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Simultaneous Topology Estimation and Synchronization of Dynamical
Networks with Time-varying Topology

Nana Wang, Esteban Restrepo, and Dimos V. Dimarogonas

Abstract— We propose an adaptive control strategy for
the simultaneous estimation of topology and synchroniza-
tion in complex dynamical networks with unknown, time-
varying topology. Our approach transforms the problem of
time-varying topology estimation into a problem of estimating
the time-varying weights of a complete graph, utilizing an
edge-agreement framework. We introduce two auxiliary net-
works: one that satisfies the persistent excitation condition
to facilitate topology estimation, while the other, a uniform-
δ persistently exciting network, ensures the boundedness of
both weight estimation and synchronization errors, assuming
bounded time-varying weights and their derivatives. A rele-
vant numerical example shows the efficiency of our methods.

I. INTRODUCTION

Dynamical networks, exemplified by a collection of com-
ponents through a communication network, are increasingly
prevalent in various fields, including robotics, autonomous
vehicles, distributed computing [1] and biological systems
[2]–[4]. The structure of these networks, outlining the inter-
action patterns among the components, is crucial to shaping
the overall behaviour of the networks. However, in many
practical scenarios, the topology structure of the network
may not be known a priori or be subject to changes, posing
a substantial challenge to understanding the fundamental
principles for dynamical networks and further control.

There have been many works on addressing network
estimation problems, including optimization-based methods,
knock-out methods [5], and adaptive control-based meth-
ods [6], [7], among others, as highlighted in [8]. Static
topology estimation problems are addressed by constructing
a synchronized network or by identifying the network by
knocking out nodes in [5]–[7]. As for time-varying topology
estimation, machine learning methods have been applied to
estimate network topology, as discussed in [9], based on the
assumption of either smooth parameter changes or piece-
wise constant variations. The unknown switching topology is
estimated through adaptive synchronization, specifically un-
der the premise of piece-wise constant changes in switching
topology [10]. However, these works, including those previ-
ously mentioned, primarily focus on the problem of topology
estimation, overlooking the application of this topological
information in further analysis or control of the network.
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When the topology is static and unknown, a combination
scheme between topology estimation and control tasks is
to identify the topology first, and then use the identified
topology for control tasks. After the topology is identi-
fied, the network can be controlled for complex tasks by
coordination. A combined scheme of topology estimation
and control was proposed by switching reference signals in
[11]. A method in [12] that realizes topology estimation and
synchronization simultaneously was presented by tracking
an auxiliary system which synchronizes after identifying
topology. However, these methods fail when the topology
is time-varying due to their assumptions of static topology.

This paper proposes an adaptive-control-based method to
address the simultaneous topology estimation and synchro-
nization problem for dynamical networks with time-varying
topology. The proposed methods guarantee the boundedness
of weight estimation and synchronization errors assuming
bounded weights and bounded weight derivatives. A scheme
of combining the topology estimation and synchronization
under time-varying topology is proposed, by estimating the
time-varying topology and employing the estimated topology
into the control input to synchronize the network.

The structure of the remainder of this paper is as follows:
we formulate the problem in Section II. Section III introduces
a control scheme and adaptive parameter updating laws for
pure topology estimation. In Section IV, we present the solu-
tion to the topology estimation and synchronization problem.
Section V verifies the proposed scheme’s effectiveness with a
numerical example. Finally, Section VI concludes the paper.

II. PRELIMINARIES

A. Notations

B(∆) ⊂ Rn denotes a closed ball of radius ∆ centered
at the origin, i.e. B(∆) := {x ∈ Rn : |x| ≤ ∆}. Denote
∥ ·∥ the Euclidean norm of vectors and the induced L2 norm
of matrices. The pseudoinverse of a matrix X is denoted
as X+. Denote | · | the absolute value of real numbers.
Denote G = (V, E ,W ) a directed weighted graph, where
V = {1, 2, . . . , N} is a node-set and E ⊆ V2 is an edge
set with M edges, characterizing the information exchange
between agents. A directed edge ek := (i, j) ∈ E , indicates
that agent j has access to information from node i, and a
positive diagonal matrix W ∈ RM×M , whose diagonal wk

entries represent the weights of the edges. We denote time-
varying topology as G(t) = (V, E(t),W (t)), where the edge
set E(t) and the weight wk(t) are time-varying.



B. Model and problem formulation

We consider a multi-agent system where the agents inter-
act over an unknown time-varying topology described by a
directed graph G(t) = (V, E(t),W (t)), which is assumed
to be connected. Without loss of generality, each agent’s
dynamics is described as follows

ẋi = fi(xi)− c

N∑
j=1

wij(t)(xi − xj) + ui i ∈ V, (1)

where xi ∈ R is the state of agent i; fi : R → R is a smooth
function, denoting its internal dynamics; wij(t) : R≥0 → R
denotes the unknown weight function of the interconnection
between agents i and j; c is a positive constant, denoting
the strength of connectivity; ∀t > 0, wij(t) = 0 if the edge
ek=(i,j) /∈ E and wij(t) ̸= 0 if the edge ek=(i,j) ∈ E . Hence,
the edge set E(t) is time-varying depending on the values
of wij(t). The objective of the multi-agent system (1) is to
achieve consensus among the agents with external control
input under an unknown time-varying topology G(t). The
consensus problem considered here can also be extended to
formation control or other cooperation tasks. For each agent’s
internal dynamics, we assume the following.

Assumption 1: For each agent i, there exists a positive
constant Li such that

∥fi(x)− fi(y)∥ ≤ Li∥x− y∥ (2)

for all x, y ∈ R, where 1 ≤ i ≤ N .

