2 ol
/O Wd'f’g/o T dT:1n|U|.

This implies in this case that

<1) + Z>7q —(d—1)—2s
/ZG(’U'U’)J- X|z|>%(v)W dz < C{v) (d—1) In(v).
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We thus proved that,

CEoa(v)y—2-minle.d=1) " if g L g — 1,

CEpa{v)y~4, ifg=d—1.
4

Using Z; 1 < 0 and (5.6) we obtain (5.3) and (5.4).
We can check that

(56) 1172(’0) S

2s d+ 2s

v=2-min(g,d—-1) < (v+28) + — —¢—— =1,
for ¢ #d—1, and
2 d+2
Y—d< (429 + 2 — (A=) =l

The proof is now complete.

Lemma 5.3 (Estimate of the singular part).

(5.7) To(v) < Cyza(v)~?
q(q2+4) 235 (q+2)

with Cq12 = Wd—2
In particular, for ¢ < d+1 there holds v — q < lq where lg is given in (vi).

Proof. For the singular part, we do a Taylor expansion: there exists § € (0,1) such that
1
Alv+2) — A(w) = V,Av +0z) - z = §D12,A(v +0z)z-z

for some 6 € (0,1). Moreover, A(w) = aA(|w|) with A(r) = (1 +r?)~9/2. In particular,
1 !/
LD2A(w) = A" (ful) 2 o 2 A (I o ® ﬂ)

w| ~ Jw| — fwl jw| " |wl

where I denotes the identity matrix. As far as derivatives of A are concerned, we have
!
POl g4 and 1470 < ala +3)(1 47972

This implies that for all w, ¢ € R?, we have
DiA(w)E - € < q(q +4)a(w)"2[¢[*.

In particular,

|A(v +2) — A(v) — Vo A(v +02) - 2| < q(q; D oo + 02712 2.
We further note for |z| < 1 (v),
1

5.8 F02) > ——(0).
(58) (v +02) 2 (o)
Indeed,

(0+02) 2 == (L4 Ju+62]) = —=(1+ o] = [2) = —=(1+ o] = (o)) =

v z =7 v z =7 v z =7 v 21) >

We thus have,
|[A(v + 2) — A(v) — V,A(v + 02) - 2| < Cyoa(v)"772|2)?

v
2v2

with Cy o = 9(a+4) 95(a+2) | Duye to the symmetry (2.6) and the fact that v + 2s > 0, we thus obtain

2

(A(v +2) — A(v))

Ivz/ fvl ’U—’Ui’H_QS/ X|zl<L (o b(cos 0) dz dv.
2() R ( )| | (o)t [z]< 5 (v) |Z|d+2571 ( )

< Cyabyalv) T2 / Fl) Jo— o /
R4 z

e(v—ol)

- 3 (v)
Swdch,2b+a<v>_q_2{ / FL) (Jo]* ol dv;}{ / B
R4 0

< wa—2C4 20(v) T3 {0) 1725 (v) 2542,

20
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This implies (5.7). O

Proof of Lemma 5.1. Therefore, if we now denote by &; the left hand side of (5.1), then (5.4) and (5.7) imply

& = / ((f — A+ A /@)qofl(v)l(v) dv = / ((f — AL A li)qoil(v) [Z1(v) + Za(v)] dv
Rd

Rd
<Ca / ((f = A+ A 8)™ () ()1 do.
Rd
This concludes the proof. O

5.2. Large decay exponents. For large ¢’s, we need a better estimate than the one obtained in Lemma 5.1
above in order to establish the propagation of decay.

Lemma 5.4 (Error term in the velocity variable for large ¢’s). Let ¢ > d+ 1 and A := a{v)~? for some
a > 0. We consider a function f satisfying (1.3). Assume there is an exponent ¢, > d + v+ 2s and a
function on time b, = b.(t) > 0 depending only on mgy, Moy, Eo, s,d,y and q. such that

(5.9) fv) < b. (o).
Then there exists Cy 4, depending on vy, s, d, q., mo, Mo, Eo, Hy such that

(5.10) //R?d (f = A)+ A m)qo_l(v) (A(W') — A(w)) K¢(v,v") dv" do
<Cuga (o [ (=0 an) ) o

Rd

((F = A AR)" T (@) () d“) '

Remark 5.5 (Growth of C 4, with g.). We will see that the constant C4 4, grows like 87« (up to a multi-
plicative constant).

The proof of this lemma follows the same steps as the one of Lemma 5.1 above. We bound the left hand
side of (5.10) by splitting the inner integral in v’ into the non-singular and the singular parts as we did
above in (5.2). For the singular part, we can use Lemma 5.3. For the non-singular part, we need to improve
Lemma 5.2. We recall from (5.2) that the non-singular part Z; is given by

I (v) = / Fl) o — ol / X|z|> L (v) (Al +dz)2__fl(v))l~)(cos 0)dz p dvl,
R4 z€(v—vl )+ 2 |Z| +as

for which the following estimate holds.

Lemma 5.6 (Estimate of the non-singular part for large ¢’s). Let ¢ > d+1 and A(t,v) = a(t){v)~?. Assume
there is an exponent q. > d+~v+ 2s and a function b, = b, (t) > 0 depending only on mq, My, Eg, s,d,~y and
g« such that

f(v) <b. (o)™
Then there is a constant C depending on v, s, d, g« such that

(5.11) T1(v) < Cab, (v)7=9.

Proof. To bound Zy, we distinguish the cases % |[v| > [v,] and £ [v] < |[v]], and we denote these parts by Zi 1
and 7 2, respectively. We note as above that Z; 1 < 0, see (5.5). For Z; 5 we find

s Alv+2)— Aw)) -~
Ba@ = [ fel—d [ Xiepoy oy LD = A g 0) dz
Lol< ot z€(v—v})L |2|

we change the order of integration

(A(U + Z) - A(’U)) / ’ 7 \Y+2s+1 7 ’
= Xizl>1 (v X1ipl<lor |f (V) U — vl b(cosf)dv, p dz
/ZeRd 21> 3 (v) PeE oo ERISHL (v.) | (cos 0)
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we use that b(cosf) < by and A(v) >0, |z| > (v)/2, |v] < 8v.| and f(v)) < b, (v]) 9
< 29725 ab, (v) 072 / X|2[> L (o) (¥ + z>7q/ X1 jol<for (02) 7T (9(vi)) T2 dv] dz
2€Rd 2 v, Evtzt 8 "

%)
S 2d+28wd729V+2s+1b+ab*<v>—d—2s/ X|z\>l(v> <1) 4 Z>—q/ TV+25+1—Q*+d—2 drdz
z€R4 2 5 (v)

< Cab, (v) 9728 (p)rF2std=a. / (v+ z)"%dz,

zER4

with €' = 204254, ,97+25+1p, ge=—7=25=d provided that g, > d + v + 2s. Note that (-)=¢ € L'(R?) for
q > d. Thus
ILQ('U) < Cﬂb*<’l)>’y_q*. O

We use this to prove Lemma 5.4.

Proof of Lemma 5.4. We use Lemma 5.6 for the non-singular part Z;, and Lemma 5.3 for the singular part
T5, and find

//R2d (f — A+/\f<a)q° 1(1)) (A(W') — A(v)) K¢(v,v") dv' do
_/Rd ((f = A)g A 8)* 7 (@) [Ta(v) + To(v)] dv

<Cab. [ ((f=A)y Ar)™ (W) (0) % dv + Ca/ ((f = Ay AR)™ (0) ()7 d. O

Rd Rd
6. REMAINING ERROR TERMS FOR HARD POTENTIALS

In the case of hard potentials, that is to say in the case where v > 0, we can treat error terms appearing
in the right hand side of (3.2) all together. More precisely, we can estimate,

Jonrimyan= [ (=1 (= a0 n0)" @+ a0 - 4 a0)" ) 0T o
with @ from (3.3). Note that the case v > 0 is significantly simpler than v < 0.

6.1. Generation of decay. We start with an estimate that is used to prove the generation of moments in
the case of hard potentials.

Lemma 6.1 (Error terms for hard potentials). Let f : RY — [0,00) have finite mass My and energy Eq and
let g € [0,d+ 1]. There exists a constant Chara > 0 depending on My, Eg, d such that for any e € (0,1) there
holds

60 [ @) () do
<5H((f—A)+An)qo‘

¥ Chara (a4 C(e)) H ((f AL A ,.;) o

LP0(Rd 1 d '
ko (R L7, _,(R)

Proof. We first remark that
[ s =l dw< e, [ )+ uf)de

for some constant C., only depending on . We used that for v € [0,1], (a + b)Y < C,((a® +1)7 +b?). Let
C, 0 denote C, (Mo + Ep). We have,

/Rd () (f * |7 dv<CV0/ )7 do

< fJoCyo/ ((f = Ay AR)T oy ((f = A+ A ﬁ)q0<v>’y> do.
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Using the interpolation from Lemma 2.7 with k3 = v and ¢ = 1, there holds for mg =~ — (d+1) < v —gq,

(recall ¢ < d+1) and any € € (0,1)

/d ((f — AL A H)qo (vVy7dv <e H((f —A)L A “)qOHLif’ + C(e, Ey) (/d ((f — A+ A n)qo_l(v)@w_q dv) .
R 0 R

This yields the claim (6.1). O

6.2. Error terms for large exponents. For large ¢’s, the following estimate is used instead of Lemma 6.1
to establish the decay estimate.

