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Abstract 

Objective 

Ultra-high field MRI with parallel transmission (pTx) provides a powerful neuroimaging tool 

with potential application in paediatrics. The use of pTx, however, necessitates a dedicated local 

specific absorption rate (SAR) management strategy, able to predict and monitor the peak local 

SAR (pSAR10g). In this work, we address the pSAR10g assessment for an in-house built 7 T 

16Tx32Rx pediatric head coil, using the concept of Virtual Observation Points (VOPs) for SAR 

estimation. 

Approach 

We base our study on full-wave electromagnetic simulations performed on a database of 64 

numerical anatomical head models of children aged between 4 and 16 years. We built VOPs on 

different subsets of this database of N=2 up to 30 models, and cross-validated the pSAR10g 

prediction using non-intersecting subsets, each containing 30 models. We thereby propose a 

minimum anatomical safety factor (ASF) to apply to the VOP set to enforce safety, despite 

intersubject variability. Our analysis relies on the computation of the worst case SAR to VOP-

SAR ratio, independent of the pTx RF excitation. 

Main results 

The interpolation model provides that the minimum ASF decreases as 1 + 5.37 ∙ 𝑁−0.75 with 

N. Using all 64 models to build VOPs leads to an estimated ASF of 1.24 when considering the 

VOP validity for an infinite number of subjects.  

Significance 

We propose a general simulation workflow to guide ASF estimation and quantify the trade-off 

between the number of numerical models available for VOP construction and the safety factor. 

The approach would apply to any simulation dataset and any pTx setup.  

Keywords: radiofrequency power deposition, safety, virtual observation points, ultra-

high field, electromagnetic simulation 
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1. Introduction 

Cerebral magnetic resonance imaging at 7 T represents significant progress over 1.5T 

and 3T MRI due to higher achievable contrast-to-noise (CNR) and signal-to-noise ratios (SNR) 

(Balchandani et al 2015). With the SNR gain invested in image resolution, 7 T MRI increases 

the visibility of sub-millimeter structures and can enhance the detection of brain lesions. Given 

the promising results in adults (Bubrick et al 2022, Feldman et al 2019, Obusez et al 2018), 

interest in pediatric 7 T MRI is also emerging (Harris et al 2016, Lazen et al 2024, van der Plas 

et al 2024, Morrison et al 2019, Yamada et al 2021), and some studies reveal the benefit of 

ultra-high fields (UHFs) for children’s exams, for example, to better detect epileptogenic 

lesions (Sun et al 2018, Vecchiato et al 2024, Veersema et al 2017).  

While the Food and Drug Administration has approved 7 T MR imaging in infants of 1 

month and older (FDA 2014), the number of children included in 7 T MRI protocols is still 

limited (e.g., 3 to 8 subjects aged 7 to 17 years in (Bartolini et al 2019, Veersema et al 2016, 

Veersema et al 2017, Sun et al 2018, and De Ciantis et al 2016). Regulatory-approved 7 T MRI 

systems impose a lower limit of the patient weight of 30 kg (Fagan et al 2021, Burkett et al 

2021, Hangel et al 2024), and clinical 7 T MRI studies typically exclude patients younger than 

12 years old (Hangel et al 2024, van Lanen et al 2022). One major hindrance for pediatric UHF 

MRI is the specific absorption rate (SAR) control needed to limit the deposited RF energy and 

thus prevent adverse tissue heating (Fiedler et al 2018). Some studies address the RF safety at 

7 T for neonates (Annink et al 2020, Malik et al 2021) and children (Malik et al 2022) in a 

single transmit mode, but more comprehensive analysis is still required.  

Another limitation of the UHF MRI is a more pronounced inhomogeneity of the transmit 

radiofrequency (RF) field (Ladd et al 2018). Constructive and destructive interferences of the 

B1
+ field can lead to local signal hyperintensities in one case and to signal and contrast loss (in 

particular in temporal lobes and cerebellum) in the other. The problem of B1
+ heterogeneity is 

likely to persist in the pediatric population, at least when the head size becomes comparable to 

the RF wavelength (i.e., for the head diameter greater than 12 cm (Keith et al 2024)). In this 

regard, an efficient solution to fully exploit the potential of UHF MRI is the parallel 

transmission (pTx) technique, which allows dynamically combining multiple transmit elements 

to gain control over the effective RF transmission profile (Adriany et al 2005, Katscher et al  

2003). Parallel transmission has demonstrated significant improvement of flip angle 

homogeneity under energy and SAR constraints for different types of RF excitations (Beqiri et 

al 2018, Gras et al 2023, Herrler et al 2023, Leitão et al 2022, Van Damme et al 2021, Yetisir 
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et al 2022) and promising results in various types of 2D and 3D MR acquisitions to detect brain 

malformations in adults (metastases, epilepsy, multiple sclerosis, etc.) (Alushaj et al 2024, 

Duan et al 2023, Herrler et al 2021, Hillyer et al 2023, Klodowski et al 2024).  

In pTx mode, local SAR control becomes more challenging due to a changeable pattern 

of the transmitted EM field. To our knowledge, the SAR supervision with corresponding safety 

margins for pTx exams have only been established for adults. A dedicated study therefore must 

be carried out to enable the reliable local SAR control on children. In this work, we address this 

question by focusing on the school aged population (age > 6 years), where the brain volume is 

close to reaching its maximum but the body size and the head anatomy is still evolving 

significantly. In this case, we expect the B1
+ heterogeneity of the circularly polarized (CP) mode 

to be problematic at 7 T, and the pTx hardware to remain a valuable tool to solve this problem 

while the actual pSAR10g may deviate from that predicted using the adult standard. 

To date, the gold standard approach for the SAR evaluation in MRI relies on 3D 

electromagnetic simulation on a numerical model (NM) of the head and the torso and on a 

detailed model of the transmitting RF coils and the environment (scanner’s inner bore, patient 

table) (Fiedler et al 2018, Wolf et al 2013). Doing this, one must keep in mind that the electric 

field and thus the SAR distribution vary with the head anatomy, its position in the coil, and the 

dielectric properties of the tissues (Bottauscio et al 2024, de Greef et al 2013, Goren et al 2024, 

Kopanoglu et al 2020, Shao et al 2015). Therefore, for the SAR simulations to be representative 

of the experimental SAR during in vivo studies, the simulations must cover as much as possible 

the above source uncertainties (Le Garrec et al 2017, Meliadò et al 2020). This can be done in 

practice by performing the SAR simulations across a variety of NMs and by estimating a 

suitable safety margin on the SAR simulation. The larger the simulation database, the more 

accurate will be the statistical description of the SAR and the more educated the safety margin 

calculation will be (Ipek et al 2014, Destruel et al 2024). This approach is especially important 

in the context of pediatric imaging given that the anatomy of the head, and in particular its size, 

continues to evolve up to adulthood (Chirita-Emandi et al 2015, Rollins et al 2010), while the 

brain after 6 years reaches about 95% of the adult brain volume (Caviness et al 1996, Lenroot 

et al 2006) continuing a slight expansion (Matsuzawa et al 2001). Furthermore, for pediatric 

SAR control, it may be inappropriate to scale available adult head models, as the children's head 

morphology and proportions differ from the adult case (Bartholomeusz et al 2002, Christ and 

Kuster 2005, Júlíusson et al 2013, Myer 1995), and dedicated databases are possibily needed. 
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For a single-transmit coil (sTx), the local SAR to global SAR ratio being independent 

of the RF excitation, its analysis for different numerical models directly provides information 

on the inter-subject SAR variability, and subsequently on the required safety margin. For a 

parallel transmit coil array, the problem yet is much more complex as the local SAR distribution 

depends on the applied RF waveforms (Seifert et al 2007, Graesslin et al 2012), making the 

SAR variations due to anatomical variability and RF excitation tightly intricate. To extend the 

statistical analysis of the SAR in pTx, it is necessary to recall the strategy for monitoring the 

local SAR. In this case, a collection of matrices called Virtual Observation Points (VOPs) 

(Eichfelder et al 2011) constructed among a series of numerical models delivers a conservative 

estimation of the maximum local SAR – the so-called VOP-SAR. Therefore, for a rigorous 

analysis of the SAR variability, the safety relevant parameter in pTx is the ratio of the actual 

peak local SAR to VOP-SAR, calculated from the numerical models. As this ratio depends on 

the pTx RF excitation, and as this excitation can be chosen freely, we are here interested more 

specifically in the maximum value this ratio takes when exploring all pTx RF excitations (Gras 

et al 2024). With this approach, like in sTx, it is theoretically possible – the potential difficulties 

to compute the worst-case local SAR to VOP-SAR ratio put aside – to study the effect of 

anatomical variations on the SAR prediction independently of the applied pTx RF excitation. 