Let E(t) : R≥0 → RN×M denote the (unknown) in-
cidence matrix function of G(t) from [1] and recall that
M denotes the number of edges. E⊙(t) : R≥0 → RN×M

denotes the (unknown) in-incidence matrix function of G,
defined as follows: [E⊙]ik (t) := −1 if i is the terminal node
of edge ek and [E⊙]ik (t) := 0 otherwise. Then, denoting
x := [x1 . . . xN ]

⊤, F (x) := [f1(x1) . . . fN (xN )]
⊤, and

u := [u1 . . . uN ]
⊤, (1) can be written as

ẋ = F (x)− cE⊙(t)W (t)E(t)⊤x+ u. (3)

Since the edges of G(t) are time-varying, the dimension
of the incidence matrix function E(t) is not fixed. To
represent the unknown time-varying graph, we resort to using
a complete graph whose weight of edges is unknown but the
number of edges is fixed. Denote the incidence matrix Ē and
in-incidence matrix Ē⊙ of a complete graph K(V, Ec, W̄ (t)),
where E ⊆ Ec. Denote the cardinality of Ec as M̄ and M =
N(N − 1). Let W̄ (t) := diag{w̄k(t)} where w̄k(t) ≡ wk(t)
if ēk ∈ E and w̄k = 0 if ēk ∈ Ec\E . This representation
transforms searching for the unknown graph into estimating
the weights of edges of the complete graph K. The weight
w̄k(t) is non-zero if the edge ēk of the complete graph exists
in the graph G to be identified. Rewrite (3) as

ẋ = F (x)− cĒ⊙W̄ (t)Ē⊤x+ u. (4)

Assumption 2: For any 0 < k ≤ N(N − 1), there exist
upper bounds wd and w′

d for w̄ij and ˙̄wij(t) such that

|w̄k(t)| ≤ wd, | ˙̄wk(t)| ≤ w′
d ∀t ≥ 0. (5)

Remark 1: Instead of considering a switching topology,
we consider continuous time-varying changes in the weight
of edges here, exploiting the potential robustness of our
design in the time-varying topology case. This assumption
contains the cases of adding new edges or removing the old
ones by changing the weight of edges in a bounded way.
For example, in the human immune cell activation process in
response to a pathogen, the concentration level of cytokines,
which facilitate communication between immune cells, is
smoothly time-varying [13]. This boundedness assumption
also means that wij and its derivative ẇij are bounded. •

Using the edge-agreement representation for networked
systems with a connected graph enables us to obtain an
equivalent reduced system. Defining the edge variable z :=
Ē⊤x, rewrite (4) as

ż = Ē⊤F (x)− cĒ⊤Ē⊙W̄ (t)z + Ē⊤u. (6)

Using suitable labelling of edges, we can partition the
incidence matrix of the complete graph K as

Ē =
[
ĒT ĒC

]
(7)

where ĒT ∈ RN×(N−1) is the incidence matrix of an
spanning tree GT ⊂ K and ĒC ∈ RN×(M̄−N+1) denotes the
incidence matrix of the remaining edges from [1]. Similarly,
partition the edge state as z =

[
z⊤T z⊤C

]⊤
, where zT ∈

R(N−1) are the states of the edges of the spanning tree GT
and zC ∈ RM̄−N+1 denote the states of the remaining edges.
Moreover, define

R := [ IN−1 T ] , T :=
(
Ē⊤

T ĒT
)−1

Ē⊤
T ĒC , (8)

with IN−1 denoting the N − 1 identity matrix. Based on
(7) and (8), we have Ē = ĒT R and z = R⊤zT . Then, we
obtain a reduced-order model of (6) as

żT = Ē⊤
T F (x)− cĒ⊤

T Ē⊙W̄ (t)R⊤zT + Ē⊤
T u. (9)

The topology estimation problem in (1) is transformed
into estimating the time-varying diagonal entries of the
matrix function W̄ (t) in (9). Meanwhile, the synchronization
problem for (1) is transformed into the stabilization problem
of the origin for the reduced-order system (9).

III. TOPOLOGY ESTIMATION UNDER BOUNDED
TIME-VARYING WEIGHTS

In this section, we introduce the external input u(t) to
estimate the unknown graph topology G(t) for the dynamical
systems (9). A refined control design to our previous work
addressing static topology estimation [12] will be used.

A. Control design and weight estimation laws

Denote w̄(t) := [w̄1(t) · · · w̄M̄ (t)]
⊤ ∈ RM̄ as the vector

of unknown weights, ŵ(t) := [ŵ1(t) · · · ŵM̄ (t)]
⊤ ∈ RM̄ as

its estimate, and Ŵ (t) := diag{ŵ(t)}.
Set the updating law

˙̂w = −cẐ(t)Ē⊤
⊙ĒT z̃T , (10)



where z̃T := zT − ẑT = Ē⊤
T x̃(t), x̃(t) := x(t) − x̂(t),

ẑ(t) := Ē⊤x̂(t), Ẑ(t) := diag{ẑ(t)}, and x̂(t) is an auxiliary
variable to be designed later.

Select the control input

u = −c1(x− x̂(t)) + ˙̂x(t) + cĒ⊙Ŵ (t)ẑ(t)−F (x̂(t)) (11)

where c1 is a positive constant.

B. Time-varying topology estimation

In this part, we analyze the effect of the time-varying
weights on the topology estimation and show that using our
design, the weight estimation errors remain bounded.

Define w̃(t) := w̄(t)− ŵ(t). Utilizing (9), (10) and (11),
we derive the closed-loop system as[

˙̃zT
˙̃w

]
=

[
−c1I − cL̄e −cĒ⊤

T Ē⊙Ẑ(t)

cẐ(t)Ē⊤
⊙ĒT 0

][
z̃T
w̃

]
+

[
Ē⊤

T F̃ (x, x̂)
˙̄w

]
, (12)

where L̄e := Ē⊤
T Ē⊙W̄R⊤ and F̃ (x, x̂) := F (x)−F (x̂(t)).

