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 Abstract—This paper presents a fully-integrated 16-element 
phased-array transceiver (TRX) supporting dual-polarized 
multi-input multi-output (DP-MIMO). Transmitting/receiving 
(T/R) switches are embedded for time division duplexing (TDD) 
operation. High linearity bi-directional variable gain amplifiers 
(Bi-VGA) and passive phase shifters (PS) are designed for 
compact area and low power consumption, respectively. 
Fabricated in a 65-nm CMOS process, this TRX occupies an area 
of 25.76 mm2. With integrated frequency synthesizer, the TRX 
can work from 37 to 43.5 GHz, which can fully cover 5G NR FR2 
n259 and n260 bands. In the receiver (RX) mode, a noise figure 
(NF) of 5.4-6.3 dB and a peak conversion gain (CG) of 27.3 dB 
are achieved. The transmitter (TX) mode achieves a peak CG of 
48.7 dB, a 13.1-dBm OP1dB, and a 15.8-dBm Psat. By using 64-
QAM modulation, measurement results show that the TRX 
achieves a data rate up to 7.2 Gb/s per independent data stream 
with 7.65 dBm output power per channel. 
 

Index Terms—5G, CMOS, dual-polarization multi-input 
multi-output (DP-MIMO), frequency synthesizer, millimeter 
wave (mm-Wave), phased-array, quadrature amplitude 
modulation (QAM), transceiver (TRX). 

I. INTRODUCTION 
OR the increasing demand in high data throughput for 
emerging applications, e.g., augmented reality (AR), 
virtual reality (VR), mixed reality (MR), etc., several 

mm-Wave bands including 37-43.5-GHz (n259 and n260) 
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have been allocated in the 5G new radio (NR) frequency range 
2 (FR2). To compensate the large propagation loss and to 
accommodate spatial mobility for the mm-Wave 
communication, the phased-array technique is urgently 
required [1]-[3]. In addition to improving the noise figure 
(NF), linearity, and power efficiency of transmitting/receiving 
(T/R) elements, the system data throughput could be 
significantly extended with the dual-polarization multi-input 
multi-output (DP-MIMO) technique. Recent works prove the 
feasibility in integrating high data-rate dual-polarized phased-
array transceiver chips without scaling up the physical size of 
the antenna array [4]-[9]. Nevertheless, due to the increasing 
demands for the miniaturized smart user equipment (UE), it 
poses more challenges in designing a compact and fully-
integrated phased-array transceiver that incorporates more 
elements while balancing the overall performance and 
packaging difficulties [10]. 

To this end, a fully-integrated 16-element phased-array 
transceiver (TRX) supporting DP-MIMO with compact 
architecture is proposed in this work, which integrates RF 
front-end (FE), frequency converter, and frequency 
synthesizer. Specifically, bi-directional variable gain amplifier 
(Bi-VGA) is designed to drive multiple T/R elements, 
reducing the required number of active stages in the TRX. The 
passive phase shifter (PS) is adopted to reduce the power 
consumption as well as the T/R element area due to its bi-
directional feature. Fabricated in a 65-nm CMOS process, the 
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Fig. 1. The proposed dual-polarization phased-array transceiver architecture. 
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proposed fully-integrated 16-element TRX achieves a data rate 
of 7.2 Gb/s per independent data stream in 64-QAM with a 
7.65 dBm output power per channel, while occupying a chip 
area of 25.76 mm2.  

II. TRANSCEIVER ARCHITECTURE AND BUILDING BLOCKS 

A. Transceiver Architecture 
The architecture of the proposed phased-array TRX is 

depicted in Fig. 1, which comprises 16 T/R elements (8H + 8V) 
to support the DP-MIMO. In each T/R element, benefitting 
from the 1-bit 180° phase-inverting (PI) feature implemented in 
both the low noise amplifier (LNA) and power amplifier (PA), a 
4-bit 360° phase control could be realized by merely integrating 
a 3-bit 180° passive PS. In this way, the size and insertion loss 
(IL) of the PS are reduced significantly. 

The configurable power combiners and dividers (CPCDs) are 
adopted to support sub-array operations and to expand the TRX 
dynamic range while maintaining the system power efficiency. 
High linearity Bi-VGA is adopted to drive four T/R elements 
and compensate for the significant losses caused by passive 
components, such as PS, CPCDs, and transmission lines (TLs). 
Benefiting from the compact Bi-VGA and T/R element, the 
entire chip size could be significantly reduced. In addition, the 
local-oscillator (LO) signal is provided by the integrated phase-
locked loop (PLL) and frequency tripler. Peripheral circuits, i.e., 
serial peripheral interface (SPI) and power management unit 
(PMU), are integrated to support the phased-array applications. 