The quantity of interest is then the risk to underestimate the peak local SAR given an arbitrary 

subject with the VOPs computed over a limited set of numerical models.  

In this work, we conduct a numerical study of the pTx local SAR control on a home-

built database called VARDAS consisting of 64 numerical head models of children aged from 

4 to 16 years (Delbany et al 2022) and for an in-house built 16Tx32Rx head coil called Avanti2 

(Luong et al 2022). This analysis represents part of the work aimed at conducting clinical 

examinations in children of a similar age range (6 years is considered the lower limit in our 

future study for standing still inside the scanner for 30 min without sedation). 

We first detail the methodology for assessing the safety of a given VOP set on distinct 

numerical test models using a numerically tractable estimation of the worst-case local SAR to 

VOP-SAR ratio, the latest called the R criterion (Gras et al 2024). Based on it, we introduce a 

simple VOP safety condition as R<1 and define the R map as the R value at each voxel of a test 

model. We derive two SAR safety metrics, one corresponding to the maximum of the R-map 

and the second based on the mass of voxels where the R-map exceeds 1. We show that these 

metrics provide relevant measure of the necessary VOP safety margins. Taking advantage of 

the variety of NMs in the VARDAS database, we performed a numerical study of the safety 
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margins needed to encompass the inter-subject SAR variability for the Avanti2 head coil array 

and for scanning children above 6 years of age. We provide an analysis of the minimum required 

anatomical safety factors (ASF) as a function of the number of NMs available to compute the 

VOPs. A preliminary account of this work was given during the 2024 ISMRM conference 

(Dudysheva et al 2024). 

2. Theory 

2.1. Local SAR monitoring in pTx 

Let 𝑁ch denote the number of Tx-channels of the transmit array, 𝐄(𝒓) ∈ ℂ3×𝑁ch – the 

electric field profiles (the jth column of this matrix providing the x, y and z components of the 

E-field created at 𝒓 for 1 W available input power on port j), σ(r) – the electrical conductivity 

and ρ(r) – the tissue density. Let also τ be the SAR averaging time and 𝒘 represent the 

continuously defined RF waveform within a sliding temporal window of duration τ; here, 

𝒘(t) ∈ ℂ𝑁ch (in √W) can be zero, e.g., beyond the RF pulses applied. Then, the SAR averaged 

over the temporal window and the local spatial region υ(r) around a point r can be expressed as 

(Seifert et al 2007): 

SAR(𝒓, 𝒘) =
1

τ
∫ 𝒘(t′)H (

1

|𝒗(𝒓)|
∫ 𝐄(𝒓′)H

σ(𝒓′)

2ρ(𝒓′)
𝐄(𝒓)d3𝒓′

𝒓′∈𝒗(𝒓)

) 𝒘(t′)
τ

t′=0

dt′ (1) 

where ⋅H designates the Hermitian conjugation operator and |𝒗(𝒓)| denotes the volume. As the 

sliding window progresses over time, the RF waveform w within it changes and may take any 

temporal shape.  

Safety standards (IEC 2010) prescribe to consider the local SAR averaged over the 

volume υ10g(r) corresponding to 10g of tissue and the temporal sliding window with a duration 

τ of 6 min and 10 s. Defining the 10 g SAR matrix in r (positive definite), 𝐐(𝒓), as the spatial 

averaging of 𝐄H σ

2ρ
𝐄  over υ10g(r) (IEEE 2002), SAR(𝐐(𝒓), 𝒘) becomes the temporal average 

of 𝒘H𝐐(𝒓)𝒘. As 𝐐(𝒓) is independent of the pTx waveforms, it can be precomputed on 

numerical models and used routinely for SAR evaluation for any given excitation 𝒘. 

Monitoring the local SAR in pTx would then consist in controlling its value 

simultaneously across all positions in the head (𝒓 ∈ 𝓥) continuously over time. Due to the 

prohibitive number of SAR10g evaluations that this would imply – over ~105 to sample correctly 

the SAR relevant region of interest 𝓥 – it is advantageous to replace the exact maximum local 
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SAR estimation max
𝒓∈𝓥

SAR(𝐐(𝒓), 𝒘) with a conservative estimation thereof e.g. of the form 

max
𝒓∈𝓥∗

(SAR(𝐐(𝒓) + δ 𝐈, 𝒘) using a smaller number of matrices from 𝓥∗. Here, δ > 0 is a 

parameter allowing for a tradeoff between compression ratio (card(𝓥∗)/card(𝓥)) and SAR10g 

overestimation (Eichfelder et al 2011) and I is the identity matrix. The matrices 𝓠∗ ≔

{𝐐(𝒓) + δ 𝐈, 𝒓 ∈ 𝓥∗} are called the VOP matrices, and the maximum SAR10g across them 

SAR∗(𝓠∗, 𝒘) ≔  max
𝐐∗∈𝓠∗

SAR(𝐐∗, 𝒘)     (2) 

is hereafter called the VOP-SAR. The fact that the VOP matrices provide a conservative 

estimation of the local SAR imply the so-called domination criterion: 

SAR(𝐐(𝒓), 𝒘) ≤ SAR∗(𝓠∗, 𝒘) ∀ 𝒓, 𝒘.     (3) 

2.2. VOP safety test 

Let 𝓠∗ be a “candidate” VOP set for which we would like to test the domination criterion 

on some SAR matrix 𝐐. Let us define the R-criterion R(𝐐, 𝓠∗) as the worst-case local SAR to 

VOP-SAR ratio considering all possible RF waveforms w: 

R(𝐐, 𝓠∗) ≔ max
𝒘

(
SAR(𝐐,𝒘)

SAR∗(𝓠∗,𝒘)
).     (4) 

Since the condition R(𝐐, 𝓠∗) ≤ 1 signifies that the VOP-SAR upper bounds the actual SAR10g 

for any time-varying 𝒘, it is equivalent to the domination condition (Eq. 3). In Gras et al 2024, 

it is shown that R(𝐐, 𝓠∗) can be obtained numerically without resorting to time-consuming and 

inaccurate Monte-Carlo simulations, by solving the following convex optimization problem in 

ℝ2𝑁ch: 

R(𝐐, 𝓠∗) = max
𝒗∈ℂ𝑁ch

(
𝒗H𝐐(𝒓)𝒗

max
𝐐∗∈𝓠∗

(𝒗H𝐐∗𝒗)
) = max

𝒗∈ℂ𝑁ch
(𝒗H𝐐(𝒓)𝒗)  s. t. 𝒗H𝐐∗𝒗 ≤ 1 for all 𝐐∗ ∈ 𝓠∗ (5) 

This way, it was shown that testing the domination condition independently of the RF excitation 

is computationally feasible. According to Eq. 5, the subsequent analysis does not have to 

consider all possible time-varying RF waveforms (w), but only so-called static RF shims (v). 