Proposition 1: Assume that the signal Ẑ(t) is bounded,
globally Lipschitz and satisfies that for any unit vector v ∈
RM̄ ∫ t+T

t

∥Ẑ(τ)v∥2dτ > µ,∀t ≥ 0. (13)

where T, µ > 0. With Assumptions 1 and 2, the edge weight
estimation errors w̃(t) of the multi-agent system (1) are
globally ultimately bounded, and all the closed-loop signals
are bounded, after applying update law (10) and the control
input (11). □

Proof: The closed-loop system (12) can be regarded as
a perturbed form of[

˙̃zT
˙̃w

]
=

[
−c1I − cL̄e −cĒ⊤

T Ē⊙Ẑ(t)

cẐ(t)Ē⊤
⊙ĒT 0

][
z̃T
w̃

]
. (14)

Since the graph is assumed to be connected, the eigenvalues
of edge Laplacian L̄e have positive real parts from [14].
Hence, −c1I − cL̄e is Hurwitz. And Ē⊤

T Ē⊙ has rank N − 1
since Ē⊤

T Ē⊙R
⊤ is full rank, as discussed in [14]. Then

(−c1I − cL̄eĒ
⊤
T Ē⊙) is controllable. If (−c1I − cL̄eĒ

⊤
T Ē⊙)

is controllable, and Z(τ) is piecewise-continuous, bounded
and satisfies (13), then global uniform exponential stability of
the origin for (14) follows from Theorem 5 [15] or Theorem
2.17 [16], [17] and the linearity of (14).

Denote ξ :=
[
z̃⊤T w̃⊤]⊤ ∈ RM̄+(N−1). From the global

exponential stability of (14) and from converse Lyapunov
theorems (Theorem 4.14 of [18]), there exists a Lyapunov
function V (t, ξ) : R≥0 × RM̄+(N−1) → R≥0 such that

β1∥ξ∥2 ≤ V (t, ξ) ≤ β2∥ξ∥2 (15)∥∥∥∥∂V∂ξ
∥∥∥∥ ≤ β3∥ξ∥, (16)

for some β1, β2, β3 > 0, and its derivative along the
trajectories of (14) satisfies

V̇ (t, ξ) ≤ −β4∥ξ∥2, β4 > 0. (17)

In view of Assumption 1, we can further obtain∥∥[Ē⊤
T [F (x)− F (x̂(t))]

]
k

∥∥ ≤ Lf∥z̃k∥, (18)

where Lf := max
i∈V

{Li}. Choose

V1(t, ξ) = 0.5∥z̃T ∥2 + 0.5∥w̃∥2. (19)

Along the trajectories of (12), its derivative is

V̇1(t, ξ) =− z̃⊤T (c1I + cL̄e))z̃T − z̃⊤T Ē
⊤
T F̃ (x, x̂) + w̃⊤ ˙̄w

≤− (c1 + cλminL̄e − Lf )∥z̃T ∥2 + ∥w̃∥∥ ˙̄w∥
=− c′1∥z̃T ∥2 + ∥w̃∥∥ ˙̄w∥,

(20)
where c′1 := c1 + cλmin{L̄e} − Lf and λmin{L̄e} is the
smallest eigenvalue of L̄e. The second inequality is obtained
using (18).

Let V ′(t, ξ) = V (t, ξ)+V1(t, ξ). In view of (18), (20) and
Assumption 2, its derivative along the trajectories of (12) is

V̇ ′(t, ξ) ≤− β4∥ξ∥2 +
∂V

∂z̃T

⊤
Ē⊤

T F̃ (x, x̂) +
∂V

∂w̃

⊤
˙̄w

− c′1∥z̃T ∥2 + ∥w̃∥∥ ˙̄w∥

≤δ
2

4

(∥∥∥∥ ∂V∂z̃T
∥∥∥∥2 + ∥∥∥∥∂V∂w̃

∥∥∥∥2
)

+
L2
f∥z̃T ∥2

δ2

− β4∥ξ∥2 + 2∥ ˙̄w∥2/δ2 + δ2∥w̃∥2/4− c′1∥z̃T ∥2

≤− β4∥ξ∥2 + β2
3δ

2∥ξ∥2/4 + δ2∥ξ∥2/4 + 2w′
d
2
/δ2

≤− β′
4∥ξ∥2 + β5,

(21)
where β′

4 := β4−β2
3δ

2/4− δ2/4, β5 := 2w′2
d /δ

2 and δ > 0,
and we choose c′1 that satisfies c′1 −L2

f/δ
2 > 0. The second

inequality is obtained by applying Young’s inequality. Then,
by properly choosing V and δ such that β′

4 > 0, the origin
of (12) is globally ultimately bounded from (15), (19) and
(21) by Theorem 4.18 in [18]. The estimation error ∥w̃∥ is
globally ultimately bounded and converges to Ωw̃ := {w̃ :
∥w̃∥ ≤ dw̃} with dw̃ =

√
β5/β′

4. By (10), (11), u(t) and
ŵ(t) are also bounded. Hence, the result follows.

Remark 2: Proposition 1 shows that for dynamical sys-
tems (1) with time-varying topology, the control input (11)
and weight estimation law (10) guarantee the boundedness
of the weight estimation errors ∥w̃∥ provided that Ẑ(t)
is persistently exciting. Besides, if the weights are fixed,
then the estimation errors ∥w̃∥ will be bounded and further
converge to zero. •

IV. SIMULTANEOUS TOPOLOGY ESTIMATION AND
SYNCHRONIZATION FOR TIME-VARYING NETWORKS

In this section, we explore simultaneous topology esti-
mation and synchronization for (4) with the time-varying
topology. We use the control input (11) in the following
scheme.

