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ABSTRACT

Particle dynamics characterization is fundamental for un-
derstanding the biophysical laws orchestrating cellular pro-
cesses. To classify the dynamic behaviors governing biolog-
ical particles, we develop a neural network model built on
geometric descriptors of trajectories. The model infers the
stochastic laws governing the trajectory, enabling the detec-
tion of a large family of dynamic behaviors, especially within
the subdiffusive regime that characterizes cell signaling pro-
cesses. Finally, we propose a framework to robustly detect
dynamic changes in composed trajectories based on the vari-
ability of prediction scores on successive sub-trajectories.
The method is validated on simulated composed trajectories
simulating the activation pathway of receptors CCR5.

1. INTRODUCTION

Cell processes are constrained by biological particles’ dy-
namic interactions (e.g., molecules, receptors, viruses), which
can be observed by coupling fluorescence microscopy and
tracking algorithms. Statistical methods for motion analysis
are needed thereafter to characterize particle dynamics and
decipher the orchestration of cellular signaling [1]. However,
the dynamics of particles at the subcellular scale reveal a
complex landscape [2] highlighting two main challenges for
classification algorithms: inferring a large variety of dynamic
behaviors and detecting dynamic changes along trajectories.

The dynamic of biological particles is driven by several
biophysical laws inducing confined evolutions towards equi-
librium points or trapping phenomena due to particle interac-
tions [3]. Thus, appropriate approaches are needed to distin-
guish consistent dynamics and establish the link to biophysi-
cal constraints. A first improvement in this direction has been
made in [4], which develops a machine-learning approach,
based on geometric descriptors, to infer the stochastic laws
governing trajectories.

However, at a larger temporal scale, the particle dynamics
are driven by recurrent dynamic changes. This is due to par-
ticle interactions or cell environmental constraints, and mo-
tion change detection highlights the role of such constraints in

cellular processes. This is the case, for instance, of receptor-
ligand-based signaling systems where motion switching gov-
erns the activation pathway [3, 1]. Nevertheless, detecting
motion switching remains a difficult and little-explored prob-
lem and the few existing works are limited to the diffusion
framework [5, 6].

This work tackles the previous challenges all at once.
We redesign the method proposed in [4] considering an ad-
ditional motion class and obtaining a 6-class classification
algorithm (BM, OU, DIR, FBM sub- and super-diffusive,
CTRW) based on four geometric features computed on entire
trajectories. Moreover, we replace the Random Forest su-
pervised approach, used in [4], with a neural network model
resulting in a more accurate inference of motions. A main
asset of neural network models is their ability to output pre-
diction scores accounting for the confidence in process pre-
diction. Accordingly, we define a novel framework to detect
motion changes based on prediction scores computed on sub-
trajectories. In particular, we prove that the minimum score
robustly highlights switching times. The approach is vali-
dated on simulated composed trajectories showing the robust
detection of motion changes and pointing out the usefulness
of neural network approaches for motion analysis.

2. METHODS

2.1. Simulating cellular dynamics

A discrete trajectory is a set of successive positions over time

X = (Xt1 , ..., XtN )

where Xi ∈ R2 with independent components and the time
interval between successive positions is constant. Discretiz-
ing 2-dimensional continuous stochastic processes generates
examples of trajectories with different dynamic and diffusion
behaviors. We consider the main stochastic process involved
in cellular dynamics [2] and simulate extended datasets of
related trajectories.
Brownian motion (BM). The Brownian process Bσ

t de-
scribes particles freely moving and verifying (Bσ

t − Bσ
s ) ∼



Process Parameters
BM σ ∈ [0.1, 10]
OU σ ∈ [1, 10], θ = (0, 0), λ = rσ , r ∈ [0.2, 1]
DIR σ ∈ [1, 10], µ = rσ , r ∈ [0.2, 1]

FBMsub H ∈ [0.15, 0.3]
FBMsuper H ∈ [0.7, 0.85]

CTRW σ ∈ [0.1, 10] , γ ∈ [0, 1]

Table 1. Parameters used for trajectory simulation used in
this work for training and validation steps (1000 trajectories
are simulated for each process).

N (0, σ2(t − s)I2) for every t > s where I2 denotes the
2-dimensional identity matrix, and the so-called diffusion
coefficient σ accounts for displacement amplitude.
Directed Brownian motion (DIR). This process describes
particles driven by a constant drift component µ ∈ R2 giving
an oriented input to each random displacement:

dXt = µdt+ dBσ
t .