We note also that scaling the VOPs with a factor k decreases R by the same factor: 

1

k
R(𝐐(𝒓), 𝓠∗) = R(𝐐(𝒓), k𝓠∗). (6) 

As a consequence, the R-criterion can be used to compute the minimum safety factor to apply 

on the VOP matrices to meet the domination condition (R ≤ 1) considering a candidate set of 

VOPs and a complementary set of head models to test. 
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For a given test anatomical model ℳTEST, the associated ROI 𝓥TEST, and SAR matrices 

𝓠TEST = {𝐐TEST(𝒓)| 𝒓 ∈  𝓥TEST}, we defined the R-map as the mapping of the R-criterion 

across all positions in 𝓥TEST: 

Rmap(ℳTEST, 𝓠∗, 𝒓) ≔ R(𝐐TEST(𝒓), 𝓠∗),    (7) 

and subsequently the Rmax and RiskMass metrics as:  

Rmax(ℳTEST, 𝓠∗): = max
𝒓∈𝓥test

Rmap(ℳTEST, 𝓠∗, 𝒓),    (8) 

RiskMass(ℳTEST, 𝓠∗): = card({𝒓 ∈  𝓥;  Rmap(ℳTEST, 𝓠∗, 𝒓) > 1}) ∙ 𝛿V ∙ ρ,  (9) 

where 𝛿V is the voxel volume, and ρ is the tissue density. The Rmax metric reflects the worst-

case local SAR to VOP-SAR ratio attainable in 𝓥test, while RiskMass quantifies the portion of 

𝓥test with a risk to underestimate the SAR, still in the w(t) worst case scenario. The definition 

of these metrics can finally be generalized to a multiplicity 𝑀 of test models 𝓖TEST =

{ℳTEST,1, ⋯ , ℳTEST,𝑀} by computing the maximum of Rmax and RiskMass across all of them: 

gRmax(𝓖TEST, 𝓠∗) ≔ max
𝑗=1..𝑀

Rmax(ℳTEST,𝑗 , 𝓠∗)   (10) 

gRiskMass(𝓖TEST, 𝓠∗) ≔ max
𝑗=1..𝑀

RiskMass(ℳTEST,𝑗 , 𝓠∗)   (11) 

The VOP set is finally said to be safe with respect to 𝓖TEST if gRmax(𝓖TEST, 𝓠∗) ≤ 1, or 

equivalently gRiskMass(𝓖TEST, 𝓠∗) = 0. 

2.3. VOP anatomical safety margins 

If the domination condition (Eq. 3) is violated, it is sufficient to scale the VOPs with some 

factor 𝑘 (i.e. replace 𝓠∗ by 𝓠∗∗ ≔ {k𝐐∗; 𝐐∗ ∈ 𝓠∗}) to enforce the VOP safety condition with 

respect to test models. According to Eq. 6, the minimum scaling coefficient, or strict anatomical 

safety factor (sASF), is given by: 

sASF ≔ gRmax(𝓖TEST, 𝓠∗).    (12) 

Further, we consider a relaxed safety factor rASF ≤ sASF as the minimal factor such that the 

following two conditions are satisfied: 

gRiskMass(𝓖TEST, rASF ∙ 𝓠∗) ≤ 1g    (13a) 

gRmax(𝓖TEST, rASF ∙ 𝓠∗) ≤ 2    (13b) 

In this way, one can  tolerate that the VOP matrices fail to overestimate the SAR10g in the worst-

case scenario of RF excitation, but only in a small number of voxels (the associated mass of 
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tissue does not exceed 1g) and still with the constraint that R < 2 (maximum twofold SAR10g 

underestimation in this small portion is accepted). We note that rASF can be determined 

numerically by dichotomy through scaling the Rmap by an appropriate coefficient and directly 

recalculating gRiskMass and gRmax. 

2.4. VOP construction 

 As shown in Gras et al 2024, it is advantageous to also use the R-criterion to compute 

VOPs. In this work, we exploit a variant of the “CO” (convex optimization) algorithm proposed 

in Gras et al 2024, where the SAR matrices are reordered according to the R-criterion in each 

iteration of the algorithm. Let 𝓠 be the set of SAR matrices to compress, 𝓠∗ be the growing set 

of VOP matrices, and 𝓠remain ⊂ 𝓠 be the set of SAR matrices that remain to be classified. 

Within one iteration of the algorithm, we compute R(𝓠∗, 𝐐) criterion for all SAR matrices 𝐐 in 

𝓠remain. We then 1) eliminate the SAR matrices satisfying R(𝓠∗, 𝐐) ≤ 1 (matrices that turn 

out to be already dominated), and 2) integrate into 𝓠∗ the SAR matrix returning the highest R 

(referred to as maxR). At each step, the number of VOPs increases by one. At the same time, 

the number of non-dominated 𝓠remain decreases by at least one element until this set is empty. 

In contrast with the “CO” algorithm, to control the maximum number of VOPs, we allow 

stopping the iteration process before the condition maxR = 1 is met, and then use Eq. 6 with 

k=maxR to enforce VOP domination for all the 𝓠. A diagram of this variant of the CO algorithm 

is provided in Supplementary Information S1. 

3. Methods 

In the following, we exploit a database of head NMs to derive the strict and relaxed 

anatomical safety factors. We first describe this database, the RF coil model used for this study 

and the 3D full-wave electromagnetic simulations providing the corresponding 10-g SAR 

matrices. We then present the methodology to determine the anatomical safety margins, and to 

investigate their variations with the number of models used to compute VOP matrices. 

3.1. The “VARDAS” database 

The VARDAS database used for this study provides 64 numerical head models of 

human subjects aged from 4 to 15 years  (see the age and weight distributions in Fig. 1). This 

database was created from 1-mm resolved T1-weighted acquisitions (TR=2300 ms, TI=900 ms, 

TE=4.18 ms, FA=9°) performed on a 3T Trio MRI scanner (Siemens Medical Solutions, 

Germany) between February 2011 and November 2019 (Delbany et al 2022). As the MRI 
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images of this database did not extend to the shoulders, a uniform “reference” neck and 

shoulders model (dielectric properties of the skeletal muscles) was merged with each head 

model after proper scaling to adapt it to the head size. The transition plane was positioned in 

the neck area, at the level of the fifth cervical.  

Each MRI anatomical image was segmented (see a segmentation example in Fig. 2) in 

the 9 compartments, for which the average dielectric properties were prescribed (Gabriel et al 

1996), as presented in Table I. We used first the segmentation tool of SPM to identify the 

cerebrospinal fluid (CSF), the brain, and non-brain tissue (skin, torso, fat, and bone), and the 

air volumes. Using fixed T1 contrast thresholds, we then partitioned the brain mask in a white 

mater (WM) and a grey matter (GM) regions and with the skull mask, we separated fat and non-

fat regions. Additionally, we marked the left and right eyeball, the course of the trachea, and 

the spinal cord. These added geometric priors were necessary to improve the segmentation as 

one limitation of the available data was the lack of the UTE contrast for bone detection and T2 

contrast for CSF detection. Each model was positioned in the head coil with the gravity center 

of the brain matched with the coil center. Manual adjustment of the final position was allowed 

to ensure that the head did not intersect the coil’s helmet. 

Table I. Physical properties of different head regions of numerical models used in the 

VARDAS database. WM: white matter; GM: grey matter; CSF: cerebrospinal fluid. 

 WM GM CSF eye fat skin bone torso air 

Figure 1. Characteristics of the VARDAS database containing numerical head models of 

children from 4 to 15 years old (64 subjects in total): (A) age distribution, (B) head mass 

versus age. 
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εr 43.8 43.8 72.8 69.0 5.63 49.9 13.4 58.2 1 

σ (S/m) 0.41 0.41 2.22 1.52 0.04 0.64 0.08 0.77 0 

 

3.2. The Avanti2 RF coil design 

The Avanti2 head coil is a home-made 16Tx32Rx array, which can be used in 

combination with a local B0 shimming array (Pinho et al 2022). This implied several constraints 

on the design, in particular on the 27cm-outer diameter of the device to fit inside the local shim 

Figure 3. Design of the Avanti2 16Tx32Rx array. This coil array is composed of two 

rows of linear resonators (7 in the lower row, 8 in the upper row), one patch antenna 

on the top of the head and 16 loops forming a receive-only array. 