A. Design of updating laws and auxiliary system

Let ẑ(t) be the state of an auxiliary dynamical system. Set
the new updating law instead of (10) as

˙̂w = −cẐ(t)Ē⊤
⊙ĒT z̃T − σ1ŵ, (22)



where σ1 is a positive constant.
The updating law (22) adds σ1ŵ to guarantee the bound-

edness of ∥w̃∥ under the bounded derivation of ∥w∥.
Design the auxiliary dynamical system as

˙̂z = Ē⊤F (x̂)− c2ẑ + ψ(t, z̃T ) (23)

where c2 > Lf is a positive constant and the function
ψ(t, z̃T ) : R≥0 × RN−1 → RM̄ satisfies that

max

{
∥ψ(·)∥,

∥∥∥∥∂ψ(·)∂t

∥∥∥∥ ,∥∥∥∥∂ψ(·)∂z̃

∥∥∥∥} ≤ κ(∥z̃T ∥),∀t ≥ 0,

(24)
where κ : R≥0 → R≥0 is a continuous non-decreasing func-
tion. Define Ψ(t, z̃T ) ∈ RM̄×M̄ as a diagonal matrix func-
tion of ψ(·). Specifically, write Ψ(t, x1) := diag{ψ(t, x1)}.
Define Ψ′(t, z̃T ) : R≥0 × RN−1 → R(N−1)×M̄ . Let
Ψ′(t, z̃T ) = Ē⊤

T Ē⊙Ψ(t, z̃T ). Ψ′(t, z̃T ) is uniform δ-
persistently exciting (uδ-PE) with respect to z̃T as per
Definition 5 in [19].

B. Stability analysis of the unperturbed systems

Using (9), (11) and (22), we obtain the new closed-loop
system as[

˙̃zT
˙̃w

]
=

[
Ē⊤

T F̃ (x, x̂)− (c1I + cL̄e)z̃T − cĒ⊤
T Ē⊙Ẑ(t)w̃

cẐ(t)Ē⊤
⊙ĒT z̃T

]
+

[
0

˙̄w + σ1ŵ

]
.

(25)
Similar to the previous analysis, the closed-loop system

(25) can be seen as the perturbed version of[
˙̃zT
˙̃w

]
=

[
Ē⊤

T F̃ (x, x̂)− (c1I + cL̄e)z̃T − cĒ⊤
T Ē⊙Ẑ(t)w̃

cẐ(t)Ē⊤
⊙ĒT RR

⊤z̃T

]
.

(26)
Before studying the stability of (25), we first analyze

the stability of the unperturbed system (26). Replacing
x1, x2, A(t, x1), B, Φ and ϕ by z̃T , w̃, Ē⊤

T F̃ (x, x̂) −(
c1I + Ē⊤

T Ē⊙W̄R⊤) z̃T , Ē⊤
T Ē⊙, Ẑ and ẑ, respectively, we

can represent (26) as[
ẋ1
ẋ2

]
=

[
A(t, x1) +BΦ(t, x1)

⊤x2
−Φ(t, x1)B

⊤x1

]
(27)

where x⊤ :=
[
x⊤1 x⊤2

]
, Φ(t, x1) : R≥0 × RN−1 → RM̄×M̄

and ϕ(t, x1) : R≥0×RN−1 → RM̄ are piece-wise continuous
in t and continuous in x1. Moreover, Φ(t, x1) is diagonal
with Φ(t, x1) := diag{ϕ(t, x1)}. Assume the following:

Assumption 3: The function A is locally Lipschitz in x
uniformly in t. Moreover, there exists a continuous nonde-
creasing function ρ1 : R≥0 → R≥0 such that ρ1(0) = 0 and
for all (t, x1) ∈ R× RN−1, ∥A(t, x1)∥ ≤ ρ1(∥x1∥).

Assumption 4: There exists a locally Lipschitz function
V1 : R≥0 ×RN+M−1 → R≥0, and α1, α2, α3 > 0 such that

α1∥x∥2 ≤ V1(t, x) ≤ α2∥x∥2 (28)

and its derivative along the trajectories of (27) satisfies

V̇1(t, x) ≤ −α3∥x1∥2. (29)

Then we state the following lemma.
Lemma 1: Let Assumptions 3 and 4 hold. Assume

BΦ⊤(t, x1) is uδ-PE with respect to x1 and Φ(t, x1) satisfies

max

{
∥Φ(·)∥,

∥∥∥∥∂Φ(·)∂t

∥∥∥∥ ,∥∥∥∥∂Φ(·)∂x1

∥∥∥∥} ≤ ρ(∥x1∥),∀t ≥ 0,

(30)
where ρ : R≥0 → R≥0 is a continuous non-decreasing
function. Then the origin of (27) is uniformly semiglobally
asymptotically stable. □

Proof: Consider a Lyapunov function candidate as

V (t, x) := V1(t, x) + εV4(t, x)

V4(t, x) := V2(t, x) + V3(t, x)

V2(t, x) := −x⊤1 BΦ(t, x1)
⊤x2

V3(t, x) := −
∫ ∞

t

e(t−τ)
∥∥BΦ(τ, x1)

⊤x2
∥∥2 dτ,

(31)

where V1(t, x) is given in Assumption 4 and ε > 0. Using
the uδ-PE of BΦ⊤, for all (t, x) ∈ R× B(∆), one has

V3(t, x) =−
∫ ∞

t

e(t−τ)x⊤2 Φ(τ, x1)B
⊤BΦ(τ, x1)

⊤x2dτ

≤−
∫ t+T

t

e(t−τ)x⊤2 Φ(τ, x1)B
⊤BΦ(τ, x1)

⊤x2dτ

≤(e−T − 1)µ∥x2∥2,
(32)

where b′ := (e−T −1)µ, µ and T are defined from Definition
5 in [19]. In view of (30) and (32), V4(t, x) in (31) satisfies,
for all (t, x) ∈ R× B(∆),

V4(t, x) ≤ b∥x1∥ρ(∥x1∥)∥x2∥ − b′∥x2∥2, (33)

where b := ∥B∥. Define bρ := bρ(∆). In view of (33),
εV4(t, x) satisfies on R× B(∆)

−ερ(∆)∥x2∥2 − εbρ∥x1∥∥x2∥ ≤ εV4(t, x) ≤ εbρ∥x1∥∥x2∥
− εb′∥x2∥2.

