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Abstract
The Probabilistic p-Center problem under Pressure (Min PpCP) is a variant of the
usual Min p-Center problem we recently introduced in the context of wildfire
management. The problem is to locate p shelters minimizing the maximum distance
people will have to cover in case of fire in order to reach the closest accessible shel-
ter. The landscape is divided into zones and is modeled as an edge-weighted graph
with vertices corresponding to zones and edges corresponding to direct connections
between two adjacent zones. The risk associated with fire outbreaks is modeled using
a finite set of fire scenarios. Each scenario corresponds to a fire outbreak on a single
zone (i.e., on a vertex) with the main consequence of modifying evacuation paths in
two ways. First, an evacuation path cannot pass through the vertex on fire. Second,
the fact that someone close to the fire may not take rational decisions when selecting
a direction to escape is modeled using new kinds of evacuation paths. In this paper,
we characterize the set of feasible solutions of Min PpCP-instance. Then, we pro-
pose some approximation results forMin PpCP. These results require approximation
results for two variants of the (deterministic) Min p-Center problem called Min
MAC p-Center and Min Partial p-Center.

Keywords Variants of the p-Center problem · Shelter location under indeterminacy ·
Under pressure decision model · Probabilistic combinatorial optimization ·
Approximation algorithms
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1 Introduction

The problem Min PpCP was introduced in Demange et al. (2018) as a variant of the
usual Min p-Center problem with indeterminacy on vertices. In the same paper,
we presented our motivation in the context of wildfire management and discussed it
further in Demange et al. (2020). In our model, the landscape is represented by an
adjacency graph G = (V , E). Each vertex corresponds to a zone and two vertices
i and j are linked by an edge if and only if it is possible to go directly from one
to the other without passing through another area. We assume that it is a symmetric
relation, which makes this graph non-directed. Each edge (i, j) is weighted with a
positive number �i j that can be seen as a distance or a traveling time; we will call
it the length of the edge (i, j). For every two vertices i, j , d(i, j) will denote the
shortest path distance between i and j in G and for any set of vertices C ⊂ V , we
denote d(v,C) = min

c∈C d(v, c) the distance from v to C . By convention, we will set

d(v,∅) = +∞.
For a given integer p, the objective is to select a set C (called p-center) of at most
p vertices, i.e. zones, where to locate fire-proof shelters so as to minimize the maxi-
mum traveling time from a zone to a shelter. In a deterministic setup, this problem is
the classical Min p-Center problem that aims to locate facilities on vertices of a
network modeled by a graph. Given our motivating context, centers will just be called
shelters and, when no ambiguity occurs, we will just use the term shelter to refer to a
vertex where to install a shelter. For a set C of shelters and a vertex j , d( j,C) will
be called distance to shelters of j and the (deterministic) radius of C , denoted r(C),
corresponds to the longest distance to shelters of vertices: r(C) = max

v∈V d(v,C). Min

p-Center is to find, for any p, a set C, |C | ≤ p of minimum radius.
Since adding a shelter to C cannot increase its radius, it is straightforward that, if
p ≤ |C |, then there is an optimal solution with exactly p shelters; however, this is
not a necessary condition for optimal solutions. Consider indeed the graph of Fig. 1
with all edge lengths equal to 1; if p = 2, then the minimum possible radius is 2 but
r({x}) = 2.
Min p-Center and numerous versions have been extensively studied both from a
graph theory perspective and for various applications [see, for instance (Calik et al.
2015]. It is a well known NP-hard problem, even in the class of planar graphs with
degrees less than 3 (Kariv and Hakimi 1979) that is particularly relevant in our moti-
vating context. Min p-Center is known to be 2-approximable (Hochbaum and

x

Fig. 1 An example where, for p = 2, a singleton minimizes the radius
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Table 1 Main hardness and approximation results in the paper appear in bold characters

Instance class Complexity Approximation
Lower bound Upper bound

Min PpCP

Any graph G with NP-hard 20
19 4deg(G) + 2

lengths in [�, 2�] Demange et al. (2018) Theorem 2

Tree ? 3

and all edge lengths 1 Corollary 5

Min MAC p-Center

Any NP-hard 2 2

Prop. 5 Theorem 1

Min Partial p-Center

Any NP-hard 2 2

Hsu and Nemhauser (1979) Proposition 6

Shmoys 1985) and is not approximated with a constant ratio strictly smaller than 2,
unless P=NP (Hsu and Nemhauser 1979). Similar results can be obtained for variants
of Min p-Center. For instance, in Chaudhuri et al. (1998), the generalization of
Min p-Center is investigated, where, given a number k, we have to place p centers
so as to minimize the maximum distance of any non-center node to its kth closest cen-
ter. A 2-approximation algorithm is proposed for this problem, and it is shown as the
best possible. In this paper, to establish approximation results for the problem we deal
with, we will need to establish similar results for two variants of Min p-Center:
Min MAC p-Center defined in Sect. 3.2 and Min Partial p-Center intro-
duced in Daskin and Owen (1999). The former problem aims at finding a p-center
that is a feasible solution for the problem Min PpCP (see Sect. 3.1) and of minimum
radius. The latter problem is to find a p-center of minimum partial radius, where only
some vertices are taken into account to compute the partial radius (only these vertices
are required to be close to a center).
Min PpCP is a version of Min p-Center with indeterminacy on vertices: with
some probability, a vertex may become unavailable due to a fire outbreak. We present
this problem in details in Sect. 2 after giving required related definitions andwe discuss
the differencewith other versions ofMin p-Center under indeterminacy. In Sect. 3,
we characterize the feasible solutions (Sect. 3.1) and define Min MAC p-Center.
We investigate some approximation results in Sects. 4 and 5. These results are based on
an approximation preserving reduction (Sect. 4) between Min MAC p-Center and
Min PpCP. In Sect. 5, we devise 2-approximation polynomial time algorithms for
Min Partial p-Center and Min MAC p-Center and we show that these
results are the best possible. These results then lead us to constant approximation
algorithms for Min PpCP.
All definitions of problems used in the paper are recalled in appendix at the end of the
paper. Main hardness and approximation results are reported in Table 1.
This paper lies in the theoretical branch of combinatorial optimization that inter-
faces computational complexity and polynomial approximation theories. Polynomial
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approximation theory (or just approximation theory) can be seen as an extension of
complexity theory and aims at characterizing the complexity of finding a feasible
solution for a combinatorial optimization problem that guarantees bounds on the ratio
between the value of the computed solution and the optimal value. For a minization
problem as we consider in this work, the ratio is not smaller than 1 and the smaller
the better. An approximation ratio of 1 corresponds to an exact algorithm and cannot
be guaranteed by a polyomial algorithm for an NP-hard problem, unless P = N P .
Upper bounds in Table 1 correspond to approximation results (existence of a polyno-
mial algorithm guaranteeing this bound) while lower bounds correspond to hardness
in approximation (NP-hardness of finding a solution within this guarantee). For details
about this domain and the related terminology, the reader is referred to Ausiello et al.
(1999) and Garey and Johnson (1979). Considering such results is relevant for prob-
lems that are identified as NP-hard and then, exactly as NP-hardness results, they are
critical milestones towards understanding the hardness of the problem and for the
design of efficient heuristics in practice.