 

Figure 2: (A) 3T MRI image (T1-w,1 mm3) of one subject (4 year-old, height 1.09 m, 

weight 17 kg), (B) obtained numerical head model (see tissue classes in Table I) 

extended with the reference “neck and shoulder” model and positioned in the coil. 

 

(A) (B) 
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array. The Avanti2 RF coil is composed of 15 linear resonators (the said “dipoles”) arranged in 

a lower and upper row in feet-head direction, and one patch resonator located at the top (see 

Fig. 3). These resonators are used as transmitters and receivers. It also comprises a set of 16 

receive-only loops. The dipoles and the patch resonator were tuned by geometric deformation 

of the conducting surfaces and their input impedance matched by adjusting the size of the 

coupling loop and center position of the feeding connection on the patch. In this design, all 

resonators are tuned and matched to 50 Ω, and 50 Ω input impedance and noise-matched 

preamplifiers are considered (NF=0.6 dB typically). In order to use the Avanti2 head coil on a 

parallel 8Tx system, the so-called F2FH Tx channel combination was used. In F2FH, two face-

to-face dipoles with respect to the sagittal plane were paired. A detailed description of the coil 

design, which was developed for 7T and 11.7T MRI brain imaging, is provided in (Luong et al 

2022).  

3.3. SAR simulation 

Full-wave electromagnetic simulations were performed using GORF (Pecqueux and 

Labarbe 2016), an in-house developed finite difference time domain (Taflove et al 2003) 

electromagnetic solver of DAM/CEA, Gramat, France. The simulation volume was 

660x660x720 mm, and contained a 600-mm diameter perfectly conduction cylinder to model 

the inner bore of the magnet, a simple model of the patient table, the transmit architecture of 

the Avanti2 head coil and the head and neck+shoulders model. The 16-channel receive array 

was not taken into account in the electromagnetic modeling. We included a perfectly matched 

layer model at the boundaries of the simulation volume; the Yee cell dimension was (1 mm)3. 

For each head model, we ran 17 independent simulations (1 per dipole and two for the 

patch antenna, the latter being seen as a 2-port structure, these two ports being driven in 

quadrature) wherein one port was connected to a unit power source and all the others were 

terminated by a 50 Ω resistor. After Fourier transform of the simulation data, we reconstructed 

17 electric (E) and 17 magnetic (H) field maps defined on a 1-mm resolved grid. The electric 

field maps were then processed in Matlab (R2022b) to compute the SAR matrices and 

subsequently, using a low-pass spatial filter, the 10g-averaged SAR matrices. To reduce the 

size of the processed data, we decreased the resolution of the 10g-SAR Q-matrix maps to (2 

mm)3.  

 Identical SAR simulations were also performed on Thelonius (6 years old boy, height 

1.15 m, weight 18.6 kg) and Billie (11 years old girl, height 1.49 m, weight 34 kg) models of 

the “Virtual Family” v 2.0.1 (Gosselin et al 2014). 
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The validity of the electromagnetic simulations was tested on a 16cm-diameter spherical 

phantom filled with agarose with measured dielectric constants εr = 72 and conductivity at 300 

MHz σ = 0.8 S/m. Using this phantom, we first checked the agreement between the measured 

(2D sat-TurboFLASH sequence in interferometric mode (Amadon et al 2012), 5 mm isotropic)  

B1
+ profiles (𝒃1,meas(𝒓) ∈ ℂ8) and the simulated ones (𝒃1,sim(𝒓) ∈ ℂ17). We additionally 

compared an MR thermometry-based temperature rise (PRF method, 10-min heating with CP 

mode-equivalent RF shim with total output power of 32 W) with the simulation (thermal 

diffusion equation with the SAR acting as a heating source) (Zanche et al 2022, Boulant et al 

2018). For those comparisons involving actual measurements on the scanner with 8 transmit 

B1
+ field maps, we calibrated the simulations by applying the experimentally fitted F2FH coil 

combination 𝐋cal ∈ ℂ8×17 that minimized the residual difference between 𝒃1,meas(𝒓) and 

𝐋cal𝒃1,sim(𝒓). The results are reported in Supplementary Information S2 to S4. 

In this work, we additionally considered the modelling inaccuracies or uncertainties 

(Boulant et al 2018) by adding to the 10g SAR matrices a matrix Ʌ‖𝐐‖2 ∙ 𝐈 with Ʌ > 0, i.e. 

each SAR matrix 𝐐 was replaced with 

𝐐 + Ʌ ‖𝐐‖2 𝐈.      (14) 

This additive term naturally preserves the Hermitian symmetry of the SAR matrix and 

necessarily increases the estimated SAR10g based on the total incident power and the amount of 

E-field contained in the Q matrix. Based also on the comparison between simulated and 

measured transmit B1 fields, a factor Ʌ = 0.1 was deemed sufficient to account for the 

simulation inaccuracies in our analysis (see Supplementary Information S6). 

3.4. Numerical study 

The numerical study was performed on the 64 NMs to compute the strict and relaxed 

ASFs as a function of the number of NMs used for VOP construction. First, a VOP basis of N 

NMs, 𝓖VOP𝑁
= {ℳ1, ⋯ , ℳ𝑁}, is selected to construct a set of VOP matrices 𝓠𝑁

∗ ≔ 𝓠∗(𝓖VOP𝑁
) 

on the corresponding simulations. Second, we choose a non-intersecting test basis 𝓖TEST of 

M=30 models, and test 𝓠𝑁
∗  on them (see Fig. 4 for a graphical view of the workflow). The test 

basis size was set equal to 30, i.e. about half the size of the database. Finally, we determine the 

anatomical safety factors (Eq. 12 and 13) to be applied to the VOPs to enforce their safety with 

respect to 𝓖TEST. This analysis is performed for N=2…30 (7 different values were considered), 

and is repeated 15 times for each N value (each time with a new VOP basis – test basis pair). 

The models in 𝓖VOP𝑁
 and 𝓖TEST were randomly selected from the entire database across 
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different age subgroups to span as much as possible the age distribution. Overall, 105 VOP sets 

(N values × 15 repetitions) were constructed and tested on 105 distinct test groups.  

For the VOP construction, we adopted the following two-stage compression (its schema 

is presented in Supplementary Information S5). First, model-specific VOPs, 𝓠∗(ℳ), were built 

by applying the described compression algorithm on each NM with Rm
(1)

= 1.1 and δMarg
(1)

=

0.01 (see Supplementary Information S1). To obtain the VOP set 𝓠𝑁
∗  for a particular VOP basis 

𝓖VOP𝑁
= {ℳ1, ⋯ , ℳ𝑁}, we then applied the same CO algorithm on the union of the model-

specific VOPs {𝓠∗(ℳj), 1 ≤ 𝑗 ≤ 𝑁}, this time with Rm
(2)

= 1.1 and δMarg
(2)

= 0. The above two-

stage compression was practical to reduce the computations during the analysis since pre-

compression of each individual NM was performed only once for all VOP bases. This approach 

also appeared to be necessary to reduce the memory demand which scales with 𝑁. The VOP 

matrices for all 64 models, 𝓠64
∗ , were also computed using a similar two-stage approach, and 

used for the subsequent analyzes. 

For each (𝓖VOP,𝑁, 𝓖TEST) pair, after the construction of the VOPs 𝓠𝑁
∗ , we computed i) 

Rmax(ℳTEST, 𝓠𝑁
∗ ) and RiskMass(ℳtest, 𝓠𝑁

∗ ) on every model ℳTEST in 𝓖TEST, ii) gRmax and 

gRiskMass on the ensemble of the test models, and iii) corresponding sASF(N) and rASF(N). 