(34)
So, from (28) and (34), for any ∆ > 0 and for a sufficiently
small ε, there exist α∆ > 0 and α∆ > 0 such that for all
(t, x) ∈ R× B(∆)

α∆∥x∥2 ≤ V (t, x) ≤ α∆∥x∥2. (35)

We proceed to obtain the derivative of V4(t, x) along the
trajectories of the system (27). First, we have

V̇2(t, x) =∥Φ(t, x1)B⊤x1∥2 − x⊤2 Φ(t, x1)
⊤B⊤A(t, x1)

− ∥BΦ(t, x1)x2∥2 − x⊤2

˙︷ ︸︸ ︷
Φ(t, x1)B

⊤x1,
(36)

where
˙︷ ︸︸ ︷

Φ(t, x1) :=
∂Φ(t,x1)

∂t + ∂Φ(t,x1)
∂x1

. Next, we have

∂V3
∂x1

= −
∫ ∞

t

2e(t−τ)x⊤2 Φ(τ, x1)B
⊤B

[
∂Φ(τ, x1)

x1

⊤
x2

]
dτ

∂V3
∂x2

= −
∫ ∞

t

2e(t−τ)Φ(τ, x1)B
⊤BΦ(τ, x1)

⊤x2dτ

∂V3
∂t

=
∥∥BΦ(t, x1)

⊤x2
∥∥2−∫ ∞

t

∂

∂t

[
e(t−τ)

∥∥BΦ(τ, x1)
⊤x2
∥∥2]dτ.



From Assumption 3, (30), (36) and (37), we obtain an
upper bound function for the derivative of V4(t, x). Define

ρ̄(r, s) := bρ
[
(2 + 2b2ρ)rs+ (1 + 2b2ρ)ρ1(r)s+ bρr

2 + 2b2ρs
2
]
.

Then, for (t, x) ∈ R× B(∆),

V̇4(t, x) ≤ ρ̄(∥x1∥, ∥x2∥)− b′∥x2∥2. (37)

Using (29) and (37), the derivative of V (t, x) satisfies, for
all (t, x) ∈ R× B(∆),

V̇ (t, x) ≤− α3∥x1∥2 − ε(2bρ + 2b3ρ)∥x1∥∥x2∥+ 2εb3ρ∥x2∥2

+ εb2ρ∥x1∥2 + (bρ + 2b3ρ)ρ1(∥x1∥)∥x2∥ − εb′∥x2∥2.

Note that b′ = (e−T − 1)µ. Choosing µ and T such that
b′ ≥ b2ρ + 2b3ρ + β′ and β′ > 0 yields

V̇ (t, x) ≤−
(
α3 −

(
4 + b2ρ + 4b4ρ

)
ε
)
∥x1∥2 − εβ′∥x2∥2

+ (1 + 4b4ρ)ερ
2
1(∥x1∥).

Selecting ε sufficiently small such that α3 −
ε
(
4 + b2ρ − 4b4ρ

)
− ε(1 + 4b4ρ)ρ1(|∆|)/|∆|2 > α, yields

V̇ (t, x) ≤− α∥x1∥2 − β∥x2∥2, (38)

where β = εβ′. Therefore, by Theorem 4.9 in [18], for
all (t, x) ∈ R × B(∆), the origin of (27) is semi-globally
uniformly asymptotically stable from (35) and (38).

Remark 3: Contrary to [12] which studies the stability
where the unknown parameters are defined in a certain set,
Lemma 1 analyzes the stability for (27) when the parameters
are unknown and fixed. The result from Lemma 1 yielding
uniform global asymptotical stability is thus stronger than
the case of uniform practical stability derived in [12]. •

C. Simultaneous topology estimation and synchronization

Considering the time-varying weights as the disturbance of
system (27), we analyze the robustness of system (25) under
time-varying topology in Proposition 2, based on Lemma 1.

Proposition 2: Let Assumptions 1 and 2 hold. Then, the
origin of the closed-loop system (25) with the update law
(22) and control input (11), is uniformly semi-globally stable
with ẑ(t) given by the update law (23). Its weight estimation
errors w̃ are ultimately bounded, and converge to a set Ωw̃.
Furthermore, the edge states z are also ultimately bounded,
and converge to a set Ωz . □

The sets Ωw̃ and Ωz are defined in the proof that follows.
Proof: We first show that ẑ(t) is uδ-PE with respect to

z̃T . Denote ξ :=
[
z̃⊤T w̃⊤]⊤. Define V1(t, ξ) as in (19). Its

derivative along (25) is

V̇1(t, ξ) =− z̃⊤T (c1I + cL̄e))z̃T − z̃⊤T Ē
⊤
T F̃ (x, x̂) + w̃⊤ ˙̄w

+ σ1 ˙̄w⊤ŵ

≤− (c1 + cλminL̄e))∥z̃T ∥2 − z̃⊤T Ē
⊤
T F̃ (x, x̂)

− σ1∥w̃∥2 + ∥w̃∥∥ẇ∥+ σ1∥w̃∥∥w̄∥
≤ − c′1∥z̃T ∥2 − σ′

1∥w̃∥2 + d

≤− c′′1∥ξ∥2 + d,
(39)

where c′1 is defined in (20), σ′
1 := σ1−0.5(σ1+1)/δ2 > 0,

d := 0.5δ2(σ1|wd|2 + |w′
d|2) and c′′1 = min{c′1, σ′

1}.
From (19) and (39), the system (25) is globally uni-

formly stable [18] and ξ converges to the set Ω := {ξ :
∥ξ∥ ≤

√
d/c′′1}. Therefore, the solutions ξ(t) are ultimately

bounded from Theorem 4.18 in [18].
Choose the Lyapunov function V5(ẑ) := 0.5∥ẑ∥2. Its

derivative (23) along the trajectories of the auxiliary system
(23) satisfies

V̇5(ẑ) =− c2ẑ
⊤ẑ + ẑ⊤Ē⊤F (x̂) + ẑ⊤ψ(t, z̃T )

≤− c2∥ẑ∥2 + Lf∥ẑ∥2 + ∥ẑ∥∥ψ(t, z̃T )∥
≤ − c′2|ẑ|2 + |κ(∥z̃T ∥)|2 ≤ −c′2∥ẑ∥2 + σ,

(40)

where c′2 := c2−Lf −0.25. The third inequality is obtained
by (24) and Young’s inequality. As the solution z̃T (t) is
uniformly stable, there exists σ > 0 such that |κ(∥z̃T ∥)|2 ≤
σ for all t ≥ 0. The last inequality follows. Similarly, from
(40) the solutions ẑ(t), are ultimately bounded.