2 The probabilistic p-Center problem under pressure

2.1 Definition of the problem

Without any specification, graphs will be considered as non-directed; else we will
specify directed graph (or digraph) or mixed graph as defined later. For all graph
theory terms not defined here, the reader is referred to Diestel (2018). Graphs are also
supposed simple, i.e., without loop or parallel edges with same extremities. Let G be
an edge-weighted graph; we will denote it G = (V , E, L) with L = (

�i j
)
i, j∈V the

matrix of lengths. If Q denotes the set of rational numbers, L has entries in Q ∪ {∞}
such that �i j < ∞ ⇔ (i, j) ∈ E . We will denote �m and �M , respectively the smallest
and the largest edge lengths (i.e., �M is the largest finite entry in L). We will refer as
uniform the case where all edge lengths are equal to 1.
A mixed graph is a graph with both directed and non-directed edges. When no ambi-
guity occurs, we will use similar notations for graphs and mixed graphs. In the mixed
case, we will just identify directed edges and denote them with an arrow in the related
drawing. All non-directed notions in graphs also apply to mixed graphs by considering
the non-directed version of the mixed graph obtained by replacing directed edges by
non-directed ones. Similarly, all directed notions apply to mixed graphs since a mixed
graph can be seen as a digraph with non-directed edges replaced by two directed edges
in opposite directions. For instance, when speaking about distances in a mixed graph,
paths are meant to respect the edge orientations and thus, the matrix of distances is
not symmetric anymore. In an edge-weighted graph G = (V , E, L), two vertices
i, j are in different connected components if and only if d(i, j) = +∞. In a mixed
graph however, we may have d(i, j) = +∞ with i and j in the same connected
component. It just means that there is no path from i to j respecting the orientation
of directed edges. For example, in the mixed graph represented in Fig. 2, d(2, 6) = 5
while d(6, 2) = ∞.
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In our motivating application, fire hazards (or any hazard occurring on vertices) is
modeled using scenarios. The landscape is represented by an edge-weighted graph
G = (V , E, L). A scenario is associated with each specific fire outbreak. We restrict
ourselves to single fire outbreak and consequently, each scenario s corresponds to a
single vertex s on fire. This restriction is motivated by our primary focus on a relatively
short time period after outbreak which assumes an efficient early warning system. In
this case, everybody can escape to a shelter before the fire spreads to adjacent zones.
The operational graph associated with the scenario s, denoted by Gs , is a mixed
graph Gs = (V , Es, Ls) obtained from G = (V , E, L) by replacing the edges (s, v)

incident to s by directed edges (s, v). All weights are preserved. Consequently, in Gs ,
vertex s is no longer accessible from another vertex.
For every two vertices i, j , the distance from i to j in Gs is denoted by ds(i, j). Note
that for all j ∈ V \ {s}, we have ds( j, s) = +∞.
In this paper, we consider a uniform distribution of probabilities over all scenarios:
each scenario si , i ∈ V has probability 1

|V | and these events are all independent.
In most p-Center problems under indeterminacy, given a solutionC with p vertices or
less, and given a scenario s, the evacuation distance of a vertex j is usually the shortest
distance between j and its nearest shelter, d( j,C). This strategy is not adapted to our
context and we consider a different evacuation strategy introduced and explained
in our previous paper (Demange et al. 2020). This evacuation strategy induces new
evacuation distances to shelters. If s is on fire, we have:

1. for people on s, two cases have to be considered. If a shelter is located on s, then
people present on vertex s are considered as safely sheltered in it, otherwise we
assume that they first run away from the fire in any direction and after they reach
a neighbor j , they evacuate to the shortest shelter from j in Gs .

2. for people who are not on s, say on j 	= s, the evacuation distance from j to shelter
k corresponds to ds( j, k) in graph Gs , i.e., avoiding vertex s.

These evacuation distances make our problem specific compared to the literature
and induce some additional complexity. The justification of this measure for people
escaping from s is twofold. First, since the area s may be relatively large, a single
scenario may correspond to many possible fire configurations, each prohibiting some
paths in the zone. The second motivation is to represent decision under stress, a very
important characteristic in emergency management: somebody close to the fire may
not take rational decisions when selecting a direction while people in another zone
can be assumed to behave more rationally.
For a given set C ⊂ V seen as a set shelter’s locations and a given scenario s, the
evacuation distance of a zone j is denoted by rs(C, j). If a shelter is located on j ,
rs(C, j) = 0 otherwise we have:

rs(C, j) =
⎧
⎨

⎩

ds( j,C) if j 	= s

max
v∈N+

Gs (s)
{�sv + ds(v,C)} otherwise (1)

where N+
Gs (s) is the set of all vertices v such that (s, v) ∈ Es .

Notice that rs(C, j) is equal to +∞ if j can’t reach any shelter in Gs .
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Fig. 2 The operational graph
associated with scenario 2 with
C = {3, 10}

The evacuation radius associated with scenario s is defined as rs(C) = max
j∈V rs(C, j).

Note that rs(C) is not equal to the usual radius computed inGs : rs(C) ≥ max
v∈V ds(v,C)

and for any scenario s and vertex v, ds(v,C) ≥ d(v,C) since evacuation paths in G
may pass through s. Consequently, we have rs(C) ≥ r(C).

Example 1 This example is adapted from Demange et al. (2020) and allows to better
understand the evacuation radius rs(C) and the operational graph.
Let us consider p = 2 and the non-directed version G = (V , E, L) of the graph in
Fig. 2. We consider the scenario s = 2. The related operational mixed graph is given
in Fig. 2. Vertices 3 and 10 represented by pentagons correspond to shelters’ locations
(C = {3, 10}). In case of fire on vertex 2 (scenario 2), the modification of the graph
and the evacuation strategy induce:

• The shortest path length from 1 to 3 is no longer 3 but 23, using the shortest path
1, 6, 7, 8, 3. Consequently, the nearest shelter from vertex 1 is 10 at a distance of
8. Thus the evacuation distance of 1 in scenario 2, is equal to 8 and vertex 1 is
evacuated to vertex 10.

• To compute the evacuation distance of vertex 2 in scenario 2, we have to consider
three neighbors:

• for neighbor 1, the distance to the nearest shelter 10 is 8;
• for neighbor 7, the distance to the nearest shelter 10 is 9;
• for neighbor 3 with a shelter, the distance is 0.

Consequently, r2(C, 2) = max{1 + 8, 3 + 9, 2 + 0} = 12.
• The evacuation radius of the scenario 2 is given by r2(C) = max

j=1,...,14
r2(C, j) =

r2(C, 13) = 15.

��
We are now ready to define the problem Min PpCP. A Min PpCP-instance will be
an edge-weighted graph G and an integer p and a solution C will correspond to a
set of at most p vertices where to locate shelters. A given solution C corresponds to
n = |V | evacuation radius r1(C), . . . , rn(C) for n different scenarios. We associate
to C the expected value E(C) of these evacuation radius over all scenarios; since all
scenarios are supposed equi-probable, it is just the average value:

E(C) = 1

|V |
∑

s∈V
rs(C) = 1

|V |
∑

s∈V
max
j∈V rs(C, j) (2)
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E(C) is called probabilistic radius. For any set C of centers, it can be computed in
polynomial time: for each scenario it requires to compute the matrix of shortest path
values in the related operational graph, which requires O(|V |3) operations. So, E(C)

can be computed in O(|V |3). The Min PpCP problem is then to determine a solution
C∗ minimizing E.
We synthesize below the formal definition of the problem:

Min PpCP
Instance: An edge-weighted graph G = (V , E, L) and an integer p

; the instance is denoted (G, p)
Feasible solutions: Any p-center C ⊂ V , |C | ≤ p satisfying E(C) < ∞ (see

Relation 2)
Objective: Minimizes E(C).

In a more general setting we could add a probability distribution on vertices but in this
work we only consider the uniform probability distribution. To avoid any confusion,
we recall that, in this work, the term uniform refers to the case where L is the matrix
(�i j ) with �i j = 1 ⇔ (i, j) ∈ E and �i j = ∞ otherwise.
Note that in our definition, p is part of the instance.We can define natural sub-problems
by restricting the possible values for p. If p is a fixed value, then the related sub-
problem is polynomial since all possible p-centers can be enumerated in polynomial
time and the probabilistic radius (objective value) of each one can be determined in
polynomial time.