Lemma 6.2 (Error terms for hard potentials and large ¢’s). Let v > 0. Let f : R? — [0,00) satisfy (1.3).
Assume
f<b (o)™
1
for some g« > 0 and some b, = b,(t) > 0. We also suppose that a > (%) “ b.. Then, for any q > 0,
there holds

/R D) (70 1) do < gt /R (= A AR o
(6.2) *

-1 _
+ qu',Y,ob* /d ((f — A)+ A Ii)qo <v>7 4= du.
R
Proof. As in the proof of Lemma 6.1, we have

/ O(f) (f + ") dv < goChyo / (a((F = A AR) ™)+ ((F = A)e AR)™ (0)) do
Rd Rd

1
Then we remark first that v — g < v+ 2s — ¢, and we thus bound for a > (2?)0&) 25 b,

vget

go—1 — Cvget al®2s go—1 42s—
qumoa/ ((f — AL A Ii) (W) 1w < 5 g / ((f —A)+ A I<L) (v)7 7 dv.
R4 * R4

For the second term we use the decay assumption (5.9) and we find

10Ch0 / ((f = A A R)™ () dv < goC b / ((f = A)y AR)™ () do. =

7. MAIN ERROR TERMS FOR SOFT POTENTIALS

We next explain how to estimate the following term in the case of soft potentials, i.e. when v < 0,

//Rqu)(f) (f * ") dvda
[ (= (7 = 200 A0) "0 + w015 = 04 1)

We will use the following auxiliary results.

) @51 dva.

7.1. Auxiliaries.

Lemma 7.1 (Convolution product). Let v < 0 and f : R? — [0,00) have finite mass My. Let A(t,v) =
a(v)~? for some q¢ > 0 and suppose, for all t > 0, a(t) > 2¢ é\g with Cy 3 = %' Then there exists
Ceonv > 0 depending on d,~,q and My, such that ,

(FANA) *|-]7 < Ceony a4 <U>vmin(1,%)'
Proof. For R > 0 such that R < (v)/2, we write

/Rd(f/\A)(v—wHw| dw_/BR(f/\A)(v—w)|w| dw—|—/ (fANA)(v—w)|w" dw

RI\Bgr

< a/ (v —w)"w|" dw + R M,
Br
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and for R < (v)/2 and w € Bg, we have (v —w) > ﬁ(m (argue as in (5.8)),

Rd+V
< awg_1(2v2)9(v) "1 i R'My < Cy3a{v) TR + MyR",
where
(7.1) Gy = L1 2V
| RCETI
1 i q
Choosing R = (%) 7 (vymin(Ld) < L) (since a > 2¢ 613;[“3) yields

/ (f A A) (v —w) [w]" dw < (Cyz)~7 My Ta= (o) ~aH N min(Ld) | (0, )= My T (v)7y ™)
]Rd

< 2(Cya) " F M FaF (u) D,
We next collect auxiliary computations in the following lemma.

Lemma 7.2 (Auxiliary technical result). Let v € (—2s,0) and

d
1§q§2+%k0, l1 :mln(27q)
If we pick
d+2 1 d? + 452 1 dsd
(7:2) podt2s 1 _d4ds 1 dsd
—9s 5 .
d—2 B (d+2s)? B~ (d+2s)2
then
11 1 1
(73) B—’—ﬁ:l’ §+@:1’ 729:1, 739121,
where
(7.9 SR e} e L@29)@ 429 1ds(d+25)
| VT dsdrydv2s) PTBT #rass 0 PT i@t
Moreover,
2

and there holds

2 ms
(7.6) my < E " 7,
and

2 ms
(7.7) my < E " 7,
with

4sd? ~vd 4sd d(d — 2s)
- ! k — 1
" (d+2s)(4sd + 7 (d + 25)) ' + dsd +y(d+2s) M3 = 452 TP T as2 0
4sd (2s —v)d
my = — _ 0.

(d+25)(y+2s)  (d+25)(y + 2s)
Proof. The relations in (7.3) are verified by a straightforward computation. We then rewrite (7.5) as
2s(d+2s)(d+7) 2s

1 -
dasdtydr2s) — T

which holds for v+ 2s > 0.
It remains to check that (7.6) and (7.7) are satisfied. We rewrite (7.6) as
4sd> ~vd(d + 2s) < 4sd 4sd d(d — 2s)

- ko
bsd+(d+29) " T dsdtA4d+29) 0 S dx2s) T 29 T dr2s) O
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Then using that [, = ko + 2%5 — q% we get
4sd? N vd(d + 2s)
(4sd +~v(d +2s)) " 4sd + v(d + 2s)

ko < 8s — 48(] + dko,

or equivalently,
—d?l; < (2 — q)(4sd +v(d + 25)) + d*ko.
If 2 > g and ko > 0 then (7.6) is satisfied since I; > 0.
If 2 < qand ky > 0 then I; = 2, and since ¢ < 2 + %ko, (7.6) is satisfied if
d d
—2d% < —%ko(élsd +7(d + 25)) + d*ko = —d?ko — %7(d+ 25)ko,
which holds if
2
(7+2s—§> = ko <2,

which is true since v 4 2s < 2.
If kg < 0 then ¢ <2+ Q%ko < 2 and in particular I; = ¢, so that (7.6) is satisfied if

0 < (2 —q)(4sd +y(d + 25)) + d*ko + d*q.
We remark that 4sd +v(d + 2s) = (v + 2s)d + 2s(y +d) > 0. Since 2 — q > &(—ko) > 0 and ¢ > 1, we have

to check that
2
(1+7+ S)kogl,

d 2s
is satisfied. If 2 + 2222 > 0 then (7.6) is satisfied. If 3 + 222 <0, then we see that (7.6) holds as soon as

2
7k0—7<7+25—§) <d,

which is satisfied. Indeed, 0 < —y < d and s < 1 ensures that —7% < 2. We conclude by recalling that
d > 2. Thus in any case we see that (7.6) is satisfied for 1 < g < 2+ k.

Finally, we rewrite (7.7) as

) 4sd (25 —)d 5 Asd N d? + 4s? 4sd +d(d—25)
(d+25)(7+25) (d+25)(y+2s) °~ (d+25)?2  (d+2s2 \ 2 +4s2¢ " @+4s2 )’
4sd (2s —v)d 4sd 1 2s d+2s
- - < dsd |k +22 — d(d — 2s)k
G2 a2 S gy Ty B P2 mam g | +dld =29k )
4sd (2s —v)d
& 4sq <85+ 2——— + dko + —— k.
ST T T T e

We thus see, that for ¢ < 2+ Q%ko, (7.7) is satisfied if

d
This is satisfied since —y < d. O

2
7k0=7(7+28——5) <ds.

7.2. Splitting. We split the error term involving ®(f) by writing f = (fAA)+(f—A) s A+ (f—A—K)4,

Lol =gt e éores

with

t go—1

& =aoer [A((f= A Ar) (FAA)")dv
-1

& = [A((f = A AR)((F= Ay Aws ) av
& = —Vev [ ((f = A An)" (F o) dv

-1

& = [A((f = A Ar)((F=A=r)yx|[") do.
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7.3. The term &,.

Lemma 7.3 (Estimate of ). Let v € (—d,0] and v+ 2s > 0 and q € [0,d + 1]. Then

2s

1
(7.9) &y < 5Ogct altd

3

[((F = )4 nm)™ 7|

Ll
lq

as soon as a satisfies for all t >0

d
24 M 2\
(7.10) a(t) > a® = max ( 0 ( ) ’ 7aget>

(with aget, Coer from Proposition 4.4).

Proof. By Lemma 7.1 (see the assumption on a) there holds
ol qo—1 . q
&2 < Ceonv qocpa™ @ / A((f — A+ A K) <,U>'ymm(1,3) do.
Rd

It suffices to check that 1 — 2 <1+ %S, which is true since v + 25 > 0, and that ymin(1, Z) — ¢ < [,, which
again is true since ¢ < d + 1. Thus

. qo—1 . ay 1 2s P0—1
al-3 / ((f — AL A /Q) <v>’>’m1n(173) 1dy < Ecgct alta ((f — A+ A H)

Ll
lq

where Cgeq is the constant from Proposition 4.4. We used the assumption on a from the statement. O
7.4. The term &3;. We consider next &3 defined in (7.8).

Lemma 7.4 (Estimate of &). Let v < 0 and g € [0,d+ 1 + 2%7]. Then there exists a constant a® > 0,
only depending on the parameters d,v,s,2 A q and the constants cy, aget, Ceor and Cget, such that

1
(711) 53 S Eccor

1 2s qo—1
+ chct altd ((f — A+ A "f)

((r= A nn)"

)
Lko ot
lq

(with Ceor , ager and Cgey from Propositions 4.2 and 4.4) as soon as a > 2(3)'
To prove this lemma, we show that we can split &3 as follows.

Lemma 7.5 (Splitting £3). We have £ < Eéi) + Eéii) with

&7 = O A DG [ [((F =W AR)* T 7T A am) ()
£ = qoeyMoa H ((f = Ay A H)‘“’*l’ .
—a
where l; = min(q,2), and p1,p2, p3,qs € [1,+00] satisfy
(7.12) pil+pi2+pig=1, 1+pi3=ql3+%.