In Lemma 2 in Appendix I, x and w in (48) correspond
to [z̃⊤T w̃⊤]⊤ and ẑ respectively here. From (23), (24)
and (25), the inequalities (49) and (50) hold. (23) implies
f1(t, w) ≤ l∥w∥ with l := c2 + Lf in Lemma 2. Based on
the boundedness of ξ and ẑ(t), (51) holds. Now, since all the
assumptions in Lemma 2 in Appendix I are satisfied, BẐ(t),
given by the update law (23), is uδ-PE with respect to z̃T .

Next, we will analyze the stability of (25). For A(t, x1) in
(25), there exists a function ρ1(∥x1∥) := k∥x1∥ where k :=
max{Lf + ∥c1I + Ē⊙W̄ Ē∥, Lf + ∥c1I + Ē⊤

T Ē⊙W̄R⊤∥},
such that Assumption 3 is satisfied. Along the trajectories of
(26), the derivative of V1(t, ξ) defined as (19) is

V̇1(t, ξ) =− (c1I + cL̄e))z̃
⊤
T z̃T − z̃⊤T Ē

⊤
T F̃ (x, x̂)

≤− c′1∥z̃T ∥2.
(41)

where c′1 is defined in (20). Hence, V1(t, ξ) satisfies Assump-
tion 4 with α1 = α2 := 1

2 and α3 := c′1. Now that all the
assumptions of Lemma 1 hold, the origin of system (26) is
concluded to be uniformly asymptotically stable.

Consider again V (t, ξ) defined in (31). In order to no-
tationally distinguish the derivatives of Vi(t, ξ) along the
trajectories of (25) and (26), we denote V̇ ′

i (t, ξ) as the
derivative of Vi(t, ξ) for (25) while V̇i(t, ξ) corresponds to
(26), where i = 1, 2, 3, 4. Denote ∆V ′

i = V̇ ′
i (t, ξ)− V̇i(t, ξ).

Based on (25), (26), (36), (37) and (41), ∆V ′
i (t, ξ) is

∆V ′
1 =− σ1∥w̃∥2 + w̃⊤ ˙̄w + σ1w̃

⊤w̄

∆V ′
2 =− z̃⊤T BΦ(t, z̃T )

⊤( ˙̄w + σ1w̄ − σ1w̃)

∆V ′
3 =−

∫ ∞

t

2e(t−τ)Φ(τ, z̃T )B
⊤BΦ(τ, z̃T )

⊤w̃dτ

· ( ˙̄w + σ1w̄ − σ1w̃).

(42)

According to (26) and (42), using Young’s inequality, we



have

∆V ′
1 ≤− (σ1 − δ2 − δ2σ2

1)|w̃|2 +
∥ ˙̄w∥2

4δ2
+

∥w̄∥2

4δ2
.

ε∆V ′
2 ≤ε(b2ρ + b2ρσ

2
1 +

σ2
1

4δ2
)∥z̃T ∥2 + εδ2∥w̃∥2

+ ε
∥ ˙̄w∥2

4
+ ε

∥w̄∥2

4
ε∆V ′

3 ≤ε(σ2
1b

4
ρ + b4ρ + 2σ1b

2
ρ)∥w̃∥2 + ε∥ ˙̄w∥2 + ε∥w̄∥2,

(43)
where δ > 0, bρ := bρ(∆) defined in (34) and b := ∥Ē⊤

T Ē⊙∥
for all (t, x) ∈ R× B(∆).

For the closed-loop system (25), based on (38) and (43),
V̇ ′(t, ξ) becomes

V̇ ′(t, ξ) =V̇ (t, ξ) + ∆V ′
1 + ε∆V ′

2 + ε∆V ′
3

≤− α∥z̃T ∥2 − β∥w̃∥2 + (δ2 − σ1 + δ2σ2
1)∥w̃∥2

+
∥w̄∥2

4δ2
+ ε(2σ1b

2
ρ + σ2

1b
4
ρ + b4ρ + δ2)∥w̃∥2

+ ε(b2ρ + b2ρσ
2
1 +

σ2
1

4δ2
)∥z̃T ∥2 +

∥ ˙̄w∥2

4δ2

+ ε
∥ ˙̄w∥2

4
+ ε

∥w̄∥2

4
.

(44)
Choosing β1 := β+σ1−δ2−σ2

1δ
2−ε(2σ1b2ρ+σ2

1b
4
ρ+ b

4
ρ+

δ2) > 0 and α′ := α− ε(b2ρ+ b2ρσ2
1 +0.25σ2

1/δ
2) > 0 yields

V̇ ′(t, ξ) ≤− α′∥z̃T ∥2 − β1∥w̃∥2 + dξ

≤− c3∥ξ∥2 + dξ,
(45)

where β is defined in (38), c3 := min{α′, β′} and dξ :=√
(1 + 4δ2ε)(w2

d + w′2
d )/4δ

2. Since β1 depends on µ and T
from Definition 2, it is possible to choose β1 > 0. Parameter
ε is chosen to be sufficiently small and α3 = c′1 can be
chosen to be sufficiently large so that α′ > 0. Therefore,
the solution ξ of (25) converges to Ωξ := {ξ : ∥ξ∥ ≤ dξ}
with dξ :=

√
d/c3. The weight estimation errors converge

to Ωw̃ := {w̃ : ∥w̃∥ ≤
√
d/c3}. Furthermore, we obtain

the bound of synchronization errors by z = R⊤zT and
zT = z̃T + ẑT . According to (40), ẑT converges to ΩẑT :=
{ẑT : ∥ẑT ∥ ≤ dẑT = ∥ρ(∥dξ∥)∥/c′2}. The edge state z
thus converges to Ωz := {z : ∥z∥ ≤ ∥R⊤∥∥dz∥} where
dz = [dξ dẑT ].