Ornstein-Uhlenbeck process (OU). This process describes
confined motion due to restoring forces and it satisfies

dXt = −λ(Xt − θ)dt+ dBσ
t (1)

where θ is the equilibrium point and λ weights the drift term.
Fractional Brownian Motion (FBM). It governs particles
evolving in constrained or crowded environments resulting in
dependent displacements verifying

E[(Xt −Xs)
2] = |t− s|2H

where H is the Hurst parameter. For H = 1/2, this pro-
cess reduces to Brownian motion, while for H < 1/2 and
H > 1/2 it exhibits a sub- (FBMsub) and super-diffusive
(FBMsuper) behavior, respectively.
Continuous-Time Random Walk (CTRW). This process
describes trapping phenomena resulting in trajectories alter-
nating jumps, following a Gaussian distribution N (0, σ2),
and waiting times, modeled in this work by a power law dis-
tribution on ψ(t) = t−γ−1 with γ ∈ [0, 1] and t ≥ 1.
Simulated trajectories. We perform path simulation for
the six processes presented above (BM, OU, DIR, FBMsub,
FBMsuper, CTRW) generating 1000 trajectories of a given
length N for each process using different parameters (see
Table 1). Several datasets are generated for the training and
validation steps performed in the rest of the paper.

2.2. Motion descriptors

The proposed method builds on four geometric features to
distinguish the process governing the trajectory. This section
details the two groups of features used in this work that gen-
eralize the features introduced in [4].

Directional Persistence. We consider the distribution of an-
gles between successive points (Xti , Xti+1

, Xti+2
) defined as

θX(ti) = π − ∠XtiXti+1Xti+2

where counterclockwise (with respect to Xti+1
− Xti ) an-

gles are considered as positive [7]. As shown in [4], the his-
togram of angles {θX} exhibits different properties depend-
ing on the process: BM holds a uniform-like distribution of
angles, CTRW has a majority of null angles because of the
waiting times, confined motions (OU, FBMsub) show more
large angles. The analytical properties of angle distributions
can be described by two features. The first one accounts for
the coefficient a of a convex fitting of the distribution:

pθX(x) ∝ ax2 . (2)

The second one, accounting for a preferred motion direc-
tion along the trajectory, considers the index of directionality
Pd(X) defined as:

Pd(X) = P(|θX| < π/2)− P(|θX| ≥ π/2) . (3)

Spreading trend. The second set of features describes the
spreading properties of trajectories reflecting how the particle
unfurls into space. We consider the Ripley’s index Kr in a
ball B(Xt1 , r) of radius r centered at the starting point:

Kr = |{Xti ∈ X |Xti ∈ B(Xt1 , r)}| /N ,

which allows the definition of the following vector:

KX = (KR, ...,KN∗R) , R =
1

N

N−1∑
i=1

∥Xti+1 −Xti∥

describing the evolution of the trajectory through balls of in-
creasing radius. The vector KX exhibits an increasing behav-
ior converging to 1 for large K [4] justifying the introduction
of the feature b defined by the following fitting:

KX ∝ 1− e−br . (4)

Finally, to account for (local) confinement resulting in con-
stant Ripley’s index on successive concentric balls, we es-
timate the probability that the discrete derivative K ′

X (com-
puted by finite differences) is zero:

Pp(X) = P(K ′
X ̸= 0) . (5)

2.3. Neural-network classification model

The presented method builds on a neural-network architec-
ture, using as inputs the four features previously introduced
(see equations (2), (3), (4), and (5)) computed on entire tra-
jectories, and learning the related process label (BM, OU,
DIR, FBMsub, FBMsuper, CTRW). The architecture π used
for the model (see Fig. 1) contains a first entry-level whose
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Fig. 1. Neural-network architecture π:4x256x6 used to learn pro-
cesses based on geometric features.

neurons correspond to the four features, an intermediate layer
followed by a ReLu activation function, and a classifica-
tion layer composed of six neurons corresponding to the six
motion classes and followed by a SoftMax function. Train-
ing and validation are performed in PyTorch on simulated
trajectories with length N = 100, and training uses the
Adam minimization algorithm with an EarlyStopping to op-
timize the number of needed epochs. The selected model (π:
4x256x6) guarantees the best accuracy of 95.5% compared
to two more elaborate architectures (4x512x256x128x6 and
4x256x128x64x32x6 give an accuracy of 94.7 % and 94.9%,
respectively). This proves, in particular, the pertinence of
selected features to distinguish the studied processes which
reduces the need of complex neural settings.