. dl
The constant C'?()Z) is given by 97T qocs ||| - |’Y||L;dl‘°°'
Proof. We use that for w € B, and v € R?, we have,

w—w)? <1+ ) +|w? <2+ v]* <2(0)2
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We now distinguish two domains of integration: |w| < 1 and |w| > 1. We use the fact that v < 0 to get
|w|" <1 for |w| > 1 and we write for {; = min(g, 2),

5 = qocs /Rd(f AAY((f = A ) (/B
e [ (FAA(G = A n)" (/

< qoc /Rd(f A A)<U>ll<v>7h ((f o A)+ A H)qu </B

«f—AnAmxv—wnwwdw)dv

((f = Ay AE) (0 —w) w]” dw) dv
4\ By
((f = A)+ AR) (v —w) [w]” dw) dv

1

+ qochOa/ ((f=A)4 A m)q0_1<v>7‘1 dv
Rd
2sly

<2 e, [ (FAAN)((F = A n)® o)

x </Bl<v_w>%((f_A)+m)(v_w) |w|? dw> dv

+ qochoa/

((f = A)s AR)™ o) do
]Rd

we use weak Young’s inequality,

dlq —1 _ 2sly
< 2555 gocy || 71, . 10 A D | ((F = A4 AR)™ 7935 ||
A _
— . d+2s
| ((F = s Am 7|
+ qochOa/ ((f = A)g A /@)q071<v>*q dv. O
Rd
Then we estimate each piece separately.
Lemma 7.6 (Estimate of Eéii)).
iy 1 25 1
(7.13) & < SO (7= A2 AR)™ Y|
lq
%
as soon as a > a3 = (ngcibMo) ..
get
Proof. We note that —q <[, for ¢ <2+ %ko, and 1 <1+ 275, so that the conclusion holds true. g

Lemma 7.7 (Estimate of Eéi)). There exists Q(g’i), that only depends on d,v,s, Eg,l1, ¢y, Ceor and Ceget
(see Propositions 4.1 and 4.4), such that

el < 5 Ceor | ((F = 44 A ﬁ)q‘JHng + Ot al+%

((F = Ay nr)™ |

1
Li,
as soon as a > Q(g’i).

Proof. For Eéi), we first notice that,

1F DA < I ADGENZ (A A2 < BT a5

Next we choose p3 = 0o and ps = % >11in (7.12), which implies
1 d+~ny 1 2s(d+7) ) 1 2s(d+7)
a3 d ’ D2 a2 D1 2
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Thus

i i 1 _ 2sly _ . dlg
&7 = O ADO™ g | ((F = A AT (F = A AT
1 d d21 (d+721(2d+25)
N L 2s(d4y _d_
<Y Ep (/ ((f = A)s AR) T (o) "m0t dv)
Step 1: First interpolation. Then we interpolate with Lemma 2.6 for k1 = —%

AJU—AMA@#W>“M<H1'AMA@WMAf A AR5

where

—~d _ 4sd+y(d + 2s)
4s(d +7)’ @2 = 4s(d+~)
45d? ; ~d
(A1 25)dsd +(d+25) " " dsd 4 4(d+ 25)

a1 =

m; = — ko.

We can check that % since —y € [0,d] and v+ 2s > 0. Together with Young’s inequality, this implies
that there exists C = C(Ceor , ¢b, Eo, 11,7, d, s) such that,

() < o) 7 o2 ) 29) (d425) (4sd o (d+20))
£ < O B (7 = A n )™ [N = A Rl
1 dt2s
< 4Ccor ||((f - A)+ A [Q)QOHLZO + Camt ||(f — A)+ A KHfol
0

where 7 is given in Lemma 7.2, see (7.4).

Step 2: Second interpolation. Now we pick 8,8’ > 1 as in (7.2), so that (7.6) implies together with Holder’s
inequality

I = s Anllpy <N =D Akl <D= A ARl IS = A)g A sl

To bound the right hand side of the previous inequality, we interpolate again, now with Lemma 2.5 and
ko =mgs,

I = Ay ALy, < = A )™ 550 [ = A4

)

L}n2
where
agzd(d_28> oy — 4sd m2_452+d2{ 3_d(d—25) 0}
d? +4s%’ d? +4s?’ 4sd d? + 452

d(d—2s)

Note that the choice of ms in Lemma 7.2 is such that mg = [, that is mg = d2 slg + pEEwp ko. In

particular, we find

+4s

d+2s 1 d+2s

I(f = A)+/\f<o||L1 <my - A AElL T

R

1

<E - A+ AR [ 2o

((F = A AR)™ "
Ll

where 72 and -3 also come from Lemma 7.2, see (7.4).
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Step 8: Young’s inequality. We combine Step 1 and Step 2 with Young’s inequality, so that for § > 1 and
any € € (0,1)
1
4
1 1 ~ ) 1
< _Ccor H ((f - A)-i- A K)qOHLzo + ZCcor H ((f - A)-‘r A K)qOHLzo + Ca"“‘g H ((f - A)-i- A K)‘ZO

0 0

53(,1) S 3

oo [[((F = A5 A R) |30+ Ca (17 = 405 A w)™ [T (7 = A4 2 w)* 7"

1
qu
730’

4

Lllq
with C = C(Ceor , b, Eo,l1,7,d,s) and §' = 129, see Lemma 7.2 again. We used that y260 = 1, see (7.3). To
complete the proof of Lemma 7.7, we use (7.5) from Lemma 7.2. O

Proof of Lemma 7.4. Combine Lemmas 7.5, 7.6 and 7.7. O
7.5. The term &;. The estimate of & defined in (7.8) follows with similar methods.

Lemma 7.8 (Estimate of &). Let f : [0,00) — R have finite mass My and finite 2-moment Ey, and let
qc [07 %kO]

Then there exists a constant a® > 0, only depending on the parameters d, =, s, min(2, q) and the constants
¢y, Coor and Cget (see Propositions 4.1 and 4.4), such that

1
(714) 54 S chor

1 2s qo—1
+ gcgct altd ((f — A+ A "f)

((r= A nn)"

LPO 1
ko qu

(with Ceor and Cgey from Propositions 4.2 and 4.4) as soon as a > Q(4).
To prove this lemma, we split £, as follows.

Lemma 7.9 (Splitting &,). Let p4,ps,qs € [1,+00] satisfy

11 11 -
=1, 1+—=—+_1

7.15 —
( ) P4 y4s y4s g5 d

We have £4 < 54(i) + 54(”) with

54(i) = CAEZ) || ((f - A)-i' A K)q0<'>_2HLp4 ||(f - A)+<.>2||Lq5 ’
£ = Mo(qo — )ey | (f — A) s A K%,

with C{” = 4(qo — Ve ||| "] =2 .
Proof. We use for w € By and v € RY
ol < Jo = wl + |l < Jo—w] +1,

which implies (v) < 2(v —w), so that distinguishing two domains of integration, |w| <1 and |w| > 1, we find

Es=(q0 — l)cb/ (f = A+ A m)qo (v) 72 (v)? ( ; flv—w)w|” dw) dv

R4

+ (g0 — 1)01,/Rd (f = A Ar)® </]Rd\B flv—w)|w|” dw) dw

<4(go—1)cp /Rd ((f = A)s Ar)™ ()72 (/B

+ Mo((]o — 1)01, /Rd ((f — A)+ A K)QU dv

<4qo =Dl = N(CF = A AR)TET2| oa 1O Las
+ Mo(go — Vo [(f = A A K| - O

(v —w)*f(v—w)|w|” dw) dv

1

Again we estimate each piece separately.
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Lemma 7.10 (Estimate of £?). There holds

£ < g Cor [((f = A)s A ’f)qOHng + Cgcta

L (PRI R

(4,i1)

Ll
lq

(with Ceor and Cger from Propositions 4.1 and 4./) as soon as a > a with Q(4’”) > 0 only depending on

Ceor » b 90, Cgct ,d, v, 8, Mo.
Proof. We use Lemma 2.7 with k3 = 0 to get for some constant C' = C(Ceor , 0, Mo, b, d, 7, 8),

)

1 0~
£ < 3 Ceor [[((f = A)4 A “)qOHLig +C H((f — A k)" 1’

L1
ms
with ms = —Q%ko —2. Forqg <2+ %ko, the exponent mg satisfies ma < I. O
Lemma 7.11 (Estimate of £&). There holds
i 1 -1
£ < S0 (£ = ) 7 8)" g0 + 36Cena ¥ || (F = D )"
9]

lq
as soon as a > a*? with a'*) > 0 only depending on Ceor , b, Cget , d, 7, 8, Mo (with Ceor and Cgey from
Propositions 4.1 and 4./).

Proof. We choose g5 =1 in (7.15). Then

1 —y 1 v d+vy
— = —c 0,1, —=14+-=-= 60517
n-g cOon. =~ =7 €01

and thus

€ < dlao = e [[((F = A AR)™ 7 (176 s
dty
d

<t = Vet ([ (= 4 n) 27 an) T

Step 1: First interpolation. We then interpolate thanks to Lemma 2.6 with p; = dd+T275 € [1, pogo],
a5

</ ((f = A+ /\’i)%@»ﬂﬁ dU)

< ([@=aennm i an)™ ([ (- s ngom ) o

where a5, ag, my are given by
25 — (d+ 2s)(y + 2s) 4sd (2s —)d
L= TS = -

4s 4sd (d+2s)(y+2s)  (d+2s)(y+ 2s)
We remark that as € (0,1). Then Young’s inequality yields for any ; € (0,1)

<« Lo @ a2
€4 < 75 Ceor [[((f = A AR)™| o + O(Cor, Mo, Bo, o) I(f = A)x Asl
Step 2: Second interpolation. We pick 3,8 > 1 as in (7.2). In particular, (7.7) allows us to use Holder’s
inequality in order to get,

dtx
d

a5 = 0-

1

10 = A Asillpy, <N = A ABIE I = A)4 A Al < B I(F = A A HIILI

If we now apply the interpolation Lemma 2.5 for ko = mg, we find

(- am)emedo < ([ (0F= Ay A wromao)”™ ([ (-0 am) ™ ymeao)
/. (L. )" (L )

where

d(d — 2s) 4sd 452 + d? [ d(d — 2s) }
az = — |m3 —

i+ 2’ T a2y ™7 T 4w 452y @2 0
30



Again the choice of m3 in Lemma 7.2 is such that mg = [,. In particular, there holds

d+2s

T = A A ) 1 = A A SIS

d+2s 5
10 = A0 Asllyf < B

with 2,73 given by (7.4).