2.2 Related work

A variant of the Min p-Center problem for large-scale emergencies is proposed
inHuang et al. (2010), where the disaster affects a single vertex s, including any facility
on this vertex. This model incorporates both indeterminacy in the facility availability
and in the demand: any facility on an affected vertex is no longer available and only
the population on this vertex requires evacuation. Our context is really different since
we consider that all zones must be evacuated in each scenario s and that a shelter
always secures at least the people from the corresponding area.
Numerousmodels forMin p-Centerunder indeterminacyhave alreadybeendevel-
oped. In a non-deterministic environment, problems are generally described in two
stages: first, before the indeterminacy is resolved (i.e., when the instance is still sub-
ject to indeterminacy), we need to choose locations.Then, once the effective instance
is known, we can react, for example by assigning vertices to centers. This description
matches real life situations like facility breakdown or natural disaster cutting off com-
munication, and it has been addressed using various approaches [see for example the
reviews (Caunhye et al. 2012; Laporte et al. 2015; Snyder 2006; Correia and da Gama
2015]. We briefly present some Min p-Center variants under indeterminacy, as
well as some other models relevant for our context.
In some models, non determinate parameters may vary independently one from each
other, for example in Averbakh and Berman (1997), Averbakh (2003), Lu (2013) and
Taghavi and Shavandi (2012) lengths in the graph are described as intervals. In our
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context, this independence hypothesis is not relevant since, if a fire ignites on a vertex,
then all lengths of the edges incident to this vertex are modified in a same way. So,
we focus on the Min p-Center variants where indeterminacy is represented by a
set of discrete scenarios.
In such a decision-making environment, we usually distinguish two contexts: risk and
uncertainty. Risk refers to situationswhere the values of some parameters are governed
by given probability distributions. In uncertainty on the contrary, no probabilistic
information is used, either because it is not available or because the decision maker
prefers not to resort to it. The first context is referred as stochastic, or probabilistic
models and the second one corresponds to robust models. In this second context,
a measure of robustness is usually considered for evaluating the performance of a
solution. For example, in Du et al. (2020), a robust variant of Min p-Center with
scenarios is studied. In Demange et al. (2020), we investigated a robust variant of Min
PpCP where the objective is to minimize the maximum (worst) evacuation radius
over all scenarios instead of minimizing their expected value. For this version, we
proposed NP-hardness results in various classes of graphs that include subgrids. Our
application motivates this class. We also proposed exact algorithms based on Integer
Linear Programming formulation.
Here, we adopt a stochastic/probabilistic approach and for this reason we assume
some probability distribution over scenarios. We focus on a probabilistic variant of
Min p-Center with a fixed set of discrete scenarios. In stochastic/probabilistic
optimization, one generally optimizes the expected value of a given objective function
or maximizes the probability that the solution is “good”. Such problems can be solved
using a specific algorithm, like in Martínez-Merino et al. (2017), or using general
stochastic programming techniques, as in Bayram and Yaman (2018). The problem
studied inMartínez-Merino et al. (2017) is different from ours since the indeterminacy
is associated to the demand and it is not possible to re-affect the vertices to a center.
Note that, despite Min PpCP falls into the paradigm of stochastic optimization, we
cannot easily reduce it to classical p-center variants. In particular, Min PpCP cannot
be seen as a variant in which new distances are associated to each scenario. Indeed,
due to our specific evacuation process, in particular for people in the zone on fire, the
new evacuation distances to a shelter do not systematically correspond to a shortest
path in the new graph Gs .
Min PpCP itself has been introduced in Demange et al. (2018). We have proposed
an explicit solution for the uniform case (all edge lengths are 1) on paths and cycles.
The decision version of Min PpCP is in NP. Indeed, if we consider a set of centersC ,
then for each scenario s, the evacuation radius rs(C) can be computed in polynomial
time using a shortest path algorithm. Then, E(C) can be computed in polynomial time
using Relation 2. So, a non-deterministic algorithm will infer a p-center and verify in
polynomial time whether its value exceeds or not the target. As a consequence, any
hardness in approximation result for Min PpCP can be immediately turned into a
NP-completeness result.
Regarding hardness results forMin PpCP, note that it does not count the classic deter-
ministicMin p-Center problem as one of its specific cases since we defined it with
fixed uniformprobabilities. So, the hardness ofMin PpCP cannot be directly deduced
from the NP-hardness of Min p-Center (Kariv and Hakimi 1979). In Demange
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et al. (2018), we showed that Min PpCP is not approximable on planar graphs of
degree 2 or 3 within a ratio less than 20

19 , unless P=NP.
Hardness results for Min PpCP motivate designing new approximation results for
this problem, even in restricted classes of graphs. This is the aim of the remaining
part of this paper. In the next section, we characterize the set of feasible solutions of
Min PpCP and define the Min MAC p-Center problem, for which we will give
approximation results.

3 Feasibility and the Min MAC p-Center problem

3.1 Feasible solutions

In this subsection, we analyze necessary and sufficient conditions for a solution to be
feasible for a given Min PpCP-instance (G, p). Without loss of generality we will
consider that G = (V , E, L) is a connected graph. A vertex a ∈ G is an articulation
point if and only if removing a disconnects the graph G. We denote by A (G) the set
of articulation points of G.
For any articulation point a, a connected component of G \ {a} is called articulation
component. Then, every vertex a ∈ A (G) is associated to at least 2 articulation
components, and every articulation component is associated to one articulation point.
A graph is 2-connected if it has no articulation point; in this case there is no articulation
component.
A minimal articulation component, or MAC for short, is an articulation component
that does not strictly contain another articulation component. We denote ϒ(G) the
set of minimal articulation components. Note that an articulation component that is
a singleton {v} is necessarily minimal and this occurs if and only if v is a vertex of
degree 1.

Lemma 1 A is aminimal articulation component of G if and only if A is an articulation
component which does not include an articulation point of G.

Proof ⇒ By contrapositive we prove that if an articulation component A includes an
articulation point, then A is not minimal. Let A be an articulation component induced
by the articulation point a ∈ V . Suppose b ∈ A is an articulation point of G. Then b
induces at least two disjoint connected components in G \ {b}. Since b 	= a, a is in
one connected component of G \ {b}, consequently G \ A is a subset of this connected
component. It follows that at least another component of G \ {b} is contained in A,
which means that A is not minimal.
⇐The proof is also by contrapositive.We prove that if A is a non-minimal articulation
component, then A includes an articulation point. Let A an articulation component
that is not minimal. Then there is an articulation component B ⊂ A induced by the
articulation point b ∈ V , such that B 	= A. Consider x ∈ A \ B and y ∈ B. Since A is
connected, x and y are connected in A by a path; this path necessarily crosses b and
in particular b ∈ A. ��
Lemma 2 All minimal articulation components of G are pairwise disjoints.
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Proof By contrapositive, we assume A ∈ ϒ(G) and B an articulation component such
that B 	= A and B ∩ A 	= ∅. We prove then that B is not minimal.
Let x ∈ A ∩ B. Since A is a MAC, B 	⊂ A. Then there is a vertex y ∈ B ∩ (V \ A).
Every path between x and y in G crosses a. As B is a connected component, there is
a path from x to y in B, thus a ∈ B, and B is not a MAC by Lemma 1. ��

Given an edge-weighted graph G = (V , E, L) and p, we denote with Cp(G) the set
of feasible solutions of the Min PpCP-instance (G, p).

Proposition 1 Let (G, p) be an instance of Min PpCP with |V | ≥ 2. A solution
C ⊂ V , |C | ≤ p is in Cp(G) if and only if |C | ≥ 2 and C includes at least one vertex
in each minimal articulation component of G.