Based on those results, we analyzed sASF and rASF (15 evaluations per each N) as functions 

of the VOP basis size. We determined their convergence speed as N grows by fitting the data 

points with the model ASF(𝑁) = 1 + A ∙ 𝑁−b. This model accounts for the fact that the 

anatomical safety margins must converge to 1 at 𝑁 → ∞ as we then cover all possible 

anatomical variations. To compare the conservativeness of different 𝓠𝑁
∗  augmented with 

obtained ASFs (only rASFs were considered), we calculated the mean VOP-SAR 

overestimation of the pSAR10g, 𝜂(𝓠𝑁
∗ ) = 〈SAR∗(rASF(𝑁) ∙ 𝓠𝑁

∗ , 𝒘)/SAR∗({𝓠𝒋; 𝑗 =

1. .64}, 𝒘)〉𝒘, using Monte-Carlo approach with 106 random RF shims 𝒘. 

To perform validation on external head models, for all constructed VOP sets 𝓠𝑁
∗ , we 

computed the Rmax and RiskMass metrics on the SAR matrices simulated from the Thelonius 

and Billie models (with error propagation from Eq. 15 included).  

The VOP computation algorithm was implemented in Python (3.8.10) using the 

scipy.optimize module (1.10.1). The computations were performed on the CEA-CCRT 

supercomputer Topaze (https://www-ccrt.cea.fr/fr/moyen_de_calcul/index.htm), which 

provides 864 compute nodes with 2x64-cores AMD Milan@2.45GHz (AVX2), 2 GB per core, 
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256 GB per node. The VOP compression and further evaluation of the R criterion for test 

models were parallelized on 128 cores. 105 VOP compressions and testings (for different N and 

repetitions) were launched in parallel on 105 nodes. 
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Figure 4. VOP test workflow. 

We select N models amongst 64 (the entire VARDAS database) to form the “VOP basis” 𝓖𝑉𝑂𝑃𝑁
, and a 

non-intersecting “TEST basis” of 30 models 𝓖𝑇𝐸𝑆𝑇. For each test model from 𝓖𝑇𝐸𝑆𝑇, we compute Rmap, 

and then Rmax and RiskMass. We then derive sASF and rASF using Eq. 12 and Eq. 13 respectively. This 

procedure is repeated for N = 2 … 30. For each value of N, a random choice of 𝓖𝑉𝑂𝑃𝑁
 and 𝓖𝑇𝐸𝑆𝑇 is 

repeated 15 times. The models are chosen randomly but with a condition for sampling the entire age 

distribution. 
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4. Results 

The boxplots of Fig. 5 show the distributions obtained for test model-specific Rmax and 

RiskMass values versus the VOP basis size N. For each N, repetitions were pooled together, 

resulting in 450 points (30 test models times 15 repetitions). Fig. 6A shows the mean and the 

standard deviation of ASF and rASF across 15 repetitions with different 𝓖VOP,𝑁 − 𝓖TEST pairs 

as a function of N. The power-law fits, superimposed on the same graph, returned 𝑠ASF(𝑁) =

 1 + 6.23 ∙ 𝑁−0.70(R2 = 0.95) and  rASF𝑁 = 1 + 5.37 ∙ 𝑁−0.75(R2 = 0.93). The number of 

VOP matrices, provided in Fig. 6B, increased slightly with N (due to the applied Rmax cutoff 

in the CO), but systematically. For N=2, the number of VOPs ranged from 121 to 193 across 

all repetitions, and for N=30, their number was 218 to 322. Table II shows the calculated and 

interpolated ASF values. For the VOPs constructed on the entire VARDAS database of 64 

models (278 VOP matrices), the power-law interpolants returned for sASF(64) = 1.35 and 

rASF(64) = 1.24, which correspond to safety factors considering an infinite number of subjects. 

The relaxed ASF, associated with the tissue mass that is potentially overexposed (existence of 

pTx RF waveforms were the VOP-SAR underestimates the SAR10g) allows reducing the safety 

factors by ~10%. The mean overestimation factors 𝜂(𝓠𝑁
∗ ) of the pSAR10g across all 64 models 

with rASF-augmented VOPs for 106 RF shims are provided in Table II. The average value was 

taken over all RF excitations and over 15 repetitions for each N. As hypothesized, the VOP-

SAR overestimation decreases with increasing VOP basis size, indicating that rASF(𝑁) ∙ 𝓠𝑁
∗  

become less conservative as 𝑁 increases. 
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In Figure 7, we report the Rmax and RiskMass evaluation on the Thelonius and Billie 

models. For both models, the strict and the relaxed ASFs are sufficient to ensure VOP safety. 

Figure 8 shows how the general R distribution evolves for the same test model when testing 

different VOPs. There, we provide R-maps obtained on one VARDAS model (6 year-old 

subject), Thelonius and Billie, for two different VOP sets obtained from VOP bases with N=2 

and N=30. The results demonstrate a systematic decrease in R value with increasing N for all 

three models. 

Figure 5. Model-specific (A) Rmax (Eq. 8) and (B) RiskMass (Eq. 9) for test groups 𝓖𝑇𝐸𝑆𝑇 as a 

function of the number N of numerical models used to construct VOPs (VOP basis size). 
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Figure 6. (A): Strict (blue) and relaxed (green) anatomical safety factors (mean and standard 

deviation across 15 repetitions) plotted as a function of the VOP basis size N. The respective 

interpolant (power law) are plotted with solid line: sASF=1+6.23∙N-0.70 (R2=0.95), 

rASF=1+5.37∙N-0.75 (R2=0.93). Dash lines represent the safety factors calculated for 64 models. 

(B): Number of the resulting VOPs vs N for 15 repetitions (each point in a column represents one 

repetition). 

 

Figure 7. Plot of Rmax (top) and RiskMass (bottom) for Thelonius (A1 and A2) and Billie (B1 

and B2) models as a function of N (15 sets of VOP matrices per N, each point in a column 

represents one repetition). The data are shown in a semi-logarithmic scale. 
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Table II. Estimated (mean ± std) anatomical safety factors (ASF) and their interpolated values 

versus VOP basis size N as well as the average pSAR10g overestimation by VOPs 𝜂(𝓠𝑁
∗ ). The 

reported standard deviations are calculated over 15 repetitions. sASF: strict anatomical safety 

factor; rASF: relaxed anatomical safety factor; 𝑠𝐴𝑆𝐹(𝑁) = 1 + 6.23 ∙ 𝑁−0.70; 𝑟𝐴𝑆𝐹(𝑁) =

1 + 5.37 ∙ 𝑁−0.75. 

N 2 5 10 15 20 25 30 64 

sASF 
4.22 

±1.50 

3.52 

±1.56 

2.30 

±0.80 

1.96 

±0.81 

1.89 

±0.60 

1.68 

±0.36 

1.46 

±0.21 
- 

sASF(N) 4.85 3.03 2.26 1.95 1.78 1.66 1.58 1.35 

rASF 
3.57 

±1.34 

3.05 

±1.36 

1.98 

±0.72 

1.73 

±0.71 

1.67 

±0.52 

1.49 

±0.31 

1.31 

±0.17 
- 

rASF(N) 4.19 2.60 1.95 1.70 1.57 1.48 1.42 1.24 

𝜂(𝓠𝑁
∗ ) 3.42±0.29 2.43±0.34 1.85±0.16 1.81±0.25 1.63±0.19 1.60±0.19 1.61±0.17 1.52 

Figure 8. R-maps calculated with VOPs 𝓠2
∗  corresponding to the VOP basis size N=2  (upper 

plots A1, B1, C1) and with 𝓠30
∗  corresponding to N=30 (lower plots A2, B2, C2). Three models 

are shown: (A1, A2) one NM from the VARDAS database (6 years, 21.4 kg), (B1, B2) Thelonius 

and (C1, C2) Billie. 
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5. Discussion  

In this study, we addressed the problem of designing VOPs to monitor the peak local 

SAR in a pediatric exam with pTx. We considered a SAR10g prediction model (VOPs) taking 

into account the anatomical variability for children above 6 years. We based our analysis on the 

computation of the worst-case local SAR to VOP-SAR ratio maps, or R-map, which relies on 

the numerical resolution of a convex optimization problem. This approach does not depend on 

the specific RF excitation, and thus tackles the major complexity of pTx SAR analysis and 

overcomes the limitations of Monte-Carlo simulations in a high dimensional space. From the 

computed R-maps, we extracted simple metrics such as its maximum value or the risk mass and 

determined quantitatively the minimum required anatomical safety margins to enforce VOP 

safety. 