Step 3: Young’s inequality. We combine Step 1 and Step 2 with Young’s inequality, so that for 8 > 1,

7 1 —11|73
£ < L Coan (= A4 1) g0+ CCoar) 1 = A0 A0 [0 (£ = 0 n) [
0 0 lq
1 qo0 1 qo ||720 = qo—1 736’
< _Ccor H ((f - A)-',— A fi) HLPO + _Ccor H(f - A)+ PO + C(Ccor) ((f - A)-i— A 5) .
16 ko 16 ko Lllq
If we pick 6 as in (7.2), then Lemma 7.2 implies (7.3) and we conclude by choosing a(** = a such that
% geth—i_%s > C(Ccor)- 0
Proof of Lemma 7.8. The result follows as a consequence of Lemmas 7.9, 7.10 and 7.11. O

7.6. The error term due to truncation for soft potentials. Finally it remains to estimate & in (7.8).

Lemma 7.12 (Estimate of ). Let v < 0 and q < gqus1 where qng is given in (vii). We also assume that

qg>d—1-— 25% if v < —d%fgs. There holds

1 d+2s go—1 !
&s Sﬁcgct a /Rd ((f - A)+ N H) <v> dv

1 s s
+5 Ceor REONTTE | (f— A= k) (v) do
Rd
1
Pro

+C5</Rd(f — A= R (v)fore dv) ,

with N = [L.((f — A)+ A k)0~ p)=@=D dy. The positive constant Cs only depends on parameters d,~,s
and constants cp, Eg, Mo, Cget and Coorr (see Propositions 4.3 and /.4).

Proof. To estimate &, we first recall its definition,

go—1
g =aocn [ AW((F = A4 nw)" (= A=) ) o
R
Step 1: Splitting. We split the integration domain as before and we find for a constant m to be chosen later,

& =awer [ A@(0 = n0)" "m0 [ (f= A= R w) ol dwds

1

taar [ A@((F =22 nx)" [ g U AR )l dw
<2faas [ 07 (= 0n0)" [ wm (- A= 00— 0) ol dodo

+ qOCbMOa/Rd ((f —A) A /@)qo_1<v>’q dv

=&l &,

Note that in case that m > 0, we used (v) < (v —w) for w € By and v € R%. In case that m < 0, we used
(v —w) <V2(v) for w € By,v € R
The term 85(”) is treated by checking that —g <, holds true for any ¢ < d + 1+ ‘;—Z.
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We use again Holder’s and Young’s inequalities to write,

(05 = Ay nn)™ gy

55(i) < Q%qocba e [(f—A- “)+||L1

Ld+~

d+~

< 2% gocpan T ( [ (7 = A nwyei ) totmats dv) I = A=)l -
R4 "
It is now convenient to introduce some notation. We consider for any ¢ € R,

Ne= [ (= A nme ) o and M= [ (= A=) dn

We also let k,,, denote —(g+ m) and we write the previous inequality under the following compact form,
(@) 7 -v3 T7
(7.16) & <22 qocpar TP N 4 Mp,.
We distinguish two cases: d+2d <~v<0and —2s <7y < df;i
Step 2: estimate of 5( for not too negative v’s. We start by assuming dQSd < v < 0. We use Young’s
inequality, so that
din

%) 1 _d_ 1 g m T
55 < I—GCgct ad = Ny + (1—60g0t) (2 2 qocb) Tk My,

We pick m = kg = v+ 2s — 2. We then observe that for any v > —m, there holds F <1+ 25, and

moreover ky, < l,, provided that (< qus =d+1+32 25, v > —degs and d > 2, see Lemma 7.13. This shows

1 2s qo—1
— CeaHT/ f—A)4r Ak o)l du.
16 < 16 Vet iy (( )+ ) {v)

Moreover, we use Holder’s and Chebyshev’s inequalities to bound

Cget a d+7 Nk

1

d d _q d+~

ro
REM = KM MkosﬁMkT(/dU A=)} <>’f°mdv> {f—A>r}*
R
1

E</<f A= rpt <>’“°”°dv> 0</Rd<f‘A>+d“>

dty  2s %
E, " My </Rd(f — A — R)R° (v)koro dv) .

We used that ko < 2 to bound My, from above by Ejy.
Gathering the estimates, we get in this first case,

(i) 1+2 _ ©l
&5 16Cgct a - d /Rd ((f A A K) (v)' dv
(717) d+v 1

d+x

1 ! = -4 — %TS 0 oPo "
+ (350 ) T @Fma) T BT, </Rd(f—A—n)i<v>’”’ dv> .

IN

Step 3: estimate of Eéi) for very negative v’s. We now assume —2s < 7 < d+5d It remains to bound 8( for
this range of . We start from (7.16) and we recall k,,, = —(q + m) djf,y for some m € R to be determined,

. m ’Y d
gl < Q?qocbaN T M, = 2% gocpr aNd“sN T p

Note that J J

+7

—_— = <0
d d+2s
2sd

for v < — 5755
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We use Young’s inequality

) R . . dty _ _d_\d+2s d+2s
£ < %Ogcta%zvkm +cW *%N(md T ) S
) 4 ™ d+2s
where C Y= (16Cgct) % (2% gocp) * . We further bound for any ag € [0,1)
-2
M, < ESOME  with  mg, 1= o0
0 1—
thanks to Lemma 2.4. We found,
i 1 i v 4E2 A s) d+vy d d+2s ) 428
(7.18) & < 160get“d+d N+ OB = (md ) M’(”lao U
Then, in order to absorb the first term in the good extra term (Proposition 4.4), we need

d 2s d + 25
km = — <lg=ko+2— — .
m = —(atm)g = 02 d
For the second term, we want to use the second coercivity estimate from Proposition 4.3. To this end, we

require

b = —(q - m)—— > —(d— 1),

d+y
and 5 5
m — 2ag S
= ——— <ko+ —k
Mao 1—ap — o+ a™m
In order to satisfy the first two constraints, ¢ has to satisfy,
_(d - 1) < ZQa
which holds true for g < gpg -
We pick m such that
k. +m —(d—1),
=g m) s === )
and we use Proposition 4.3 with k,, = —(d — 1) for which we have
o=l _(d-1)
N = ) ((f —A)L A IQ) (v) dv=N_(g-1)
R
Thus we consider
d+ d d+2
g— (_dﬂZ - d+25> 2  —y(d+2s) —2sd
= 2 = 2
= 4s
and we find
K —Q—W(dj%) N(dtTw* df2s ) d;rfs Md;rszs (1—avo) = /g%s%éN—%éMé K —Q—W(djzs) *%QOéM (d+23)2117a0) -0
m Mag Mag Mag
—~ — — s s —aq( s)
B Y =] P s o
Mayg ag

We plug this into (7.18) and use Young’s inequality, to get

d+25

____ 2sd 0=22_
(7.19) 85(1 — Cyer 0 TNy, lCcm«/Ii%squ 28 Mma —|—O5/£d M (’Y+2s)(d+2s) ’Y+23.

16

v(d+2s)+2sd

where Cp := (%Ccor,) (vF2s)(d+2%) (C(Z)an

T s)(d 75)
) TR . We used that

1 452
1—0  (y+2s)(d+2s)
Note that the estimate (7.19) holds for any 0 < ag < 1, but we want to pick «g, such that
2sd 2s

— — - =1
(v + 25)(d + 2s) a07+2s ’
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but at the same time we need to make sure that

m — 2aqg 2s
21 an = —— < ki —k,, = ,
(7.21) Moy = T < o e =7
where we recall that we picked m and k,, as
d—1)(d
me g @ENEED gy

We verify (7.21) in Lemma 7.14 below.
Finally, we conclude the proof just as in the case for larger v above: we use that ”}:—i‘i‘" < ko and find

with Chebyshev’s inequality

1

“%Mmaoﬁﬁ%<4d(f A—r) <>’“0P0dv>p {f—A>n}7T

sﬁ"?fm—"a</ (f = A ) ()kopodv>%</Rd(f—A)+dv>

2d< (f = A= r)P (v >k°p°dv>

PO
We plug this into (7.19) and use (7.20) to find

&y

7 1 s s El s
& < 75Chna TN + gcm/,.;%qw*%M7 + Csk M,
(7.22) L
1 dt2s 1 25g0 N7 — 22 i Po kopo
< EOgCta E) N‘Fgccor%d N™a M, +CsM, Rd(f—A—li)+ (v) dv .
We conclude the proof for y € | — d2f2ds,0) using (7.17), and for v € (— 2s, —dezd ) with (7.22). O

Lemma 7.13. Letd > 2, s € (0,1),7y<0 andqu—i—l—i—d—'y. Then

d 2s d—+ 2s
<lg=k 2— —q .
diqy ~le=MtEy q

d+2s d d 2s
- < (14— )ky+2—.
( d d+7>q_(+d+7> o+ d

(1(d +25) + 25d) g < d (24 + ) o + 4s(d + 7).
If we now use ¢ < z%ko + 2, we find

(7.23) —(q + ko)

Proof. We rewrite (7.23) as

or also

d
(v(d + 2s) + 2sd) (2_Sk0 + 2) < d(2d+7) ko + 4s(d + 7).

or equivalently,

d2
(72— + d2) ko < 2d%ko — 2d,
S

d
< (d—7£> ko — 27.