Proof Suppose C is a feasible solution for Min PpCP on G. We have seen that C is
a feasible solution for Min PpCP if and only if rs(C, j) ∈ R,∀ j, s ∈ V , i.e. all the
evacuation distances over all vertices and all scenarios are finite.
First suppose there is no articulation point, then G has no articulation component. Let
s ∈ C , and x ∈ V , x 	= s. In scenario s, x is assigned to a center that is not s. Thus
|C | ≥ 2. Conversely, if |C | ≥ 2, for any scenario s, G \ {s} is connected and contains
at least one center.
Second, suppose that G has at least one articulation point and consequently at least
2 disjoint articulation components. In addition, if A is an articulation component of
G induced by the articulation point a, then ∀ j ∈ A, ra(C, j) ∈ R if and only if
C ∩ A 	= ∅. Then C intersects all articulation components. In particular |C | ≥ 2 and
C intersects all minimal ones. Conversely, if C intersects all MACs then |C | ≥ 2
due to Lemma 2 and it intersects all articulation components since any articulation
component contains a MAC. ��

Corollary 1 If G has at least 2 vertices, C1(G) = ∅.

As a consequence, from now we will consider only Min PpCP instances satisfying
p ≥ 2.

Corollary 2 For a given p, we can verify in polynomial time whether Cp(G) 	= ∅.

Proof For G = (V , E), we generateA (G) in O(|V |+ |E |) using Tarjan’s Algorithm
(Tarjan 1972). Theminimal connected components ofG are the connected components
of G \A (G) adjacent to at most one articulation point in G, where a set V ′ of vertices
is said adjacent to a vertex if this vertex has at least one neighbor in V ′.
There is a feasible solution for Min PpCP on G if p is greater or equal to the number
of MACs. ��

Corollary 3 For all C ∈ Cp(G), C necessarily includes all vertices of degree 1.

Proof Every vertex of degree 1 is a MAC of G. Then by Proposition 1, a feasible
solution includes all vertices of degree 1. ��
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3.2 The Min MAC p-Center problem

Proposition 1 ensures that, given an edge-weighted graphG = (V , E, L), a setC ⊂ V
is in Cp(G) (i.e., is feasible for Min PpCP) if and only if |C | ≥ 2 and C intersects
all MACs. For any p ≤ |V |, we callMAC p-Center a p-center intersecting all MACs.
For p ≥ 2, Cp(G) is the set of MAC p-centers.
By analogy to the usual p-Center problem, this makes natural considering the prob-
lem of finding a MAC p-center of minimum radius. We call this problem Min MAC
p-Center. Recall that the radius of C is r(C) = max

v∈V d(v,C); it is a common mea-

sure used to evaluate a p-center. Note that for any scenario s ∈ V , rs(C) ≥ r(C).
The Min MAC p-Center problem has a feasible solution for a graph G if and only
if p is at least the number of MACs in G, i.e., p ≥ |ϒ(G)|. This problem is close
to the usual Min p-Center problem with the particularity that it has the same feasible
solutions as Min PpCP in the same graph.
Min MAC p-Center will be used in the two following sections to devise approx-
imation results for Min PpCP. In Sect. 4, we propose an approximation preserving
reduction between the Min MAC p-Center problem and Min PpCP (Proposi-
tion 4): it allows to derive an approximation result for the latter from an approximation
result for the former. Then, in Sect. 5.3, we propose an approximation algorithm for
Min MAC p-Center (Theorem 1) that leads to an approximation result for Min
PpCP (Theorem 2 in Sect. 5). The result is limited to the class of instances where edge
lengths lie into [l, 2l] for a positive l since this is a restriction in Proposition 4 for the
reduction to be valid.

4 A polynomial approximation preserving reduction

In what follows, we describe an approximation preserving reduction between Min
MAC p-Center and Min PpCP. A polynomial approximation algorithm for the
former leads to a polynomial approximation algorithm for the latter with a ratio that
depends on the average degree deg(G) = 2|E |

|V | of G. More precisely, the reduction is
even the identity: we analyze in Proposition 4 how good for the problem Min PpCP
an approximated MAC p-center can be. Then, in Sect. 5, we show that Min MAC
p-Center can be approximated within the ratio 2 (Theorem 1), which leads to a
(4deg(G) + 2)-approximation for the Min PpCP where all edge-lengths lie in the
interval [�, 2�] for any positive � (Theorem 2).
Proposition 4 first requires a technical result described in Proposition 2, an upper
bound on E(C) for a graph G. Then, we improve the upper bound in the case of trees
(Proposition 3) before describing the main result of this section (Proposition 4).
For a real number x , we denote x+ = max(x, 0) its positive part.

Proposition 2 On an edge weighted graph G with lengths in [�m, �M ], ∀C ∈ Cp(G),
we have:

E(C) ≤ (2deg(G) + 1)r(C) + (�M − 2�m)+deg(G)
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Fig. 3 Distance relations
between vertices x , s and xk
used for Proposition 2 if x 	= s

Proof Let us consider any scenario s ∈ V of degree deg(s) and number
1, 2, . . . , deg(s) the edges incident to s. We claim that:

rs(C) ≤ (2deg(s) + 1)r(C) + deg(s)(�M − 2�m)+ (3)

and we then will conclude taking the average value over all vertices.
The end of the proof aims to prove Relation 3. Consider x ∈ V such that rs(C, x) =
rs(C). We already noticed in Sect. 2.1 that for any scenario s, rs(C) ≥ r(C) and so,
rs(C, x) ≥ r(C). If rs(C, x) = r(C), then the claim is satisfied since (2deg(s)+1) ≥
1 and (�M − 2�m)+ ≥ 0. So, let us assume from now that rs(C, x) > r(C).
We consider two cases whether x 	= s or x = s.
Case 1 x 	= s. For this case, the reader is referred to Fig. 3. In the figure, no shelter is
located on s, but the reasoning is the same if there is one.
Using Relation 1, we have rs(C, x) = ds(x,C) and it is the length of a path μ =
[x0, x1, . . . , xk], where x0 = x , xk ∈ C and μ is a minimum path between x and C in
Gs . We also know that xk is the only vertex of μ that is in C .
Since ds(x, xk) = ds(x0, xk) > r(C), we can define i = max{ j ∈ {0, . . . k −
1}, ds(x j , xk) > r(C)}; as a consequence, ds(xi+1, xk) ≤ r(C) and xi /∈ C .
Let j ∈ {0, . . . , i}, the path [x j , . . . , xk] is a minimum path between x j and C in Gs

and is of length greater than r(C). This implies that the distance d(x j ,C) between x j
and C in G is less than ds(x j ,C) and consequently, any evacuation path of vertex x j
in C passes through s (else it would be an evacuation path in Gs). We deduce that, in
G, x j is at distance at most r(C) from s: d(x j , s) ≤ r(C) as illustrated in Fig. 3.
For every j ∈ {0, . . . , i}, we consider a minimum path in G from x j to s, of value at
most r(C). We then assign to x j a color in N1, . . . , Ndeg(s) depending on the last edge
of the minimum path we have fixed for x j : x j is assigned the color Nt if the related
minimum path between x j and s terminates with the t th edge incident to s.
The distance, in Gs , between two vertices x j , x j ′ of the same color is at most 2r(C)−
2�m . Consider indeed twominimum paths inG from these vertices to s and sharing the
last edge (t, s); as seen above, their length is at most r(C). We deduce a walk avoiding
s between them by concatenating the paths from x j to t and from t to x j ′ . Since the
length of the edge (t, s) is at least �m , this walk is of length at most 2r(C) − 2�m
Such a walk includes a path in Gs of length at most 2r(C) − 2�m between these two
vertices.
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This allows us to derive an upper bound of ds(x, xi ). Suppose x is of color Ni1 and
consider the last vertex x j1 of color Ni1 along the path μ; we have ds(x, x j1) ≤
2r(C) − 2�m . If j1 < i , then the vertex x j1+1 is of color Ni2 and d

s(x j1 , x j1+1) ≤ �M
(we denote such an edge a bridge). Using the same reasoning for all non-empty colors
gives:

ds(x, xi ) ≤ deg(s)(2r(C) − 2�m) + (deg(s) − 1)�M (4)