2.4. Model calibration

The model π is calibrated to ensure that the predicted prob-
abilities correctly estimate the rate of correct predictions [8].
Formally, π associates each feature vector xi to a process la-
bel ci ∈ C (|C| = 6) based on a prediction score pi, π(xi) =
(ci, pi). The prediction score is computed using the SoftMax
function and the network logits zi:

pi = max
c=1,...,6

σSM (zi)
c , σSM (zi)

c =
ez

c
i∑6

k=1 e
zk
i

.

Given a correctly labeled dataset, composed of feature vec-
tors and process labels {(xi, ci)} corresponding to simulated
trajectories, a calibrated network should verify:

P(c = ci |x = xi) = p ∀p ∈ [0, 1] .

Calibration is performed by Temperature Scaling which con-
sists of scaling the logits by an optimal parameter T :

p̂i = max
k=1,...,6

σSM (zi/T )
k

computed by optimizing the Negative Log Likelihood on cor-
rectly annotated dataset {(xi, ci)}:

T ∗ = argmin
T>0

−
6∑

k=1

log σSM (zi/T )
k .

The optimal T is thus computed in a post-processing mode
by training the network with respect to T on a correctly an-
notated dataset {(xi, ci)}. We point out that the Temperature
Scaling approach enables adjusting the logit vectors zi with-
out affecting the model accuracy.

3. RESULTS

3.1. Method Evaluation

The model π selected in Section 2.3 is validated using training
and validation sets of trajectories defined according to Table
1.

Fig. 2. Accuracy of model π for trajectories with different lengths.
An accurate model needs at least paths composed of 100 time points.

Fig. 2 displays the accuracy for trajectories with different
lengths, pointing out that the intrinsic properties of motion,
described by the geometric features, need time to take place
and be robustly distinguishable by statistical methods. These
results show that we need to work with trajectories with at
least N = 100 to exceed an accuracy of 95%, reaffirming the
difficulty of classifying short paths.
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Fig. 3. Confusion matrix for the model π validated on trajectories
of length N = 100.

The confusion matrix for the model π is shown in Fig. 3,



proving that the proposed approach enables the accurate dis-
tinction of different types of motion within the same diffusion
class. This is a strong asset for detecting different dynamic
behaviors finely and also proves that the presented features
are appropriate to capture the dynamic characteristics of dif-
ferent processes.

3.2. Motion switching detection.

In this section, we exploit the prediction scores produced by
the model π to detect motion changes along trajectories. We
simulated 5000 trajectories by stitching two paths of length
150: the first trajectory X1 simulates a CTRW process and
another process generates the second path X2. We point
out that this dynamic transition is specific to the activation
pathway of receptors CCR5 [3, 1]. Each composed trajectory
(X1

1 , ..., X
1
150, X

2
1 , ..., X

2
150) is analyzed using the sliding

window technique enabling the inference of the process and
prediction score based on model π for every window. The
window size is set equal to 100 to guarantee the high accuracy
of the model π trained with N = 100. For windows starting
after X1

50 the model infers paths composed of two dynamics:
a lower prediction score is expected with a minimum value
reached for the windows starting at X1

100 containing both
dynamics equally. Fig. 4 shows the starting times distribution
for windows reaching the lowest prediction scores. This re-
sult indicates that unconfident predictions robustly correlate
with motion composition, confirming that the minimum pre-
diction score within a sliding window approach is a reliable
parameter to detect the composed nature of trajectories and
the related switching times.

Fig. 4. Distribution of starting times of sub-trajectories with lowest
prediction scores. Starting at 100 composition is at 50% explaining
low scores.

4. CONCLUSION

The developed method infers the stochastic laws governing
particle motion based on geometric descriptors of trajectories.
The model builds on a neural network architecture resulting in

an accurate classifier of six classes of motion that is a break-
through in the field. Moreover, we propose a framework to
highlight motion composition based on the prediction scores
provided after network calibration. In particular, the analy-
sis of prediction score variability on sub-trajectories enables
robust detection of switching times, showing the potential of
neural network approaches in motion analysis.
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