Now we use that kg = v+ 2s — =2. We find

d 2 2s —
0< (d—7£> (7—!—25—5) —27:(1( 8287>(7+25)—(25+7).
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We divide by v+ 2s > 0 to find
0< ;(25 —5) —1,

which is true for any d > 1 and v < 0. ]

Lemma 7.14. Let d > 2, s € (0,1), —=2s < ¢y < —d2f2d and ¢ > d—1— 25d+2 . There exists ap € (0,1)
such that (7.20) and(7.21) hold true.

Proof. In view of (7.20), we pick
d

= 0,1).
Qo d+ 2s € ( ) )
We rewrite the constraint (7.21) as
d*> —d—~—dq
Y S S
-y -

and check that (7.21) is satisfied. It is equivalent to,
(d+2s)(d* — ) —d(d+2s)(qg+ 1) < d*(2 — ).
We now remark that for ¢ > d—1— 25%, we have
(d+2s)(q+1) > d* +4s.

We are thus left with checking that

(d+25)(d? — ) — d(d?® + 4s) < d*(2 — ).
We rearrange terms and get,

(=) (d + 25 — d?) — 4sd — (2 — 2s)d> < 0.
We conclude by remarking that for d > 2 and s € (0,1), we have d + 2s — d? <0. O
7.7. Final Estimate. Combining Lemmas 7.3, 7.4, 7.8 and 7.12 implies the following statement.

Lemma 7.15 (Error terms for soft potentials). Let v < 0. Let 0 < g < qns1 where gng 18 given by (vii) and

g>d—1-— 255+22S ify < — dzfgs There exists a positive constant a only depending on d,~,s, My, Ey, cp,

Cget ; Coor (see Propositions /.1 and 4.4) and Cq3 (see formula (7.1)) such that

//Rqu’(f) (f ") dvda

3 .
< Ceor ((f = A)g Ar)® HL’;S + Ogcta

el [(FEF MY

Ll
lq

(7.24)
+Cs [ = A=)l do
Q

gt [ enm

/ (f—A—n)+<v>7dv] dz
Lt (d—1) JR?

as soon as a > a.

Remark 7.16. The constants Ceor , Ceor’ , Cger and Cs appear in Propositions 4.2, 4.3, 4.4 and Lemma 7.12
respectively.

Proof. Estimate (7.24) is a consequence of (7.8) and Lemmas 7.3, 7.4, 7.8, and 7.12. O

8. ESTIMATES FOR LARGE EXPONENTS

In this section, we establish estimates that we will use to generate more decay.
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8.1. Convolution product.

Lemma 8.1 (Convolution product for decaying functions and soft potentials). Lety < 0 and f : [0, T]xR¢ —
[0,00) have finite mass My. Assume that

f(t,v) < b, (v)"9, Y(t,v) € [0,T] x RY,

for some q. > 0 and some b, = b.(t) such that b, > 2di\j—° with cq, = %, Then

- H 1 x

f * | : |’Y < Cconv’ b, ¢ <U>me( v

. - 142
with Ceony = 2¢q,* My *.

Proof. We proceed as in the proof of Lemma 7.1, exploiting the assumed pointwise decay. For R > 0 such
that R < (v)/2, we write

/ fo—w] dw= [ fo—w)|w]” dw+ / £(v = w) ] dw
Rd Br R

A\Br
< b*/ (v—w) %
Br

< g b (V)T RITY 4 My RY

d+y

R
wl dw + RYMy < b.]0B1|(2V2)" (v) " 7 -

+ R My

qx 1 . qx
with ¢,, = %. Then we pick R = (Ci‘/l—g*) 4 (v)ymin(15F) < L(p) (since b, > 2‘12\5—3) so that

ES

L= w ol du < Ao A (gm0 ¢ ggymin))
Rd
< 2cq b T MY T (p)y min(L )
We thus get the desired estimate. O

8.2. Estimate of the remaining error term.

Lemma 8.2 (Error terms for soft potentials and decaying functions). Lety < 0. Assume f : [0, T]xQxR9 —
Ry has finite mass My. If for a.e. (t,z,v) €[0,T] x Q x RY,

St w,0) < bu(t)() 7"

wa—1(2v2)9*
(d+7)

1 Cll+2s qo—1
// S(f)(f*|]") dvda S—C\,getT// ((f—A)+/\I<L) (v)1T2579 dy dx
R xQ 2 b*s RdxQ
X o—1 i ax
weol [ (= nw) " e dud,
R x Q)

for some g, > 0 and some b, > 2‘1(]2\4—0 with ¢q, = , then
qx

(8.1)

_ 1 _
as soon as a satisfies a > Cbi 2sd with C = 16qocb%Lg“;' and C = Ceony' (g0 — 1)cp.

Proof. In order to prove the lemma, we split the error term involving ®(f) naturally into two pieces,
/ S(f)(fx||)dv=E+E
Rd
with
go—1 ~
= qoe [ A((f = A+ nk)" (£l dv,

(8.2) \
= (0= Vs J ((F = A Aw)" (5| o

[ty Oy

We now estimate each part.
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ESTIMATE OF £. We first claim that
C11-1-2.9

o 1 20—l ~ymin(1,4)—q
(83) £ < icvget W ((f — A)+ A\ KJ) <’U> > d d’U7
* R4

as soon as the constant a satisfies 5

a>Cby 77
for some constant C' = 2qocb%°°—“vt' with Cyger from Proposition 4.5 and Ceonys from Lemma 8.1. Indeed, by

vee

Lemma 8.1 there holds

_ _
19 < Cconv’ qOCbb* 4 /

o—1 H qx
A((fF -4 /\n)q ()T min(L %) gy
Rd

1 a1+25

go—1
_ - Y+2s—q
< 2Cvgct b2 /]Rd ((f Ay A H) (v) dv.

The last inequality follows from the condition imposed on a.

ESTIMATE OF £. We next claim there exists a constant C' > 0 depending on s,d, 7y, ¢y, g« such that
1-3 201 min (1,4 )—
(8.4) E< b ? / ((f —A)y A m) (v)Y min( ) =ax gy,
Rd
Indeed, by Lemma 8.1 there holds

£ < Ceonvr ((Jo - 1)Cbb*_% /

(= A)s ar)" o) mint ) o
Rd

o -1 i ax
< Cconv’ (qO - 1)Cbbiig / ((f - A)‘f‘ A K)qo <,U>'ymm(1,7)—q* dv.

R4
We used that (f — A)+ < f < b, (v)~% to get the second line.

CoNCLUSION. Estimate (8.1) is derived from the Truncated Convex Inequalities (3.2) after using (8.2) to-
gether with 8.3 and 8.4. O

9. PROOF OF THE DECAY ESTIMATE

9.1. Monotonicity for generation. The next lemma is obtained by combining Lemma 3.1 with (coercivity
and error) estimates from previous sections.

Lemma 9.1 (Monotonicity). Let f be a suitable weak subsolution of the Boltzmann equation with either
in-flow, bounce-back, specular / diffuse / Mazwell reflection boundary condition. Let

A(t,v) == a(t)()" ™ with  a(t) == a. (1+fz%)

with qns1 from (vil) and for some constant a, > 0 large enough depending on d, 7, s, ¢y, Mo, Ey and Cy,. Then
d

(9.1) < // von(f — A)dvde <Z.(t) in D'((0,T)),
de R x Q)

with T, (t) such that for any T > 0, we have

KR— 00

T
/ Z.(t)dt —— 0.
0

Remark 9.2. The constant C}, comes from the assumption on the boundary data f, in the statement of the
main result, see Theorem 1.6.

Proof. We write ¢ instead of ¢n¢ for clarity. We assume that a, satisfies
(9.2) ay > agey  and a, > Cp (and a, > aif vy <0)

with age; given in (4.6) and Cj in the statement of Theorem 1.6 (it is related to boundary values) and a
comes from Lemma 7.15. The first condition ensures that we can use Proposition 4.4 about the good extra
term while the second one ensures that boundary terms will not appear in the Truncated Convex Inequalities,
see Lemma 3.1.
We distinguish the cases of hard and soft potentials.
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THE CASE OF HARD POTENTIALS. In this case, we apply Lemma 3.1 and collect estimates (4.4) with g =
(f—A)y, (4.7), (5.1), (6.1) to get that for any e € (0,1),

d
— (f—Advd
dt //]RdewQ (f ) dvdz

q0 q0—1
< —Ceor /Q [((f = A)s Ak) HngoRd) dz + Ceor /Q H((f_A)+ M) ‘Li,d,l(ﬂw) de
_ 1+2 - do—1
got @ /QH((f A+ A k) ‘L%qalw)
qo—1
+(Cr+ Cha)att) [ (7= 204 n )™ e
+g/ 1(CF = A1 A R)™ Ly g d:c+chardc<a>/ (=2 nm)™| e
Q ko Q qu(R )

dx
L' (RY)

=it [ ]| = 4 an |

we then pick € = Co, /2 and get,

Ocor
<=5 [0 = A0 20" gy da

+C’(—Ea1+%s +1+a(t) —a(t)) /Q H((f—A)+ An)‘“’*l’ dx

1 d
L} (R4

for some positive constants C' and ¢ depending on Ceor, Cget , Chard, C(Ceor ), C1, d and s. The last
inequality follows from the fact that v —d — 1 <1, and —¢q <, (recall that a < 0 and [, is given in (vi)) for
q < d+ 1 and v > 0. Finally, we choose a, large enough (depending on ¢, d and s) such that

(9.3) ca't ()+1+a() a(t) <0.
In particular, this yields, f fRde ©o, K( )dv dz < 0 and concludes the proof for hard potentials
(y>0).