In Relation 4, deg(s) is the maximum number of non-empty colors and deg(s) − 1 is
the maximum number of bridges.
Taking into account the edge (xi , xi+1) and the fact that ds(xi+1, xk) ≤ r(C) we
deduce:

rs(C) = rs(C, x) = ds(x,C) ≤ ds(x, xi ) + lxi xi+1 + ds(xi+1, xk)

≤ deg(s)(2r(C) − 2�m) + (deg(s) − 1)�M + �M + r(C)

≤ (2deg(s) + 1)r(C) + deg(s)(�M − 2�m)

≤ (2deg(s) + 1)r(C) + deg(s)(�M − 2�m)+

(5)

So, Relation 3 holds in this case, which concludes the first case.
Case 2 x = s. In this case, since rs(C, x) > r(C) ≥ 0, we know that s /∈ C . Then,
Relation 1 indicates this time that rs(C, s) is the length of a pathμ = [x0, x1, . . . , xk],
where x0 = s, xk ∈ C and [x1, . . . , xk] is a minimum path between x1 and C in Gs .
So, the length of μ is lsx1 + ds(x1, xk). We use similar arguments as in the first case,
but some detils require our attention. First, if ds(x1, xk) ≤ r(C), then the length of μ

is at most

�M + r(C) ≤ r(C) + 2r(C) + (�M − 2�m)

≤ (2deg(s) + 1)r(C) + deg(s)(�M − 2�m)

≤ (2deg(s) + 1)r(C) + deg(s)(�M − 2�m)+
(6)

where the first inequality holds because r(C) ≥ �m , the second because deg(s) ≥ 1
and the last because (�M − 2�m) ≤ (�M − 2�m)+. This is exactly the Relation 3.
If now ds(x1, xk) > r(C), we define i = max{ j ∈ {1, . . . k − 1}, ds(x j , xk) > r(C)}
by analogy with the Case 1. As already noticed in the Case 1, all evacuation paths
of x j , j = 1, . . . , i , in G, pass through s. We select one such evacuation path for
each x j , j ∈ {1, . . . , i}. Since s /∈ C , we can assume that they all share a non-empty
minimum path, in G, from s to C . The main change with Case 1 is that we now
can define at most deg(s) − 1 colors for x1, . . . , xi (x0 = s does not have a color)
depending on which edge incident to s contributes to the selected evacuation path of
x j and taking into account that one edge incident to s is used for the minimum path
from s to C in G (second part of the evacuation path after s).
As in Case 1, the distance, in Gs , between two vertices of the same color is at most
2r(C) − 2�m .
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Fig. 4 A case where E(C)
r(C)

= Z + 1

Since we have at most deg(s) − 1 colors, the length of μ satisfies:

rs(C) ≤lxx1 + (deg(s) − 1)(2r(C) − 2�m) + (deg(s) − 2)�M + �M + r(C)

≤(2deg(s) − 1)r(C) + deg(s)(�M − 2�m) + 2�m

≤(2deg(s) + 1)r(C) + deg(s)(�M − 2�m)+
(7)

since lxx1 ≤ �M and �m ≤ r(C).
So, Relation 4 holds in all cases as we claimed. By taking the average value,we deduce
that

E(C) = 1

|V |
∑

s∈V
rs(C) ≤ (2deg(G) + 1)r(C) + (�M − 2�m)+deg(G)

which concludes the proof. ��
On a tree, the analysis can be improved:

Proposition 3 On a tree with edge lengths in [�m, �M ], ∀C ∈ Cp(G), we have:

E(C) ≤ 3r(C) + (�M − 2�m)+

Proof Consider, for a scenario s, and a vertex x, rs(C, x) = rs(C), the same analysis
as in the proof of Proposition 2. Since there is no cycle, all vertices x, . . . , xi are of
the same color. Equation5 becomes

rs(C) ≤ 3r(C) + (�M − 2�m)+

which concludes the proof. ��
Remark 1 In Demange et al. (2018), we have shown that, on paths with all edge-
weight 1, there is an optimal solutionC∗ ofMin MAC p-Center such thatE(C∗) =
r(C∗).

Propositions 2 and 3 can be seen as upper bounds of the ratio E(C)
r(C)

that play a crucial
role in the next proposition. In particular, the ratio is bounded if (�M − 2�m)+ is
bounded. We cannot expect a similar results in graphs with general lengths as outlined
in the following example. Consider the caterpillar H (in particular it is a tree) of Fig. 4
with three internal vertices x, y, z and edges (x, y) and (y, z) of length Z and three
pendent vertices a, b, c, respectively linked to x, y, z with edges of length 1.
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Fig. 5 With general weights, an optimal MAC p-center can be a very bad Min PpCP solution

{a, b, c} is the unique feasible solution of the Min PpCP-instance (H , 3). We have
r({a, b, c}) = 1. However, for any scenario s, rs({a, b, c}) = Z + 1, which implies
E({a, b, c}) = Z + 1. It gives an example where the upper bound of Proposition 3 is
achieved (Z + 1 = 3× 1+ Z − 2× 1) but also shows that the ratio E(C)

r(C)
can infinitely

grow when edge lengths are not bounded.
We are now ready to show themain result of this section, namely a polynomial approx-
imation reduction that allows to approximate Min PpCP using an approximation for
Min MAC p-Center.

Proposition 4 Suppose a class of edge-weighted graphs G = (V , E, L) with �M ≤
2�m for which Min MAC p-Center can be approximated with ρ(G). Then, Min
PpCP can be approximated with (2deg(G) + 1)ρ(G) on the same class.

Proof Given a graph G in the class, we build a p-center C in Cp(G), if it exists, of
value at most ρ(G)r∗(G), where r∗(G) denotes the optimal radius of aMAC p-center
in G. Using Proposition 2 and �M ≤ 2�m , we have E(C) ≤ (2deg(G) + 1)r(C) ≤
(2deg(G) + 1)ρ(G)r∗(G).
Now ifC∗ is an optimum solution for Min PpCP, we haveE(C∗) ≥ r(C∗) ≥ r∗(G).
This concludes the proof. ��
As noticed in the following example in Fig. 5, the situation with a general weight
system may be totally different. In this example the graph is a path on 8 vertices with
only one edge of weight Z > 1 and all other edges of weight 1 and p = 4. There is
a unique optimal MAC 4-center (Fig. 5a) and, for large values of Z , its value is very
bad compared to an optimal Min PpCP solution shown in Fig. 5b.