B. Compact T/R Element 
The structure of the compact T/R element is shown in Fig. 2. 

On the antenna side, the T/R switches are co-designed with off-

chip 50-Ω λ/4 TLs, which are integrated into the packaging to 
reduce chip area. Meanwhile, to minimize the side-effect of the 
T/R switches on the element performance, the receiver (RX) 
switch is designed for low IL performance by using small-sized 
transistors with lower parasitics, while the stacked transistors 
are used in the transmitter (TX) switch for high linearity 
performance. On the other side of the T/R element, a single-pole 
double-throw (SPDT) switch is integrated with an ultra-compact 
π-type LC network, which only occupies a core area of 
39μm×33μm, as shown in Fig. 2. 

To reduce PS units for low IL and chip area, the 1-bit 180° 
phase-inverting variable gain amplifier (PI-VGA) is used. Such 
PI-VGA contains double balanced common-source (CS) 
amplifier with tail current sources IDC1 and IDC2, which are 
digitally controlled for gain tuning to compensate for the PS IL 
variation between different phase states. The PI-VGA output 
phase can be reversed by 180° by swapping the current of IDC1 
and IDC2, while maintaining the same gain level. By combining 
the 1-bit 180° PI-VGA and a 3-bit 180° PS, 4-bit 360° phase 
control is achieved. Note that, the 3-bit 180° PS is realized with 
phase steps of 22.5°, 45°, and 90°, respectively, and it has a 
typical cascaded 7 dB IL. 

C. High Linearity Bi-VGA 
Fig. 3(a) depicts the Bi-VGA structure, which contains two 

identical VGA chains reversely connected in parallel. In each 
VGA chain, a driver amplifier (DA) is integrated in the VGA 
output to improve its linearity performance, and four T/R 
elements could be driven simultaneously for the compact TRX 
architecture. At each VGA chain input, an asymmetric SPDT 
switch is implemented with low IL features. Meanwhile, 50-Ω 
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Fig. 2. Structure of the T/R element. 
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Fig. 3. (a) Structure of the high linearity Bi-VGA. (b) Simulated TX Mode 
Bi-VGA OP1dB and Psat at 37-43.5 GHz. 
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Fig. 4. Chip micrograph of the fully-integrated dual-polarization phased-array 
transceiver with PLL. 
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Fig. 5. Measured LO phase noise at 31.2 GHz. 

 



3 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

differential TL1 and TL2 are designed with different electrical 
length for the impedance matching as well as port isolation 
purposes in both TX and RX modes. Taking the TX mode as an 
example, the TX SW is turned on while RX SW are off. 
Meanwhile, the RX VGA chain is powered off, and with the 
impedance matching network, its input and output impedances, 
i.e., Z1 and Z2, respectively, are transformed to higher values, 
introducing only 0.74 and 0.93 dB simulated ILs at the Bi-VGA 
input and output, respectively. To illustrate the linearity 
performance of the Bi-VGA, the simulated OP1dB and Psat of Bi-
VGA in the TX mode are shown in Fig. 3(b). 

III. MEASUREMENT RESULTS 
Fabricated in a 65-nm CMOS process, the proposed phased-

array TRX occupies a total area of 5.6 × 4.6 mm2, as shown in 
Fig. 5. The T/R element and Bi-VGA occupy 0.55 and 0.22 

mm2, respectively. All measurements were conducted with the 
on-chip PLL. 

As shown in Fig. 5, with a 10.4 GHz LO from the PLL, the 
measured phase noise (PN) of the 31.2 GHz LO after the 
frequency tripler achieves -99.89 and -121.95 dBc/Hz PN at 1 
MHz and 10 MHz offsets, respectively. With an intermediate 
frequency (IF) ranging from 6 to 7.6 GHz, the measured TX 
and RX conversion gains in five sub-bands of the 5G NR FR2 
37-43.5 GHz bands are shown in Fig. 6(a) and (b), 
respectively. Peak conversion gains of 48.7 and 27.3 dB are 
achieved in the TX and RX modes, respectively. The TX 
output power from 38 to 42 GHz is shown in Fig. 6(c), where 
an OP1dB from 12.2 to 13.1 dBm is achieved, respectively. The 
measured RX NF over the desired frequency band is shown in 
Fig. 6(d), achieving a NF from 5.4 to 6.3 dB and 
demonstrating a good NF performance over the interested 
frequency range. 
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Fig. 6. Measured (a) TX and (b) RX S-Parameters. (c) Measured OP1dB of the 
full TX path. (d) Measured NF of the full RX path. 
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Fig. 7. Measures 64-/256-QAM EVM and ACLR at 38 GHz. 