THE CASE OF SOFT POTENTIALS. In this case, we apply Lemma 3.1 and collect estimates (4.4) with g =
(f = Ay, (4.7), (5.1), (7.24) and use Lemma 3.1 to deduce,

d
— <(f —A)dvd
at //Rdxsz%’ (f ) dvdx

0 0—1
< ~Coor [ F = A AR) " gogany do+ Coon [ (07 = A nw)™ ] e
Q ko Q L, (RY)
1+2 _ qo—1 _ go—1
~ Cyura /QH((f A)s AK) ‘qumd) da:+01a(t)/QH((f Ay AK) ‘qumd) da
+3c /H((f—A) A K)o gy 2+ C tal+‘%/H((f_A) ARy dw
47 Jq " Lo (RD) 16 & 0 i L}, (R?)
. qo—1
G [ 10 = A=) higgguey do—ae) [ (=00 nm™
Using that —¢ <, for ¢ <d+1+ 'Y—d (and in particular for ¢ = gng ), we get,
" A)dvde < C (—ca't +a(t) —a(t /H Ay Ar)*T 1’ dz
= R (~eatt% (1) +a(t) @ =aenm™ ],

+Cs /Q I(f = A=)+l pro oy dz.
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Finally, we choose a, such that both (9.2) and (9.3) (for a new ¢) hold true and we get

// on((f — A)y) dvde < T.(0),
]Rd
with

0=Cs [ 17 = A=R)slligpee do

Finally we notice that f € L'([0,T] x Q; L}° (R9)) ensures that,

T
/ Z.(t)dt — 0 as K — 00.
0

This concludes the proof in the case of soft potentials. |

9.2. Proof of generation for not so large exponents. We now state and prove a result that will be
used several times.

Lemma 9.3 (Monotonicity implies decrease). Let f be a suitable weak subsolution of the Boltzmann equation
with either in-flow, bounce-back, specular / diffuse / Mazwell reflection boundary condition. Let

A(t,v) = a(t)(v)
for some smooth bounded function a: (0,T) — (0,+00) and for some ¢ > 0. Assume that

(9.4) %//Rdm conlf — A)dvde < Ty(t) in D'((0,T)),

for some T (t) such that for any T > 0, we have

T
/ Z.(t)dt —— 0.
0

K—r 00O
Then f(t,x,v) < A(t,v) almost everywhere in (0,T) x Q x R4,
Proof. For all t € (0,T), we define

(9.5) my(t) := //Rd ngo7n(f — A)(t,z,v)dvdz.

Since @o.(f — A) € L}((0,T) x R% x R4), there holds m,, € L'((0,T)).
STEP 1. LEBESGUE POINTS. We now take two Lebesgue points ¢1,f2 € (0,7) such that ¢; < t9, and we
consider for any € > 0 the following cutoff 7. € C$°(R) in time given by
l(tg—t), ifte [tg—&,tg),
if t € (tl + &, t2 —E),
(t—tl), ifte(tl,t1+a],
else.

ne(t) =

O o= o0

Then we test (9.1) with 7. and integrate over (0,T), so that

T T
| monoars [ Lo
0 0
The left hand side yields

T T to t1+e
/0 m. (t)n:(t) dt = —/0 m(t)nL(t)dt = % /tz_E m(t)dt — é/tl m(t) dt,

so that we deduce after taking ¢ — 0, we deduce that for almost every t1,t2 € (0,T) with t; < to,

(9.6) M (t2) — ma(t1) < / ’ T () dt.
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Note that the right hand side converges to 0 as k — oo. It also converges to 0 as t3 — t; or as t1 — to,
so that my(t) is (coincides a.e. with a) cadlag (function) and the values of m(t) are well-defined for all
€ (0,T), see [36, Corollary 4.9.1]. We deduce from (9.6) that m is non-increasing in (0,7).

STEP 2. SHIFTING THE BARRIER IN TIME. To finish the proof of Theorem 1.6, it is sufficient to show
that meo(t) = 0 for a.e. t € (0,7). Indeed this in turn implies f(¢,z,v) < a(t){(v)~? for almost every
(t,x,v) € [0,T] x RY x R4

Even if m, is monotonically decreasing, the difficulty is that ms(t) is not defined at ¢ = 0. The following
argument is taken from [36, Proof of Theorem 1.1]. We define a shifted version of the function m defined in

(9.5),
My t, (1) 1= //Rd o o (f(t,z,v) — A(t — t1,v)) dvda.

After updating a, we know from Step 1 that me, () is monotonically decreasing for ¢ € (¢1,T). Since
a(t) — oo as t — 0, we note

tlh_r)r% Moo t; (t2) = 0.

Thus for any € € (0, 1) there exists ¢; € (0,t2) such that meo 4, (t2) < €
Moreover, there holds for a.e. ¢t € (t2,T)

Mooty (t) < Mooty (t) < Mooty (tQ) <e&.
As € > 0 was arbitrary, we deduce meo ¢, (t) = 0 for a.e. t € (t2,T). This implies that for a.e. t3 € (0,T) and
t € (ta,T), we have (z,v) € Q x R, f(t,2,v) < A(t — ta,v). We can now fix to > 0 and consider o < to < t

and outside the sets of null measure. By letting to — 0, this implies f(¢,z,v) < A(t,v) for t > to. Since tg
is arbitrary, the proof is complete. O

Proof of Theorem 1.6 for not so large q’s. It is enough to deal with the case ¢ = ¢uq. In this case, the
conclusion of the theorem is a consequence of Lemmas 9.1 and 9.3. g

9.3. Improving decay. In order to prove the appearance of decay for large values of the exponent ¢, we
improve it iteratively. We start from Lemma 3.1 and write,

S L Lot =myavacs [ de (7= 0= )08 00 0 o
[ L einlr =) = ), By a0 dvda

gcb/Q/RdCI)(f ) dvdx+/ﬂ//R2d¢0,€f A) (A — A) K (v,0') dv’ dvdz

// ©o.kx(f —A)OQAdvde — /gaoy,i(f—A)(v-n(x))dvdS(x).
Q JRrd oQ Jra

We recall that we assume that, depending on the boundary condition that we impose, f < f, < a(t)(v) ¢
on I'_, so that the boundary term vanishes.

When ¢ is lower or equal to d+1, we can use the lower bound from the good extra term from Proposition 4.4
and estimate the error term due to the v-dependance of A thanks to Lemma 5.1 and the convolution term
thanks to Lemma 6.1.

When ¢ is greater than d+1, for the term on the second line we use the coercivity estimate from Proposition

5. Finally, for the error terms and ¢ large, we use Lemma 5.4 to estimate £; and either Lemma 6.2 (in case
of hard potentials) or Lemma 8.2 (in case of soft potentials) to estimate the term involving the convolution.

9.3.1. Hard potentials.

Lemma 9.4 (Improving decay — hard potentials). Let v > 0 be such that 0 < v+ 2s < 1 and g. > d+1
and q = q« + 2s. If
f<Cp(14tPe)w)™ %, ae in(0,T)x QxR
then
F<C(14+tP) ) ae in (0,T)x Q x R?
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with Bg = 1+25 Bq. and Cq = a.Cy, S with a. only depending on d,~, s, Cyget , Cy,0, Ch, Bq. and Ci 4, from
Lemma 5 4

Proof. We consider the barrier A(t,v) = a(t)(v) "¢ and the function a(t) = C,(1 +t~P4). It is convenient to
write

(9.7) 0. (t) = Cy. (1 4t Pax).

TRUNCATED CONVEX INEQUALITIES. Without loss of generality, we can assume that C,, > 1, so that
b.(t) > 1. We impose that

1
9 2%
(9.8) a>ch, with ¢ =max <22+257 (#) ,Cb>
vget

so that we can use Proposition 4.5, Lemma 5.4 (since ¢ > d+ 1 and ¢. > d 4+ v + 2s), Lemma 6.2 (since
g« > 0) in order to write

qo—1 —a qu da
L el = yavas < Cupan o [ (= a0 A0 )0 dva
FCanld // (= A AR @) o

+ q0C,0b4(t) //Rd Q ((f —A)p A “)q0_1<v>v_q* dvdz

—a t)//RdXQ (f = A+ Ar)" (v) 9dvda

10, _
~ gt [ (= A A" )0 dvda,
X

Using the fact that ¢ = g + 2s and —2s < v, we get,

d P01 Y=g«
T //]Rdxﬂ o (f — A)dvdr < Cug, (b:(t) + 1) a(t) //]Rdxsz ((f = A) 4 AR)™ ™ () (0)7~% dvda

+ q0Cr,0b4(t) //Rd Q ((f —A)r A “)q0_1<v>v_q* dvdz

—a(t) //Rdm ((f = A4 A n)“°’1<v>v—% dvdz

1CVgCt 1+2S - K do—1 V) V4= vdx
2525() (t)//Rde ((f A>+/\ ) ( )< > dv dzx.