5 Constant approximation algorithms

The main objective of this section is to derive approximation results for Min PpCP
using Proposition 4. This first requires a constant approximation result for Min MAC
p-Center. To this aim, we propose Algorithm 1 and prove it is a 2-approximation
polynomial-time algorithm for Min MAC p-Center.
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To properly explain the ideas of Algorithm 1, we will need another p-center problem
called Min Partial p-Center that was introduced in Daskin and Owen (1999).
Given an edge-weighted graph G = (V , E, L) and a set of vertices U ⊂ V , Min
Partial p-Center is to minimize the partial radius r(C,U ) of a p-center C ,
where r(C,U ) = max

x∈U d(x,C). The underlying logic is that only vertices in U need

to be close to a center. However, centers can be any vertex in G and distances are
computed in G (within our terminology, it means that the evacuation paths toward a
shelter are not required to stay in U ).
The idea of Algorithm 1 is to reduce Min MAC p-Center to Min Partial
p-Center through a pre-processing that allocates some centers to MACs. Then,
the solution is completed using Min Partial p-Center. As we will see, Min
Partial p-Center can be approximated by generalizing the 2-approximation
algorithm forMin p-Center in Hochbaum and Shmoys (1985) or using the general
method described in Hochbaum and Shmoys (1986). However, since it cannot be
directly deduced from existing results, we will give a direct proof through a few
claims.
This section is organized as follows. In Sect. 5.1, we first show that our problems, Min
Partial p-Center and Min MAC p-Center are not approximable within
2 − ε for any ε > 0 in graphs with all edge lengths 1, unless P=NP. This
gives a lower bound on their approximation ratios. Then, in Sect. 5.2, we establish
(Proposition 6) that Min Partial p-Center is polynomially 2-approximable.
In Sect. 5.3, we present Algorithm 1 and show (Theorem 1) that it guarantees a poly-
nomial 2-approximation for Min MAC p-Center. Finally, we deduce in Sect. 5.4
the approximation results for Min PpCP.

5.1 Lower bound on the approximation ratios

We recall, that a dominating set in a graph G = (V , E) is a subset U of V such that
every vertex not inU is adjacent to at least onemember ofU . TheMin Dominating
Set problem is to find a dominating set of minimum size.
For a graph G = (V , E), U ⊆ V is a dominating set, if and only if U is a |U |-center
of radius 1.

Lemma 3 Min Partial p-Center is not approximable within 2 − ε for any
ε > 0 in planar bipartite graphs of degree 3 with all edge lengths 1, unless P=NP.

Proof If U = V , then r(C, V ) = r(C) and Min Partial p-Center is just the
usual Min p-Center problem. So, Min p-Center is a particular case or Min
Partial p-Center. In particular, Min Partial p-Center is NP-hard and
not approximable within 2−ε for any ε > 0, unless P=NP by using the same hardness
result for Min p-Center proved in Hsu and Nemhauser (1979). This result is
directly obtained from the NP-hardness of Min Dominating Set and holds in the
uniform case (all edges have the length 1). Since Min Dominating Set remains
NP-hard in planar bipartite graphs of degree 3 (Clark et al. 1990), Min p-Center,
and by consequence Min Partial p-Center, are not approximable within 2−ε
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for any ε > 0 in planar bipartite graphs of degree 3 with all edge lengths 1, unless
P=NP. ��

Note that the argument used for Min Partial p-Center cannot be easily
adapted to Min MAC p-Center since this latter problem is not an immediate gen-
eralization of Min p-Center. However, we can show that:

Proposition 5 Min MAC p-Center in graphs with edge lengths all equal to 1 is
not approximable within 2 − ε for any ε > 0, unless P=NP.

Proof We first notice an immediate hardness result for the general weighted case
(edge weights can be any non-negative number). For any edge weighted graph G =
(V , E, L), instance of Min p-Center, the instance is equivalent to the instance
(K , L̃), where K is the complete graph over V and L̃ denotes the minimum path
distance, i.e., ∀i, j ∈ V , �̃i j = d(i, j), where the distance d is the distance inG. Both
instances G and K have the same feasible solutions with the same values and thus, the
same optimal solutions. To guarantee finite edge lengths in K , we just consider that G
is connected. Since K is 2-connected as soon as |V | ≥ 2, Min MAC p-Center is
equivalent to Min p-Center on K . Since the hardness result for Min p-Center
still holds in connected graphs, Min MAC p-Center is not approximable within
2 − ε for any ε > 0, unless P=NP.
To show that this hardness results already holds for the uniform case, i.e., where all
edge lengths are 1, we revisit the classical reduction of Min Dominating Set
to Min p-Center given in Hsu and Nemhauser (1979). Consider a graph G =
(V , E), instance of Min Dominating Set and an integer k. As already noticed,
there is in G a dominating set of cardinality k if and only if there is a k-center of
radius 1. Any polynomial approximation algorithm guaranteeing the ratio 2 − ε for
Min p-Center allows to discriminate, for any k, between instances with a k-center
of radius 1 to instances with all k-centers of radius at least 2. Using such an algorithm
for k ∈ {1, . . . , |V |} allows to compute in polynomial time a minimum dominating
set.
On the other hand, Min MAC p-Center and Min p-Center are equivalent
on the class of 2-connected graphs (i.e., without articulation point). As a conse-
quence, to prove Proposition 5, it is enough to prove that Min Dominating Set
remains NP-hard in 2-connected graphs. Given a graph G = (V , E) instance of Min
Dominating Set, we construct G ′ from G as follows: for every articulation point
a of G, create a twin vertex a′ linked to a and to all neighbors of a. G ′ is 2-connected
and the Min Dominating Set problems in G and G ′ are equivalent: there is in
G a dominating set of cardinality k if and only if there is in G ′ a dominating set of
cardinality k since any minimal dominating set in G ′ never includes both a and a′
for an articulation point a of G. Therefore, Min Dominating Set is NP-hard in
2-connected graphs and the proof is complete. ��

In the next section, we show that Min Partial p-Center is polynomially 2-
approximable; Lemma 3 ensures that it is the best possible approximation for this
problem.
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5.2 Approximation results for Min Partial p-Center

Consider an instance (G,U ) of Min Partial p-Center, where G = (V , E, L)

is a graph with positive lengths on edges and U ⊂ V . We denote n = |V |. We can
compute the complete graph K = (V , Ẽ, L̃) in O(n3) as explained in the proof of
Proposition 5. We denote SL = {d(x, y), x, y ∈ V } the set of edge lengths in K (note
that |SL| ≤ n2) and for any d ∈ SL , Kd = (V , Ed) is the partial graph of K where
Ed is the set of edges of length at most d. Note that for any p-center, its radius is in
SL .
A p-center of partial radius d in (G,U ) can be seen as a partial dominating set of
(Kd ,U ), where a partial dominating set X is a set of vertices such that every vertex in
U has at least one neighbor in X . If Ad is the adjacencymatrix of Kd with additional 1 s
on the diagonal (alternatively Ad is the adjacency matrix of Kd with additional loops
on each vertex), we denote Ad,U the sub-matrix of Ad corresponding to rows in U (it
has |U | rows and |V | columns). The problem of finding a minimum partial dominating
set can the formulated by the following mathematical program PDS(G,U , d), where
the 1 s on the diagonal represent the fact that a vertex dominates itself and the notation
1d , for an integer d, denotes the column vector of dimension d with only 1-entries:

PDS(G,U , d) :
⎧
⎨

⎩

min 〈1|V |, x〉
Ad,U x ≥ 1|U |
x ∈ {0, 1}|V |

We then consider the mathematical program SI S(G,U , d) that corresponds to finding
a maximum strong independent set of Kd contained inU , where a strong independent
set S ⊂ V is an independent set (every two vertices in S are not adjacent) such that
every vertex in V \ S has at most one neighbor in S.

SI S(G,U , d) :
⎧
⎨

⎩

max 〈1|U |, y〉
Aᵀ
d,U y ≤ 1|V |
y ∈ {0, 1}|U |

We first establish three claims that will be used in Proposition 6.

Claim 1 The cardinality of any strong independent set of Kd contained in U is not
more than the cardinality of any partial dominating set of (Kd ,U ).

Proof The relaxations of mathematical programs PDS(G,U , d) and SI S(G,U , d),
replacing the binary conditions with non negative conditions, are dual linear program-
ming problems. The result is an immediate consequence of the weak duality theorem.