We analyzed these safety factors depending on the VOP basis size, i.e. the number of 

models used to compute the VOPs. As the VOP basis increases, the required ASF decreases 

systematically, as does its standard deviation (See Fig. 6). At the same time, the mean SAR10g 

overestimation with the rASF-augmented VOPs (η in Table II) also decreases with larger VOP 

bases. This means that the VOP conservativeness, resulting from the opposite impacts of a 

larger VOP basis size and a smaller ASF, has a general tendency to decrease with increasing N 

(while the risk of underestimating SAR10g remains low). The η values demonstrate that for a 

sufficiently large database used to construct VOPs, the overestimation remains reasonable 

(η=1.6 starting from 20 models), justifying the use of general rather than subject-specific VOPs 

(Brink et al 2022) in pediatric studies.  

For a small VOP basis size, we observed that an “unlucky” choice of the VOP basis can 

provide R hotspots with values higher than 3 leading to very conservative safety margins. The 

practical impact of using only a few models would be a severe limitation in the duty-cycle 

and/or flip angle, or suboptimal pTx excitation for given protocol settings. Hence, in our case, 

at least N = 10 models are recommended to construct pediatric VOPs with a safety factor of 2; 

going up to 30, the required ASF drops to 1.4. 

Previously reported works such as (Le Garrec et al 2017) and (Meliadò et al 2020), 

addressing the SAR inter-subject variability in pTx, mainly base their analysis on Monte-Carlo 

approach using multiple RF excitations and look at the actual SAR value to estimate the 

probability to exceed it. In the current study, we introduce a method that considers the risk of 

the SAR10g underestimation with VOP-SAR and provides its worst-case value amongst all RF 
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excitations. In this way, we eliminate the source of uncertainty associated with the pTx 

waveforms. The ASF obtained in our analysis is higher than that usually reported for the head 

(less than 2) even for a single generic model used for the SAR control. This can be explained, 

firstly, by our worst case analysis as opposed to usual Monte-Carlo simulations. Additionally, 

previous studies for pTx have only considered adult models, for which the variation is less 

compared to the pediatric population. In our work, we used a larger database than those usually 

available, which encompasses more geometry and positions variations. Indeed, the work 

(Kopanoglu et al 2020), where the authors consider a large range of position changes for one 

model, reports higher pSAR10g variation reaching a factor of 3. However, despite all of the 

above, the ASF for large N are still comparable to the factors found earlier for adults. 

Given potential sources of inaccuracies of the performed simulation (e.g., in 

segmentation and modelling), we think that the RiskMass metric (counting the voxels in the R-

map where R > 1) offers a more relevant way of assessing the SAR10g underestimation risk than 

the Rmax metric which may correspond to distinct outlier values. Note that the relaxed 

condition (Eq. 13 a,b) corresponds to the authors’ choice (e.g. the RiskMass of 1g ensuring that 

less than 0.05% of head voxels are at risk for the worst-case RF excitation) and should be seen 

as a suggestion. We believe that the proposed relaxed condition remains safe especially taking 

into account the additive systematic SAR10g overestimation with RF power term (Eq. 14) 

accounting for unavoidable modelling inaccuracies. We note also that the R-criterion reflects a 

worst-case scenario which cannot occur simultaneously across the entire volume of interest for 

one pTx RF pulse.  

Our analysis depends to some extent on the compression parameters Rm, δMarg. Our 

experience indicates that the parameters Rm and δMarg are useful to adjust the number of VOPs 

and the SAR10g overestimation due to the compression. In this work, the compression 

parameters were chosen to keep a reasonable number of VOPs (several hundreds) and a 

reasonable computation time (~9 min/128 cores to compute 𝓠∗(ℳ)). Another important 

parameter is the factor Ʌ (Eq. 14) accounting for the simulation inaccuracies. Based on a 

preliminary analysis of the agreement between the simulated and measured transmit B1
+ field 

distribution on reference objects, we used a conservative value of Ʌ = 0.1. We note however 

that as Ʌ increases, the RF power term Λ‖𝐐‖2‖𝒘(t)‖2 tends to dominate over the “raw” SAR 

term 𝒘(t)𝐻𝐐𝒘(t), making the resultant SAR matrix 𝐐 + Λ‖𝐐‖2𝐈 merely an RF power 

monitoring matrix. In this case, the proposed analysis is of little interest since the local SAR 

becomes proportional to the applied RF power, like in sTx.  
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Testing the constructed VOPs on standard children models (Thelonious and Billie) 

revealed the same behavior of safety metrics, i.e. a clear decrease in Rmax and RiskMass with 

increasing VOP basis size. Application of the previously calculated anatomical safety factors 

provides VOP-SAR values that effectively overestimate the local SAR for both models.  

The VOPs obtained for 64 models and augmented with the calculated rASF will be used 

in further pediatric studies with the Avanti2 coil after calibrating the simulation results with 

𝐋cal (see Section 3.3). To validate the final VOPs experimentally, we performed thermometric 

studies on a phantom mimicking the dielectric properties of the tissues (Zanche et al 2022). 

This involved monitoring the temperature rise while playing common protocol sequences with 

relevant RF pulses designed under the VOP constraints (Gras et al 2017). Another test was 

performed with the RF shim w, delivering the maximum transmitted RF power at the maximum 

allowed SAR∗(𝓠∗, 𝒘) = 10𝑊/𝑘𝑔, applied for 1 ms in a sequence.  

The obtained results naturally depend on the transmit array architecture. However, the 

proposed approach can be easily transferred to other RF coil designs to find specific safety 

margins. This will require new electromagnetic simulations for the given coil and numerical 

models; a separate analysis must be performed to assess the simulation inaccuracies. For the 

Avanti2 coil used, the transmit elements fit close to the head, making the electric field at the 

periphery fairly sensitive to the position, orientation, and size of the head, and notably to the 

distance of the head with respect to the resonators. We expect that the ASF is sensitive to the 

nominal distance of the body to the transmitting elements and tends to decrease when this 

distance is increased, as in the case of a coil architecture containing an inner receive-only array 

and an outer transmit-only array. 

Our current analysis has some limitations because we used data available from previous 

clinical examinations. The models in the VARDAS database do not have uniform distribution 

by age, the predominant age range being 7 to 9 years, which may bias the analysis. For large 

sizes of the VOP basis (as well as for the test group), we had to pick up more models from this 

age group to obtain the required total number of models. In addition, we only had access to T1 

weighted anatomical images. Improving the tissue segmentation would require at least a Dixon 

image for water-fat discrimination, and a UTE image for the segmentation of the bones, and 

finally a T2-w image for optimal segmentation of the CSF (Puonti et al 2020, Gabel et al 2024).  

In this study, we focused on the anatomical variability, and other factors influencing 

SAR10g should be addressed. Even though the large amount of data and the performed 10-g 
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averaging of Q matrices tend to limit the effect of segmentations errors by providing more 

conservative margins, the impact of segmentation accuracy and number of tissue types need 

further investigations. More elaborated segmentation schemes can be used in the future, 

possibly involving deep learning-based segmentation (Rashed et al 2019, Stolte et al 2024). 