We also impose to a to satisfy,

(9.9) —a(t) + C1q. (b.(t) + 1)a(t) + goCy,0b.(t) <

CONSTRUCTION OF THE TIME BARRIER. We now consider
a(t) = a, bl
and we choose a, > 1 large enough so that a satisfies both (9.8) and (9.9). In order to satisfy (9.8), we
1
remark that b, > Cy, and in particular a > a.Cg* b, so that (9.8) holds true if we impose
1
_a _a 200C 75
(9.10) as > Cg.%* ¢ = 0y max | 22725 <M) ,Cy | .
Cvget
i i
As far as (9.9) is concerned, we plug a = a*bi+2°‘ into the ODE and get (after dividing by a.b2®),

1+ 2s
2s

: C(v (€] s
(~6)(8) + Cr0. B2(0) + (Crg. +¢ a0 Ch0)ba(t) < —ELa2b2(1)
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[

1 _
(we used that a. > Cy, %" ¢ > b, 2*¢). Since we have b, (t) > 1, this amounts to check that

1 —|— 25 . _ C(v e s
S0+ (200 + <m0 )00 < CE e
We now pick a, such that
2 o4 \%
(9.11) ay > (201,(]* +Q_1(Z007,0> ( )
Cvgct

and we are left with verifying that

(Z6.(0) < oS0,

Recalling that b, is given by (9.7), we have to check that for all ¢ > 0,

Cilﬂq t=Ba—1 < 25C vget
@ Pax

VB 25(1 4 ¢ Pax )2,
—4(1+2s)“*( + )

It is enough to pick a. such that

1
_L (A(1428)B, \ T
9.12 20" | ————
( ) ax = Lg. ( 2SCVget

(we used that t=Pa-=1 < (14 ¢ Pa)2 for all t > 0 since B, > 1).
ConNcLUSION. Thanks to Lemma 9.3, we thus conclude for 5, = (1 + %)ﬂq*
a a
f < auCql P (1 7P )35 (0) 79 < 0, g 2723 (14 £7%0) (0) 0.

(we used the convexity of 7 — r112:) as soon as a, > 1 satisfies (9.10), (9.11) and (9.12).
Since we assume Cj, > 1, it is enough to impose,

w004\ (4(1+25)8, \*
(e nerae) () (525)°)

L
with ¢ = max (22+25, (M) . ,Ob>. O

Crget

9.3.2. Soft potentials.

Lemma 9.5 (Improving decay — soft potentials). Let v < 0 be such that 0 < v+ 2s < 1 and qns be given
by (vii). If for some g« > qnsl ,

f<Cp (1 4tPu)w)™ %, ae in(0,T) x QxR
then for q = q.« + 0«, there holds
F<C(L4+t7P) )" ae in (0,T)x Q x R?

with
min (y+2s — 7L, d+1—¢q.) ifg.<d
(9.13) 0s = ¢ min(2s,d + 1 — q.) ifd<q.<d+1
2s ifge >d+1
and B4 = 15823 Bq. and Cq = LL*C';:Li with a, only depending on d,7, s, Cyget , Cy,0, Cop and g, Bq, and Cq, .

Remark 9.6. See (9.15) and (9.17) in the proof of the lemma for conditions on as.
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Proof. We consider again the barrier A(t,v) = a(t)(v)~? with ¢ = g. + . (with . to be chosen) and the
function a such that for all ¢t € [0,7), a(t) > Cj. We also write b, (t) for Cy, (1 + ¢ P ) and we can assume
without loss of generality that

M,
Cq. > 24770 and Cp. 21

Cq.

(see the statement of Lemma 8.2 for the definition of ¢, ).

Let g« < d+ 1. We remark that in this case, d,. is chosen so that ¢ = g, + d. < d + 1. We impose that
(9.14) a>C, and a>2"*%b, and a>Cb. 27

so that we can apply Proposition 4.5, Lemma 5.1 (since ¢ < d+ 1), and Lemma 8.2, and get
pply p q g
// wo.x(f —A)dvdr + Vgﬁ 1+28// (f = A Ar)" 1( Y)Y T25= 0 dy da
RIXxQ RIxQ
1 1+2s qo—1
< —Cvget T o. // (f - A)+ N K) <’U>’Y+2S_q dvdx
2 bis R4 xQ
1—2 qo—1 in(1. L)
+Cb, ¢ // ((f—A)+ Aff) (vyymin( )= 4y 4
R4 X
+ Chalt) // ((f = ) AR)" (W) () dvda
R4 x

O~y =1 du da.
—at)//RdXQ((f—A)JF/\K;) ()= dvd

We remark that I, < v+ 25— ¢ since ¢ > guq > 1. We also have ymin(1, &) — g. < v+ 2s — g by the choice
of d, in (9.13). We look for a such that

2

—a4 ChatCbi 4 < Crget alt?s,

L L
We plug next a = a*bi+25 and get (after dividing by a.bZ),

1 + 2s - Cvget

2

RIQ

1
b. + C1b, —I—Ca*lb 23 < afsbi.
We remark next that since b, > 1 and a, > 1 and 1 — % — % < 2, it is sufficient to check that b, and a,
satisfy

1 —|— 25 ngct

P24 (01 + Ot < gy,
We thus pick
— 4 4142
(9.15) a. > max(Cy, 2279 1,0) and a2 > UG+0) and a, > C'q,f AL+ 29)8. ) 7
Cvget 280"%“

(see (9.12) above for the last condition) so that (9.14) holds true together with the differential inequality.
We can conclude as in the case of hard potentials (thanks to Lemma 9.3) that

F < anOnt o (14 47 Po 145 () =0 <, CaF 27235 (1 4 ¢ Pa) ()~

3

where 8, = . (1 + 5-) and a, satisfies (9.15).

Assume now that ¢, > d+1 > d+ v+ 2s, we pick d, = 2s and g = g« + 0, > d+ 1+ 2s. We impose that

~

(9.16) a>C, and a>22"2p, and a>Cb, 7
43



so that we can use Proposition 4.5, Lemma 5.4 (since ¢ > d+ 1 and ¢, > d + v + 2s) and Lemma 8.2 and
find,

// o] = A) dodz + S8 mg” // ((f = s AR)*T (@) )+ dv da,
RIxQ b3 R4 x
< Chq.a(t // (f—A +/\Ii)q0 1( ()7 dvdx
R x Q2
+Cl,q*a(t)// ((f=A)+ /\H)qoil(v)@wfq dv dz
RdxQ
+ ;fet 1+2s // f A + /\Ii)qo 1( )< >V+2s—q dv dz
2b3 R xQ

y Q"*_% @ f[ (= A" ) dvda

01 ) =1 dy d.
—at)//RdXQ((f—A)Jr/\/i) ()= dvd

We remark that v — ¢. = v + 2s — ¢, that v — ¢ < v+ 25 — ¢ and that —q < v+ 2s — q. We thus look for a
such that

. —x Oy
—ﬂ+2cl,q*ab* +Qb}ﬁ ¢ < Zbg;; a1+2s

1 a
(we used that b, > 1). We plug once again a = a*bi+2°‘ and get (after dividing by a.bZ),
_142s -

b, + (2C1 4, + C)b7 < Cvfet az*b?.

We thus pick

(9.17)  a. > max(Cy, 2% 1,C) and o> >

*

4(2C1,4. +C) 4(1 4 2s)B,.
Cvget 2SCVget

(see (9.12) above for the last condition) so that (9.16) holds true together with the differential inequality.
We can conclude as in the case of hard potentials (thanks to Lemma 9.3) that

and a, > Cq*zs <

F < anCal® (14 ¢ Poe) 135 (1) 0 < 0,0 2 235 (1 + P ) (0) 1,
where 3, = ;. (1 + 5-) and a, satisfies (9.17). O
9.4. Proof of generation for large exponents.

Proof of Theorem 1.6 for large q’s. The idea is to iterate the gain of decay from Lemma 9.4 and Lemma 9.5
for hard and soft potentials respectively. We have shown in Subsection 9.2 that

F<Cu(14+tPe)w)"%, ae in (0,T) x Q x RY,
with
G = Guat =1 ¢ i
where we recall that ¢ng is given by (vii).
HARD POTENTIALS. Lemma 9.4 then implies that there is Cy = agCy, for some ag > 0 such that
f<C,(1+tP)w)"1 ae in (0,T) x Q x R?
with

1 —|— 2s
Bq. =: B,

q=q. +2s=: ¢, By =

We apply Lemma 9.4 again, now with ¢(*) and with 3(V). We ﬁnd

F<C+tP) )71 ae in (0,T) x Q x R?