��
Let dmax = max(SL). We denote K2d,U the graph Kmin(2d,dmax )[U ].
Claim 2 For a given distance d ∈ SL, let Sd be a maximal independent set of K2d,U .
Sd is a partial |Sd |-center in (G,U ) of partial radius r(Sd ,U ) ≤ 2d.

Proof Consider any vertex u ∈ U \Sd . Since Sd ismaximal, Sd∪{u} is not independent
in K2d,U , which means d(u, Sd) ≤ 2d and the claim is proved. ��
Claim 3 Any independent set S of K2d,U is a strong independent set of Kd contained
in U.
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Proof By definition, S ⊂ U . Since S is independent in K2d,U , it is independent in
Kd,U , a partial graph of K2d,U . So, it is an independent set of Kd . The result then
follows by contrapositive: if there is a vertex u ∈ V \ S adjacent, in Kd , to two vertices
of S, then these two vertices would be at distance at most 2d, so would be adjacent in
K2d,U . ��
Claims 1, 2 and 3 immediately allow to derive an approximation algorithm for Min
Partial p-Center. Even if this result is not strictly used for Theorem 1, it is
worth to mention and it helps understand the main ideas of Algorithm 1.

Proposition 6 Min Partial p-Center is polynomially 2-approximable and this
is the best possible constant ratio.

Proof We already noted that 2 is a lower bound for any constant approximation ratio of
Min Partial p-Center (Lemma 3). So, we only need to prove that this bound
can be guaranteed.
For a given instance (G,U ), we can compute SL (all distances d(i, j), i, j ∈ V ) in
O(n3). Then, for any d ∈ SL , we can compute amaximal independent set Sd of K2d,U

and then select Sd̃ , where d̃ ∈ argmin
d∈SL,|Sd |≤p

(r(Sd)). In other words, Sd̃ is of minimum

value among all Sds of cardinality at most p.
Denote r∗

U the minimum partial radius of a p-center in (G,U ). r∗
U ∈ SL , so we can

consider the set Sr∗
U
corresponding to d = r∗

U . Since Sr∗
U
is an independent set of

K2r∗
U ,U , Claim 3 ensures that it is a strong independent set of K2r∗

U
. On the other hand,

by definition of 2r∗
U , there is a p-center of partial radius 2r

∗
U in (G,U ) that can be seen

as a partial dominating set of (K2r∗
U
,U ) and then, Claim 1 ensures that |Sr∗

U
| ≤ p.

Consequently, d̃ exists and r(Sd̃) ≤ r(Sr∗
U
). Using Claim 2, we deduce r(Sr∗

U
) ≤ 2r∗

U ,
which completes the proof. ��
Note that, using a binary search on the same model as the 2-approximation algorithm
for Min p-Center proposed in Hochbaum and Shmoys (1985), we can design a
2-approximation algorithm of complexity O(n2 log n) as soon as all distances between
two vertices in G are computed.
In the next section, we use similar ideas and the same claims to derive a polynomial
2-approximation algorithm for Min MAC p-Center (Algorithm 1).

5.3 Approximation algorithm for Min MAC p-Center

To simplify the description of Algorithm 1, we introduce some notations used in the
description of the algorithm. Given the instance G = (V , E, L), we denote by k
the number of MACs of G. These MACs are denoted by A1, . . . Ak and the related
articulation points are called a1, . . . ak (we may have ai = a j , i 	= j). As previously,
we define SL = {d(i, j), i, j ∈ V , }; for any d ∈ SL , we partition I = {1, . . . , k} into
I = I−

d � I+
d (� denotes the disjoint union), where I−

d = {i ∈ I ,max
x∈Ai

d(x, ai ) ≤ d}
and I+

d = {i ∈ I ,max
x∈Ai

d(x, ai ) > d}. MACs Ai for i ∈ I−
d are seen as small MACs

relative to d, while MACs Ai for i ∈ I+
d are seen as large ones. “No-solution output”

is any output we use to indicate that the problem has no feasible solution.
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Algorithm 1 2-approximation for Min MAC p-Center and Min PpCP
Input: Edge weighted graph G = (V , E, L) (lengths are non negative) and p ≥ 2.
Output: C , a MAC p-center if it exists.
1: Compute A1, . . . Ak , and a1, . . . ak ;
2: if k > p then No-solution output;
3: else
4: SL := {d(i, j), i, j ∈ V };
5: S̃L := ∅;
6: for d ∈ SL do
7: I−

d := {i ∈ I ,max
x∈Ai

d(x, ai ) ≤ d};
8: I+

d := {i ∈ I ,max
x∈Ai

d(x, ai ) > d};
9: Cd := ∅;
10: for i ∈ I−

d do
11: Select x ∈ Ai ;
12: Cd := Cd ∪ {x};
13: V ′

d := {v ∈ V , d(v, {ai , i ∈ I−
d }) > d};

14: Sd := ∅;
15: for i ∈ I+

d do
16: Select y ∈ argmax

x∈Ai

d(x, ai );

17: Sd := Sd ∪ {y};
18: while ∃v ∈ V ′

d , d(v, Sd) > 2d do
19: Sd := Sd ∪ {v};
20: if |Sd | ≤ p − |I−

d | then
21: S̃L := S̃L ∪ {d};
22: Cd := Cd ∪ Sd ;
23: d̃ := argmin

d∈S̃L
(r(Cd));

24: C := Cd̃ ;
25: return C .

The idea of the Algorithm is as follows:

1. We first compute all MACs A1, . . . , Ak and related articulation points a1, . . . , ak
using Tarjan’s Algorithm (Tarjan 1972).

2. If the number k of MACs is more than p, then there is obviously no solution.
3. Else, for every distance d ∈ SL , Algorithm 1 tries to compute a MAC p-center Cd

of radius at most 2d; only feasible MAC p-centers obtained through this process
will be kept and S̃L is the set of distances d for which it will occur;

4. Cd is built as follows:

(a) The algorithm selects one center per small MAC Ai , i ∈ I−
d ;

(b) For each i ∈ I−
d , all vertices at distance at most d from ai are allocated to the

related center (by definition of I−
d , this includes in particular all vertices of

Ai ).

123



Journal of Combinatorial Optimization (2024) 48 :9 Page 21 of 25 9

(c) V ′
d is the set of uncovered vertices. If possible, the algorithm completes Cd

with a partial (p − |I−
d |)-center of (G \ ⋃

i∈I−
d

Ai , V ′
d) of partial radius at most

2d. In this process, it uses the same ideas as in Proposition 6: it constructs a
maximal independent set Sd of K2d,V ′

d
while ensuring that it intersects all Ai s,

i ∈ I+
d . To this aim, it first selects one vertex in each of these components

before completing Sd greedily. Claim 5, given below, ensures that Sd has the
required property. If |Sd | ≤ p − |I−

d |, then d is added to S̃L;

5. The best solution Cd̃ , d ∈ S̃L is selected as an approximated solution for Min
MAC p-Center.

Theorem 1 analyzes the approximation guarantee of Algorithm 1. Its proof will require
three claims.

Claim 4 If C∗
MAC is an optimal MAC p-center of radius d∗, then d∗ ∈ S̃L.

Proof Since C∗
MAC has at least one center per MAC, C∗

MAC has at most
(
p − |I−

d∗ |)
centers in V \ ⋃

i∈I−
d∗

Ai . In addition, vertices in V ′
d∗ cannot be associated with (i.e.,

evacuated to) centers in
⋃

i∈I−
d∗

Ai since these centers are at distance more than d∗. This

means that C∗
MAC ∩ (V \ ⋃

i∈I−
d∗

Ai ) is a (p − |I−
d∗ |)-center of partial radius at most d∗

in (G \ ⋃

i∈I−
d∗

Ai , V ′
d∗).