Furthermore, beyond the variability in the head morphology, this approach can be used to study 

more specifically important position changes (translations and rotations). Here we note that the 

anatomical diversity of our database implies the “natural” position variation given differences 

in head shape and hence model positioning in the coil.  

The impact of variations in tissue conductivity and dielectric permittivity (McCann et 

al 2019, Sasaki et al 2022) has not been addressed in this work and deserves additional 

consideration. This variation can lead to the local SAR change up to 10% (Shao et al 2015, Xu 

et al 2009); Wang et al 2024 reported the value of 30%. The work of Bottauscio et al 2024 

performed on 3 T MRI and addressing different sources of SAR10g variation demonstrated that 

the variation in head anatomy has a predominant effect compared to tissue properties and head 

position. However, we cannot translate these results to 7 T MRI with pTx, and a dedicated study 

is needed. 

The general change in tissue dielectric properties with age can also be of interest. In this 

work, constant average values from adult subjects for each tissue type were used, given that we 

propose a local SAR model for subjects above 6 years. Indeed, up to 2 years, the child's brain 

tissues are characterized by a significantly higher water content associated with incomplete 

myelination, leading to a significant difference in tissue properties compared to adults 

(Mohammed et al 2017); at 3 years of age, brain structures already resemble those of adults, 

and major fiber tracts have formed (Matsuzawa et al 2001). We can also mention the study of 

Malik et al 2022, conducted for 7 T MRI and a birdcage coil, where the SAR analysis is 

performed on child models with age-dependent tissue dielectric properties estimated from the 

water content (Wells et all 2005). The authors concluded that the SAR variation due to using 

children's dielectric properties instead of adults' was <5%, and that, given different sources of 

uncertainty (e.g. up to 10% in determining tissue properties), accounting for age-dependent 

dielectric properties was not necessary in this case. 

In the context of the proposed approach, the same cross-validation analysis could be 

performed for multiple sources of SAR variation (e.g., head position and tissue dielectric 

properties). The most significant factors to be considered can be identified through an analysis 
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performed on numerical models in many random configurations (position shifts, rotations, and 

changes in εr and σ), for example by using the Sobol index.   

The most significant factors can be identified by performing an analysis on numerical 

models in many random configurations (position shifts, rotations, changes in εr and σ), for 

example using the Sobol index, and taken into account. 

Finally, using large SAR simulation databases opens the possibility to classify models 

by age, weight, or head size and to compute for each class a specific set of VOP matrices. This 

approach could be useful to decrease further anatomical safety factors. 

6. Conclusion 

We conducted a large-scale numerical study to investigate the VOP safety for pediatric 

neuroimaging with 7 T MRI in pTx mode, using an in-house developed 16Tx32Rx head coil. 

We found that using only a few models to compute VOPs requires exceedingly restrictive ASFs 

(higher than 4 for a VOP basis size of 2) to ensure VOP safety, which would unavoidably lead 

to pTx performance limitations. We showed that increasing the VOP basis size was useful to 

reduce the safety factor and to leverage the performance of the coil in transmission. Based on 

the obtained results, using 30 NHMs to build pediatric VOPs for our system allows us to use 

an anatomical safety factor as low as 1.4. Although dedicated to a particular setup, it is hoped 

that this work nevertheless provides a useful general framework to compute VOP matrices and 

characterize in more details inter-subject variability, with the associated risks, in a pTx-enabled 

MRI exam. 
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Supplementary material 

Supplementary information S1 

UML diagram of the SAR matrix compression algorithm.  

 

  

Compute 𝑟𝐐 ≔  R(𝑸, 𝓠∗) 

for all 𝑸 ∈  𝓠remain 

yes 

𝓠∗ ≔ 𝓠∗ + {𝐐∗ + δ Marg𝑆𝑰} 

no 

𝓠remain = ∅ 
? 

Input: 
𝓠 = (𝑸1, … , 𝑸N) SAR matrices 

δ Marg ≥ 0 compression parameter 

Rm ≥ 1 R-criterion threshold 

Output: 
𝓠∗ 

𝑟∗ 

Define 𝐐∗ ≔ argmax
𝑸∈𝓠remain

𝑟𝐐 and 

𝑟∗ ≔ 𝑟𝐐∗  

𝓠remain ≔ 

{𝑸 ∈ 𝓠remain| 𝑟𝐐 > Rm} 

𝐐∗ ≔ argmax𝐐∈𝓠∗‖𝑸‖ 

𝑆 ≔ max𝐐∈𝓠∗‖𝑸‖ 

𝓠∗ ≔  {𝐐∗ + δ Marg𝑆𝑰} 

𝓠𝒓𝒆𝒎𝒂𝒊𝒏 ≔ 𝓠 − {𝐐∗} 

𝓠∗ ≔ max(𝑟∗, 1) 𝓠∗ 
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Supplementary information S2 

 

  

Simulated (A, C) and measured (B, D) B1
+ maps for the calibration spherical phantom. 

Images are shown in the median axial plane; (A), (B) – magnitude images, and (C), (D) – 

phase images. The simulated B1
+ is shown following the application of the calibration matrix 

𝐋cal. 

  

(A) 

(B) 

(C) 

(D) 
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Supplementary information S3 

Average and standard deviation of B1
+ and B1

+ RMS errors (simulation compared 

to measurement) on each transmission channel after calibration using 𝐋cal 

 

  

channel 1 2 3 4 5 6 7 8 

mean |B1
+| (nT/V) 33.2 20.6 29.0 24.0 32.1 26.5 35.8 22.5 

σ(|B1
+|) (nT/V) 41.4 14.2 24.8 19.8 27.2 22.2 44.5 22.7 

∆rel,% 2.1 1.5 1.7 1.2 1.6 1.2 2.0 1.8 
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Supplementary information S4 

 

Validation of the electric field simulations using MR thermometry on a spherical gel phantom.  

(A) Thermography maps: PRF method, heating during 600 s with a rectangular pulse (CP mode-

equivalent drive) of 1 ms and an average power per each channel of 4 W; 

(B) Temperature rise predictions based on the SAR simulation and the integration of the heat 

equation with the following parameters: density 1000 kg/m3, thermal conductivity 0.5 W/m/K, 

specific heat capacity 4000 J/K/kg, thermal diffusion coefficient of the gel/air interface 5 m2/s. 

  

(A) 

(B) 



36 
 

Supplementary information S5 

VOP construction workflow 
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Supplementary information S6 

Determination of the calibration error propagation term Ʌ 

In this supplementary material, we describe how we handle a possible discrepancy 

between the simulated and the actual electromagnetic (EM) field distribution in the head. The 

general procedure relies on the so-called B1
+ calibration procedure, described in the first part. 

Subsequently, we show experimentally that we do not expect this calibration to perfectly correct 

for simulation biases. Instead, we propose a simple error propagation model (𝐐 ↦ 𝐐 +

Ʌ ‖𝐐‖2 𝐈, i.e. Equation 14) whose role is to upper bound the error in the SAR evaluation due to 

E-field simulation biases. 

B1+ calibration 

Due to the specific construction of our coil (dipole pairing), the simulation data consist 

of 17 EM field simulations (15 dipoles + 1 patch antenna) while the measured data (8-Tx 

system) consist of 8 measured B1
+ fields (𝐁1,meas). The B1

+ calibration procedure then consists 

in determining linear combination 𝐋 of the simulated B1
+ fields (𝐁1,sim ↦ 𝐋𝐁1,sim) that 

minimize the difference with 𝐁1,meas (obtained, for example, for a spherical phantom) by 

solving: 

min
𝐋

‖𝐁1,meas − 𝐋𝐁1,sim‖. 

Once the calibration matrix 𝐋 is determined, we transform the simulated electrical field 

using the same rule: 𝐄sim ↦ 𝐋𝐄sim and the SAR matrix according to 𝐐 ↦ 𝐐𝐋 ≔  𝐋∗𝐐𝐋T. In Fig. 