44



with

2 2
142 142 d
¢ =¢V 425 =¢. +2-25s=d+1+4s, B2 = t2s Bq. = +2s —.
2s 2s 2s

We iterate this process and conclude for any n > 0

with

f<Cc,(1+ t_B(n))<v>_q(n) a.e. in (0,T) x Q x R?
1+2s\" d
g™ =d+1+n-2s, g = (%) —.
s 2s

SOFT POTENTIALS. We follow the same reasoning in the case of soft potentials. We apply Lemma 9.5 with
G« = @nsl and B, = 2%: then there is C; = agC,;, with ap > 0 such that

f<C,(1+t7P) )79,  ae in (0,T) x Q x RY,

with

_ 1+2s

_. 3
B, =B,

¢=q+6.=4¢Y, B,

where J, > 0 depends on ¢.. We iterate this process and we conclude for any n > 0

F<a, (1 + fﬁé")) @)=1™,  ae. in (0,T) x Q x RY,

with

e 1+2s\" d
g™ = gD 45D g 5y 4
2s 2s

Writing q(o) = qusl, we remark that there exists ng € N such that

gt = d 4 1.

More precisely, we remark that

min (") + (7 +25) + (—) L d+ 1) if g <d
¢ = $ min (¢ + 25,d + 1) ifd<q™<d+1
™ + 25 if ¢ >d+1.

In particular, as long as ¢™) < d+ 1, we have ¢t > ¢(™ + (y 4+ 2s) and since v+ 2s > 0, this cannot hold
for all n > 1.
We thus have for n > ng + 1,

¢™ =d+1+(n—ng—1)2s,

ensuring in particular ¢(™ — oo as n — co. g

[1]

REFERENCES

R. Alexandre, L. Desvillettes, C. Villani, and B. Wennberg. Entropy dissipation and long-range interactions. Arch. Ration.
Mech. Anal., 152(4):327-355, 2000.

Ricardo Alonso, José A. Canizo, Irene Gamba, and Clément Mouhot. A new approach to the creation and propagation of
exponential moments in the Boltzmann equation. Comm. Partial Differential Equations, 38(1):155-169, 2013.

Leif Arkeryd. L° estimates for the space-homogeneous Boltzmann equation. J. Statist. Phys., 31(2):347-361, 1983.
Louise Barthélemy. Probleme d’obstacle pour une équation quasi-linéaire du premier ordre. Ann. Fac. Sci. Toulouse Math.
(5), 9(2):137-159, 1988.

A. V. Bobylev. Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems. J.
Statist. Phys., 88(5-6):1183-1214, 1997.

Luis Caffarelli, Chi Hin Chan, and Alexis Vasseur. Regularity theory for parabolic nonlinear integral operators. J. Amer.
Math. Soc., 24(3):849-869, 2011.

Stephen Cameron and Stanley Snelson. Velocity decay estimates for Boltzmann equation with hard potentials. Nonlinearity,
33(6):2941-2958, 2020.

Chugqi Cao, Ling-Bing He, and Jie Ji. Propagation of moments and sharp convergence rate for inhomogeneous noncutoff
Boltzmann equation with soft potentials. STAM J. Math. Anal., 56(1):1321-1426, 2024.

T. Carleman. Sur la théorie de I’équation intégrodifférentielle de Boltzmann. Acta Math., 60:91-146, 1933.

T. Carleman. Problémes mathématiques dans la théorie cinetique des gaz. Publications Scientifiques de I'Institut Mittag-
Leffler. 2. Uppsala: Almqvist & Wiksells 112 p. (1957)., 1957.

45



11]
(12]
(13]
[14]
(15]
[16]
(17]
(18]
(19]
20]
(21]
(22]
(23]
[24]
25]
[26]
27]
(28]
(29]
(30]
31]
(32]

(33]
(34]

(35]
(36]
(37)

(38]
(39]

[40]
[41]

42]

Jamil Chaker and Luis Silvestre. Entropy dissipation estimates for the Boltzmann equation without cut-off. Kinet. Relat.
Models, 16(5):748-763, 2023.

L. Desvillettes. Some applications of the method of moments for the homogeneous Boltzmann and Kac equations. Arch.
Ration. Mech. Anal., 123(4):387-404, 1993.

L. Desvillettes and C. Villani. On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltz-
mann equation. Invent. Math., 159(2):245-316, 2005.

Laurent Desvillettes and Clément Mouhot. Large time behavior of the a priori bounds for the solutions to the spatially
homogeneous Boltzmann equations with soft potentials. Asymptot. Anal., 54(3-4):235-245, 2007.

R. J. DiPerna and P.-L. Lions. On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann.
of Math. (2), 130(2):321-366, 1989.

T. Elmroth. Global boundedness of moments of solutions of the Boltzmann equation for forces of infinite range. Arch.
Rational Mech. Anal., 82(1):1-12, 1983.

I. M. Gamba, V. Panferov, and C. Villani. Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation.
Arch. Ration. Mech. Anal., 194(1):253-282, 20009.

Irene M. Gamba, Natasa Pavlovi¢, and Maja Taskovié¢. On pointwise exponentially weighted estimates for the Boltzmann
equation. STAM J. Math. Anal., 51(5):3921-3955, 2019.

Francois Golse, Cyril Imbert, and Luis Silvestre. Partial regularity in time for the homogeneous Boltzmann equation with
very soft potentials, 2023. Preprint arXiv 2312.11079.

M. P. Gualdani, S. Mischler, and C. Mouhot. Factorization of non-symmetric operators and exponential H-theorem, volume
153 of Mém. Soc. Math. Fr., Nouv. Sér. Société Mathématique de France (SMF), Paris, 2017.

Christopher Henderson, Stanley Snelson, and Andrei Tarfulea. Local solutions of the Landau equation with rough, slowly
decaying initial data. Ann. Inst. H. Poincaré C Anal. Non Linéaire, 37(6):1345-1377, 2020.

Christopher Henderson, Stanley Snelson, and Andrei Tarfulea. Local well-posedness of the Boltzmann equation with
polynomially decaying initial data. Kinet. Relat. Models, 13(4):837-867, 2020.

Christopher Henderson and Weinan Wang. Local well-posedness for the Boltzmann equation with very soft potential and
polynomially decaying initial data. STAM J. Math. Anal., 54(3):2845-2875, 2022.

E. Ikenberry and C. Truesdell. On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory. I.
J. Rational Mech. Anal., 5:1-54, 1956.

C. Imbert and J. Vovelle. A kinetic formulation for multidimensional scalar conservation laws with boundary conditions
and applications. SIAM J. Math. Anal., 36(1):214-232, 2004.

Cyril Imbert, Clément Mouhot, and Luis Silvestre. Decay estimates for large velocities in the Boltzmann equation without
cutoff. J. Ec. polytech. Math., 7:143-184, 2020.

Cyril Imbert, Clément Mouhot, and Luis Silvestre. Gaussian lower bounds for the Boltzmann equation without cutoff.
SIAM J. Math. Anal., 52(3):2930-2944, 2020.

Cyril Imbert and Luis Silvestre. Regularity for the Boltzmann equation conditional to macroscopic bounds. EMS Surv.
Math. Sei., 7(1):117-172, 2020.

Cyril Imbert and Luis Silvestre. The weak Harnack inequality for the Boltzmann equation without cut-off. J. Fur. Math.
Soc. (JEMS), 22(2):507-592, 2020.

Cyril Imbert and Luis Enrique Silvestre. Global regularity estimates for the Boltzmann equation without cut-off. J. Amer.
Math. Soc., 35(3):625-703, 2022.

O. A. Ladyzhenskaya and N. N. Ural’tseva. A boundary value problem for linear and quasilinear parabolic equations. Sov.
Math., Dokl., 2:969-972, 1961.

Gary M. Lieberman. Second order parabolic differential equations. World Scientific Publishing Co., Inc., River Edge, NJ,
1996.

Amélie Loher. Quantitative De Giorgi methods in kinetic theory for non-local operators. J. Funct. Anal., 286(6), 2024.
Xuguang Lu. Conservation of energy, entropy identity, and local stability for the spatially homogeneous Boltzmann equa-
tion. J. Statist. Phys., 96(3-4):765-796, 1999.

Stéphane Mischler and Bernst Wennberg. On the spatially homogeneous Boltzmann equation. Ann. Inst. H. Poincaré
Anal. Non Linéaire, 16(4):467-501, 1999.

Zhimeng Ouyang and Luis Silvestre. Conditional L estimates for the non-cutoff Boltzmann equation in a bounded domain,
2023. Preprint arXiv 2305.02392.

Benoit Perthame and Alexis Vasseur. Regularization in Keller-Segel type systems and the De Giorgi method. Commun.
Math. Seci., 10(2):463-476, 2012.

A. Ja. Povzner. On the Boltzmann equation in the kinetic theory of gases. Mat. Sb. (N.S.), 58 (100):65-86, 1962.

Luis Silvestre. A new regularization mechanism for the Boltzmann equation without cut-off. Comm. Math. Phys., 348(1):69—
100, 2016.

C. Truesdell. On the pressures and the flux of energy in a gas according to Maxwell’s kinetic theory. II. J. Rational Mech.
Anal., 5:55-128, 1956.

Cédric Villani. A review of mathematical topics in collisional kinetic theory. In Handbook of mathematical fluid dynamics,
Vol. I, pages 71-305. North-Holland, Amsterdam, 2002.

Bernt Wennberg. The Povzner inequality and moments in the Boltzmann equation. In Proceedings of the VIII International
Conference on Waves and Stability in Continuous Media, Part II (Palermo, 1995), number 45, part II, pages 673-681,
1996.

46



	1. Introduction
	2. Preliminaries
	3. Truncated Lebesgue norms
	4. Coercivity estimates
	5. Error term due to the velocity dependance of the barrier
	6. Remaining error terms for hard potentials
	7. Main error terms for soft potentials
	8. Estimates for large exponents
	9. Proof of the decay estimate
	References