V. SIMULATION

We consider a network (1) with 6 agents with a time-
varying communication topology with w̄(t) in (4) as

w̄(t) =[0.7 + 0.02 sin(0.02t), 0.8 + 0.1 cos(0.01t), 0.6+

0.02 sin(0.5πt), 0.25, 0.4, 0.02 cos(0.05πt) + 0.45,

01×15, 0.05 cos(0.01πt) + 0.3, 0.6, 0.2, 01×5, 0.5]
⊤

where 01×N denotes N -dimensional zero row vector. Here,
we simulate the network (1) with fi(xi) = xi and c = 1. Use
control input (11) and weight updating law (22) and design
the auxiliary system (23). The control gains are chosen as
c1 = 2, c2 = 1.3, σ1 = 0.001. Choose a uδ-PE function from
(23) referring to [12] as

ψ(t, z̃T ) =(Ē⊤)+ tanh(κĒT z̃T )p(t),

p(t) =5 sin(0.5πt) + 4 cos(2πt)− 6 sin(8πt) + sin(πt)

− 4 cos(10πt) + 2 cos(6πt) + 3 sin(3πt).

The simulation results are presented in Figs 1-4. Fig 1
and 2 represent the evolution of the estimated weights and
the errors between the estimated weight and the time-varying
weight. Fig 3 shows the evolution of synchronization errors
z. Fig 4 displays the evolution of state z̃T . As expected from
Proposition 2, the estimation errors, z̃T and synchronization
errors z are bounded from Fig. 2, 3 and 4 under the time-
varying topology. From Figs. 1 and 2, the real time-varying
weights are in the line segments whose centres are the
predicted weight in Fig. 1 and whose radii are the weight
estimation errors. Another observation is that the bounds of
the synchronization errors z are bigger than the bounds of the
estimation weight errors w̃, which responds to the analysis in
the proof part of Proposition 2. We also tried different values
of c2, and we found that increasing the value of c2 could get
lower synchronization errors while increasing the bound of
the weight estimation errors, which correspond to the form
(23) of the auxiliary system ẑ. Hence, keeping a certain
level of excitation for z̃T is beneficial to estimating the time-
varying weights, while it deteriorates the synchronization.

VI. CONCLUSIONS

In this paper, we introduce an adaptive control-based ap-
proach for simultaneous estimation of time-varying topology
and synchronization of a complex dynamical network. We
design an adaptive-control-based scheme to stimulate the
system to ensure the boundedness of topology estimation
errors. This is achieved through the development of an
auxiliary system characterized by either persistent excitement
or uniform δ persistent excitement. The first auxiliary system
which is PE, enables us to bound the edge weight estimation
errors. The latter one which is uniformly δ persistently
exciting gives the boundedness of both weight estimation
errors and synchronization errors, provided the weights and
their derivatives are bounded. In terms of further work, we
aim to enhance the topology estimation performance while
considering control tasks under time-varying topology.

REFERENCES

[1] M. Mesbahi and M. Egerstedt, Graph theoretic methods in multiagent
networks. Princeton University Press, 2010.

[2] J.-Y. Moon, U. Lee, S. Blain-Moraes, and G. A. Mashour, “General
relationship of global topology, local dynamics, and directionality
in large-scale brain networks,” PLoS computational biology, vol. 11,
no. 4, p. e1004225, 2015.

[3] A. I. Luppi and E. A. Stamatakis, “Combining network topology
and information theory to construct representative brain networks,”
Network Neuroscience, vol. 5, no. 1, pp. 96–124, 2021.

[4] J. Shilts, Y. Severin, F. Galaway, N. Müller-Sienerth, Z.-S. Chong,
S. Pritchard, S. Teichmann, R. Vento-Tormo, B. Snijder, and G. J.
Wright, “A physical wiring diagram for the human immune system,”
Nature, vol. 608, no. 7922, pp. 397–404, 2022.

[5] M. Nabi-Abdolyousefi and M. Mesbahi, “Network identification via
node knockout,” IEEE Transactions on Automatic Control, vol. 57,
no. 12, pp. 3214–3219, 2012.

[6] J. Zhou and J.-a. Lu, “Topology identification of weighted complex
dynamical networks,” Physica A: Statistical Mechanics and Its Appli-
cations, vol. 386, no. 1, pp. 481–491, 2007.



Fig. 1: Estimated weight
of time-varying topology

Fig. 2: Estimation errors
of time-varying weights.

Fig. 3: Evolution of syn-
chronization errors z

Fig. 4: Evolution of state
z̃T

[7] S. Zhu, J. Zhou, G. Chen, and J.-A. Lu, “A new method for topology
identification of complex dynamical networks,” IEEE Transactions on
Cybernetics, vol. 51, no. 4, pp. 2224–2231, 2021.

[8] M. Timme and J. Casadiego, “Revealing networks from dynamics: an
introduction,” Journal of Physics A: Mathematical and Theoretical,
vol. 47, no. 34, p. 343001, 2014.

[9] M. Kolar, L. Song, A. Ahmed, and E. P. Xing, “Estimating time-
varying networks,” The Annals of Applied Statistics, pp. 94–123, 2010.

[10] K. Li, D. Yang, C. Shi, and J. Zhou, “Identifying the switching
topology of dynamical networks based on adaptive synchronization,”
Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 33,
no. 12, 2023.

[11] N. Wang and D. V. Dimarogonas, “Finite-time topology identification
for complex dynamical networks,” in 2023 62nd IEEE Conference on
Decision and Control (CDC). IEEE, 2023, pp. 425–430.