As a consequence C∗
MAC ∩ (V \ ⋃

i∈I−
d∗

Ai ) is a partial dominating set in (Kd∗ , V ′
d∗).

Using Claims 1 and 3, we get |Sd∗ | ≤ |C∗
MAC ∩ (V \ ⋃

i∈I−
d∗

Ai )| ≤ p − |I−
d∗ |, which

means d∗ ∈ S̃L . ��
Claim 5 ∀d ∈ SL, Sd is a maximal independent set in K2d,V ′

d
that intersects all Ai s,

i ∈ I+
d .

Proof The algorithm initializes Sd by selecting, in each MAC Ai , i ∈ I+
d , a vertex

at maximum distance from ai . This ensures that, at Line 17, Sd includes one element
per MAC Ai , i ∈ I+

d and is an independent set (possibly empty) in K2d,V ′
d
. Indeed, if

yi , y j are respectively selected at Line 16 for i, j ∈ I+
d , i 	= j , then any path between

them passes through ai and a j (we may have ai = a j ) and is of length greater than
2d. Sd is a maximal independent set in K2d,V ′

d
since otherwise, a new vertex will be

added to it at Line 18. ��
Claim 6 If C∗

MAC is an optimal MAC p-center of radius d∗, then r(Cd∗) ≤ 2d∗.

Proof Consider first a vertex v ∈ V ′
d∗ and use the same argument as in the proof

of Proposition 6. We have d(v,Cd∗) ≤ d(v,Cd∗ \ ⋃

i∈I−
d∗

Ai ) ≤ r(Sd∗ , V ′
d∗). Using

Claims 2 and 5, we have r(Sd∗ , V ′
d∗) ≤ 2d∗ and thus:
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∀v ∈ V ′
d∗ , d(v,Cd∗) ≤ 2d∗. (8)

Consider now a vertex v ∈ V \ V ′
d∗ By definition of V ′

d∗ , it means that d(v, {ai , i ∈
I−
d∗}) ≤ d∗ and by definition of I−

d∗ , it ensures that ∃i ∈ I−
d∗ ,∀u ∈ Ai , d(v, u) ≤ 2d∗.

This ensures:
∀v ∈ V ′

d∗ , d(v,Cd∗) ≤ 2d∗. (9)

Eqsuations8 and 9 ensure r(Cd∗) ≤ 2d∗. ��
Theorem 1 Algorithm 1 is a polynomial 2-approximation algorithm for Min MAC
p-Center and this is the best possible constant ratio.

Proof We already noted that 2 is a lower bound for constant approximation ratios
(Proposition 5). So, we only need to prove that this bound can be guaranteed.
Assume that k ≤ p; then the instance ofMin MAC p-Center has feasible solutions
and thus, also an optimal solution.
Fix a distance d ∈ SL . Note first that, by definition of I−

d and I+
d , V ′

d computed at
line 13 satisfies V ′

d ⊂ V \ ⋃

i∈I−
d

Ai and ∀i ∈ I+
d , Ai ∩ V ′

d 	= ∅. Then, the algorithm
computes the set Sd from Lines 14 to Line 19.
S̃L , computed by the algorithm (Lines 21), is the set of distances d such that Sd is of
size at most p − |I−

d |. Claim 4 ensures that S̃L 	= ∅ and consequently d̃ computed at
Line 23 is well defined. Since d∗ and d̃ are both in S̃L , the algorithm computes both
sets Cd∗ and Cd̃ by selecting one vertex per Ai , i ∈ I−

d∗ and one vertex per Ai , i ∈ I−
d̃
,

respectively (from Line 9 to Line 12) and completing with Sd∗ and Sd̃ , respectively.
Using Claim 5, this ensures that both Cd∗ and Cd̃ are MAC p-centers.
Finally, Cd̃ is selected as approximated solution and Line 23 ensures that

r(Cd̃) ≤ r(Cd∗) (10)

Claim 6 and Eq.10 imply r(Cd̃) ≤ 2d∗, which concludes the proof of Theorem 1. ��
We conclude this section with an easy remark on trees.

Proposition 7 Min MAC p-Center is polynomial on trees with general lengths.

Proof Given a treeT , for any distance d we consider the treeTd obtained fromT by
gluing to each pending vertex v a path of length d. Then, T has a MAC p-center of
radius d if and only if Td has a p-center of radius d. The result immediately follows
from the fact that p-Center is polynomial on trees. ��

5.4 Approximation results of Min PpCP

We immediately deduce from Theorem 1 and Proposition 4 the main result of this
section:

Theorem 2 For edge weighted graphs with lengths in [�, 2�], Algorithm 1 is a
polynomial time approximation algorithm for Min PpCP guaranteeing the ratio
4deg(G) + 2.
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In particular, on graphs with bounded degree, the ratio is constant:

Corollary 4 Min PpCP is constant approximable for graphs of bounded degree and
edge lengths in [�, 2�].
In the specific case of trees, using Proposition 3 and the analysis of Proposition 4, we
get:

Corollary 5 There is a polynomial algorithm for Min PpCP guaranteeing the ratio 3
on trees with all edge values 1.

Remark 2 Note however that we leave open the problem of whether Min PpCP is
NP-hard or polynomial on trees.

6 Conclusion

In this paper, we strengthen the analysis of Min PpCP initiated in Demange et al.
(2018). Former hardness results for this problem motivate devising polynomial
approximation algorithms, the main objective of this work. We propose a constant
approximation for a large class of instances of Min PpCP using an approximation
preserving reduction from Min MAC p-Center. This result holds for graphs of
bounded degree and with edge lengths in [�, 2�]. To our knowledge, this is the first
approximation result for this problem and in addition, it holds for a class of instances
on which all known hardness results apply. This class also includes natural particular
cases arising in the context of wild fire management application that motivated this
study. These results provide a first gap between constant approximation ratios and the
hardness in approximation. Narrowing this gap for intermediate classes of graphs is
a natural open question for further researches. In Sect. 5, we even show a stronger
approximation result on trees. This motivates the problem of whether Min PpCP is
NP-hard or polynomial on trees, a question that we leave open.
Proposition 4 and Theorem 2 are valid for the case where edge lengths lie in [�, 2�].
Finding polynomial cases and approximation results for Min PpCP with general
length system remains an important open question that would require new methods or
tools.
Finally, when considering the feasibility conditions for Min PpCP, we have intro-
duced the notion of minimal articulation components (MACs) and the related Min
MAC p-Center Problem. We have shown that this problem is 2-approximable and
that this is the best possible constant approximation ratio (Theorem 1). It is also
polynomial on trees. Strengthening the study of this notion and the complexity and
approximation results for this problem on specific classes of instances is another ques-
tion raised by the paper.
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6.1 List of problems

Min p-Center
Instance: An edge-weighted graph G = (V , E, L) and an integer p
Feasible solutions: Any p-center C ⊂ V , |C | ≤ p
Objective: Minimize r(C) = max

v∈V d(v,C).

Min PpCP
Instance: An edge-weighted graph G = (V , E, L) and an integer p

; the instance is denoted (G, p)
Feasible solutions: Any p-center C ⊂ V , |C | ≤ p satisfying E(C) < ∞
Objective: Minimize E(C).

Min MAC p-Center
Instance: An edge-weighted graph G = (V , E, L) and an integer p
Feasible solutions: Any p-center C ⊂ V , |C | ≤ p that intersects all Minimal

Articulation Components.
Objective: Minimize r(C).

Min Partial p-Center
Instance: An edge-weighted graph G = (V , E, L), a subset U ⊂ V

and an integer p
Feasible solutions: Any p-center C ⊂ V , |C | ≤ p
Objective: Minimize r(C,U ).
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