S6-1, we present the calibration matrix obtained on the spherical phantom described in Section 

3.3, clearly reflecting the channel pairing strategy. However, in addition to the matrix elements 

corresponding to the channel pairing and forming a V profile – (1, 1), (1, 15), (2, 2), (2, 14)… 

(8, 16), (8, 17) – there are other non-null coefficients. This is explained, on the one hand by the 

absence of the receive array in the simulation (non-accounted coupling), as well other error 

sources (meshing precision, conductor losses neglected, etc.). As some of these errors affect 

our ability to predict coupling effects with the sample, we expect the L matrix to be object 

dependent.  

Although this procedure decreases the discrepancies between measurements and 

simulations (and in our case is necessary to perform the transition 17 Tx → 8 Tx), some sources 

of uncertainties are still present. Among them, we can name inaccuracies in the B1
+ mapping 

method, possible variations in a calibration procedure (optimization, simulation/measurement 
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alignment, etc.), and finally variations of the L matrix with the load, i.e., we expect the 

calibration matrix obtained on the spherical phantom (LS) to differ from the one that would be 

obtained on a subject. We thus repeated the B1
+ calibration procedure on the two head shaped 

phantoms (see Fig. S6-1), leading to two “alternative” calibration matrices LC (child head) and 

LA (adult head), and compared them with LS. 

Examples of the obtained L-matrices are presented in Fig. S6-1 and calibration results 

for adult-head phantom are shown in Fig. S6-2. All L matrices enabled good correlation 

between measured and simulated calibrated fields (correlation coefficient >0.97 for each 

channel). The L matrices for each phantom demonstrated temporal stability across different 

experimental days. However, comparing the two L matrices corresponding to two different 

objects reveals greater variations. This is consistent with our expectation that the calibration 

matrix is, to some extent, load-dependent. In the following, we present a simulation study 

indicating that the error in the local SAR estimation due to this uncertainty does not exceed 

0.1 × ‖𝐐‖2‖𝐕‖𝟐, where V is the applied RF excitation. We can reach this overestimation by 

modifying the SAR matrices (before calibration) as 𝐐 → 𝐐 + Ʌ ‖𝐐‖2 𝐈.  

Agar 
phantom 

adult head 
(PVP) 

child's head 
(PVP) 

Figure S1-6. Examples of the calibration matrix L for the spherical phantom and two head-shaped 

phantoms. The V-like profile (columns 1-15) corresponds to the dipole pairing; the matrix 

elements (8, 16) and (8, 17) correspond to the two ports of the patch. 
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Figure S6-2. Calibration results for the anatomical phantom corresponding to the adult 

head. 
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Error propagation benchmark on two models of the IT’IS virtual family 

We benchmarked our error propagation model using EM simulation performed on the 

Thelonius and the Billie models of the IT’IS Virtual Family. We selected 104 random RF shims 

(𝐕𝑖, 1 ≤ 𝑖 ≤ 104) and computed the local SAR for each RF shim using all available calibration 

matrices (i.e. SAR = 𝐕𝑖
𝐻𝐐L𝐕𝑖   with L = LS, LC and LA). At the same time, we computed a 

“conservative” SAR (cSAR) using the SAR matrices (𝐐 + 0.1‖𝐐‖ 𝐈)𝐋 with L = LA and LC 

(adult and child head phantoms). 

In Figures S6-3 and S6-4, we plot peak SAR against peak cSAR (the maximum value 

across the head for each 𝐕𝑖,) for different calibration scenarios and for the Billie and the 

Thelonius numerical models respectively. For the cross-validation of the adult head (LA) and 

child head (LC) calibration cases in both numerical models, the peak SAR values exceed the 

peak cSAR value for a maximum of 0.1% of RF shims. As for the calibration based on the 

spherical phantom (LS), we see that in up to 19 % of cases, the peak cSAR does not upper-

bound peak SAR. As expected, the difference in loading and the corresponding L matrices is 

more significant between the spherical and anatomical phantoms than between the two 

anatomical phantoms. We also assume that the L matrix that could correspond to a patient is 

reasonably closer to that of the adult of child head phantom than that of the spherical phantom. 

Figure S6-3. Peak SAR over the head calculated with the Monte-Carlo approach (104 random RF shims) 

using the Billie numerical model. X-axis: cSAR calculated with Ʌ-augmented Q matrices (Ʌ=0.1), Y-axis: 

SAR calculated with initial Q matrices. Different pairs of calibration matrices are used to obtain cSAR 

and SAR: (A) LA and LC, (B) LA and LS, (C) LC and LA, (D) LC and LS correspondingly, where LS is obtained on 

the spherical phantom, LA – on the adult-head phantom, and LC – the on child-head phantom. If the 

points are below the straight line, the factor Ʌ=0.1 is sufficient to overestimate SAR variation. 
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Error propagation benchmark on the VARDAS database 

Further, using the VARDAS database, we tested the sufficiency of Ʌ=0.1 in our 

pediatric VOP construction to cover the simulation-dependent SAR variations. We took the 

VOPs made on the 64 VARDAS models with the rASF applied (we remind that the VOPs were 

constructed on the Q matrices augmented with Ʌ=0.1), and calibrated them with 𝐋A and 𝐋C 

(two sets VOPLA and VOPLC). At the same time, we calibrated all model-specific Q matrices 

with 𝐋S, 𝐋A, 𝐋C (three “Q-matrix scenarios” for each of the 64 models). We then computed the 

R criterion for each Q-matrix scenario using both VOPLA and VOPLC to check whether the 

calibrated VOPs cover also the simulation-related SAR variations. The maximum R criterion 

value for each test model (Fig. S6-5) remains lower 1 for the VOP test on Q matrices 

corresponding to the 𝐋A and 𝐋C scenarios. For the “𝐋S scenario” we obtain Rmax > 1 for 4 test 

models, while RiskMass remains lower than 1 g (0.5g, 0.2g, 0.03g and 0.02g). 

In conclusion, this analysis indicates that Ʌ = 0.1 used for the pediatric VOP 

construction covers, in our case, a variation in the calibration matrix that is as large of 𝐋𝑆 − 𝐋𝐴 

Figure S6-4. Peak SAR over the head calculated with the Monte-Carlo approach (104 random RF shims) 

using the Thelonius numerical model. X-axis: cSAR calculated with Ʌ-augmented Q matrices (Ʌ=0.1), Y-

axis: SAR calculated with initial Q matrices. Different pairs of calibration matrices are used to obtain 

cSAR and SAR: (A) LA and LC, (B) LA and LS, (C) LC and LA, (D) LC and LS correspondingly, where LS is obtained 

on the spherical phantom, LA – on the adult-head phantom, and LC – on the child-head phantom. If the 

points are below the straight line, the factor Ʌ=0.1 is sufficient to overestimate SAR variation. 
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or 𝐋𝑆 − 𝐋𝐶. To obtain VOPs for in vivo use, we calibrated them with both LA and LC and 

concatenated the results (increasing the VOP set size) to further enforce their safety. We note, 

however, that this calibration uncertainty coefficient of 0.1 is highly related to the specifics of 

the coil, calibration, and VOP compression procedure. The described procedure should be seen 

as a proposed way of reasoning to account for the simulation/measurement discrepancies.  

 

   

 

 

Figure S6-5. R-criterion test of the VOPs calibrated with one matrix L on Q matrices of 64 VARDAS 

numerical models calibrated with another L. Different pairs of calibration matrices are considered: (A) 

LA and LC, (B) LA and LS, (C) LC and LA, (D) LC and LS. LS corresponds to the spherical phantom, LA – to the 

adult-head phantom, and LC – to the child-head phantom. 

The maximum R values obtained for each numerical model are presented. Rmax values lower than 1 

signify that, for the given model, the VOPs overestimate SAR despite the uncertainty in the L matrix 

estimation. 