[12] E. Restrepo, N. Wang, and D. V. Dimarogonas, “Simultaneous topol-
ogy identification and synchronization of directed dynamical net-
works,” IEEE Transactions on Control of Network Systems, 2023.

[13] K. Talaei, S. A. Garan, B. d. M. Quintela, M. S. Olufsen, J. Cho,
J. R. Jahansooz, P. K. Bhullar, E. K. Suen, W. J. Piszker, N. R.
Martins et al., “A mathematical model of the dynamics of cytokine
expression and human immune cell activation in response to the
pathogen staphylococcus aureus,” Frontiers in Cellular and Infection
Microbiology, vol. 11, p. 711153, 2021.

[14] D. Mukherjee and D. Zelazo, “Robustness of consensus over weighted
digraphs,” IEEE Transactions on Network Science and Engineering,
vol. 6, no. 4, pp. 657–670, 2019.

[15] A. Morgan and K. Narendra, “On the stability of nonautonomous
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APPENDIX I
ON δ-PERSISTENCY OF EXCITATION

Definition 1 (Persistency of excitation ): A function ϕ :
R≥0 → Rn×m is said to be persistently exciting, if there
exist positive T and µ such that for any unit vector v ∈ Rm,∫ t+T

t

∥ϕ(τ)v∥2dτ ≥ µ,∀t ≥ 0. (46)

Partition x ∈ Rn as x :=
[
x⊤1 x⊤2

]⊤
where x1 ∈ Rn1 and

x2 ∈ Rn2 . Define the set D1 := (Rn1\{0}) × Rn2 and the

function ϕ : R × Rn → Rm where t 7→ ϕ(t, x) is locally
integrable. The following defines uniformly δ-persistently
exciting from [20, Lemma 1].

Definition 2: [Uniformly δ-persistency of excitation] If
x 7→ ϕ(t, x) is continuous uniformly in t, then ϕ(·, ·) is
uniformly δ-persistently exciting (uδ-PE) with respect to x1
if and only if for each x ∈ D1 there exist positive T and µ
such that for any unit vector v ∈ Rm∫ t+T

t

∥ϕ(τ, x)v∥2dτ ≥ µ,∀t ≥ 0. (47)

The next Lemma establishes that when a strictly proper
stable filter is subject to a bounded disturbance, and driven
by a uδ-PE input, its output retains the property of being uδ-
PE. The lemma, originally introduced in [19], didn’t account
for the presence of a bounded disturbance.

Lemma 2 (Filtration property): Let ϕ : R≥0 × Rn →
Rp×q and consider the system[

ẋ
ω̇

]
=

[
f(t, x, ω)

f1(t, ω) + f2(t, x)ω + ϕ(t, x)

]
(48)

where f1 : R≥0×Rn → Rp×q is Lipschitz in ω uniformly in
t and measurable in t and satisfies ∥f1(·)∥ ≤ l∥ω∥ for all t;
f2 : R≥0 × Rn → Rp×p is locally Lipschitz in x uniformly
in t and measurable in t. Assume that ϕ(t, x) is uδ-PE with
respect to x. Assume that ϕ is locally Lipschitz and there
exists a non-decreasing function α : R≥0 → R≥0, such that,
for all (t, x) ∈ R≥0 × Rn:

max

{
∥ϕ(·)∥, ∥f2(·)∥,

∥∥∥∥∂ϕ(·)∂t

∥∥∥∥ ,∥∥∥∥∂ϕ(·)∂x

∥∥∥∥} ≤ α(∥x∥).
(49)

Assume that f(·) satisfies that

max {∥f(·)∥} ≤ α(∥x∥) + k, (50)

where k is a positive constant. Denote w =
(w1, w2, · · · , wp)

⊤ and w⊤
i ∈ Rq with i = 1, 2, · · · , q. If

all solutions xϕ(t), defined as xϕ :=
[
x⊤ ω1 ω2 · · · ωp

]⊤
,

satisfy

∥xϕ(t)∥ ≤ r ∀t ≥ t0, (51)

for a positive constant r, then ω is uniformly δ-persistently
exciting with respect to x. □



Proof: Denote v ∈ Rp as a unit vector. Defining ρ :=
−v⊤ϕω⊤v, we have

ρ̇ =− ∥ϕ⊤v∥2 − v⊤ϕf⊤1 v − v⊤
[
f2ϕ+

∂ϕ

∂t
+
∂ϕ

∂x
f

]
ω⊤v

≤− ∥ϕ⊤v∥2 + ∥ω⊤v∥
[
2α2(r) + (l + k + 1)α(r)

]
∥v∥

=− ∥ϕ⊤v∥2 + c(r)∥ω⊤v∥,
(52)

where c(r) := 2α2(r)+(l+k+1)α(r). Integrating both sides
of (52) from t to t + Tf and then reversing the inequality
sign, we derive that

v⊤ϕ(t, x)ω(t)⊤v − v⊤ϕ(t+ Tf , x)ω(t+ Tf )
⊤v

≥
∫ t+Tf

t

∥ϕ(τ, x)⊤v∥2dτ −
∫ t+Tf

t

c(r)∥ω(τ)⊤v∥dτ.
(53)

By applying the bounds in (49), (50) and (51) to the left-hand
side of inequality (53), we have

2α(r)r ≥
∫ t+Tf

t

∥ϕ(τ, x)⊤v∥2dτ−
∫ t+Tf

t

c(r)∥ω(τ)⊤v∥dτ.

Let Tf := k′T . Since ϕ(t, x) is uδ-PE from (47), there exists
µ such that ∫ t+k′T

t

∥ϕ(τ, x)⊤v∥2dτ ≥ k′µ.

Thus, we obtain∫ t+k′T

t

∥ω(τ)⊤v∥2dτ ≥ (k′µ− 2α(r)r)
2

c(r)2
=: µr.

Choosing k′ large enough so that µr > 0, ω(t) is uδ-PE with
respect to x.
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