 

TABLE I. PERFORMANCE COMPARISON WITH STATE-OF-THE-ART CMOS PHASED-ARRAY TRANSCEIVERS. 
 This Work TMTT’23 [3] RFIC’19 [8] ISSCC’20 [9] JSSC’20 [11] 

Technology 65-nm CMOS 65-nm CMOS 28-nm CMOS 28-nm CMOS 65-nm CMOS 

Integration Dual Pol. 16ch. TRX 
w/ PLL 

4ch. FE 
w/o PLL 

Dual Pol. 8ch. FE 
w/o PLL 

16ch. TRX 
w/o PLL 

4ch. TRX 
w/o PLL 

T/R Switch Yes (w/ off-chip TLs) Yes (On-chip) Yes (On-chip) No Yes (On-chip) 
Carrier Frequency (GHz) 37-43.5 33.5-37.5 37-40 37-40 39 
Phase Resolution (bits) 4 6 5 4 13 

RX 

Peak Gain (dB) 27.3 26 41.9 59 3 
NF/ch (dB) 5.4-6.3 4.2-10.7 6-7.6 4.2-4.6 7.7 

IP1dB/ch (dBm) -26.5 N/A -44 -44# -22 
PDC/ch. (mW) 69.7§ 164 78.5 39 500 (4RX) 

TX 

Peak Gain (dB) 48.7 44 48 60 7 
OP1dB/ch. (dBm) 13.1 17.2 12.3 15.3 9 

Psat/ch. (dBm) 15.7 19.8 N/A 16.5 15.5 
PDC/ch. (mW) 210@P1dB

§ 496 339@P1dB 105/115$ 1500 (4TX) 

Modulation 
Results 

64-QAM, 3.6/7.2 Gb/s 
10.6/7.65 dBm Pout/ch 
-25.2/-25.54 dB EVM 

-29.43/-30.38 dBc ACLR 

16-QAM, 0.8 Gb/s 
11.2 dBm Pout/ch 
-29.7 dB EVM 

64-QAM OFDM 
0.6 Gb/s 

-32.57 dB EVM 64-QAM OFDM 
4.8 Gb/s 

6/8.8 dBm Pout/ch 
-34/-27 dB EVM 

8TX 8RX OTA 
64-QAM, 2.4 Gb/s 

-30.2 dB EVM 

256-QAM, 1.6 Gb/s 
6.9 dBm Pout/ch 
-30.12 dB EVM 
-35.8 dBc ACLR 

64-QAM, 1.2 Gb/s 
11.2 dBm Pout/ch 
-30.4 dB EVM 

64-QAM OFDM 
4.8 Gb/s 

-26.5 dB EVM# 

8TX 8RX OTA 
256-QAM, 3.2 Gb/s 

-30 dB EVM 

Chip Area (mm2) 25.76 25.92 17.25 30 12 
§Including T/R element, Bi-VGA, up (or down) Mixer, and LO buffer.  #Estimated from figures.  $With 6/8.8 dBm Pout/ch. 
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To further evaluate the TX performance, the modulation 
measurements are performed. Fig. 7 presents the measured 
constellations and ACLR results of 64-/256-QAM signal at 38 
GHz. As indicated, with 600-/1200-MHz 64-QAM modulation, 
a Pout of 10.6/7.65 dBm is achieved with -25.2/-25.54 dB error 
vector magnitude (EVM), respectively, which is mainly 
limited by TX linearity and noise performance. It achieves a 
Pout of 6.9 dBm for 200-MHz 256-QAM with -30.12 dB EVM, 
which is mainly limited by the LO PN. Besides, with an 
external LO signal, it achieves a Pout of 7 dBm for 400-MHz 
256-QAM with -32.27 dB EVM. 

Table I compares the performance of the proposed phased-
array TRX with the state-of-the-art phased array transceiver 
results. As indicated, this work integrates PLL and can fully 
cover the 5G NR FR2 37-43.5 GHz n259 and n260 bands, 
while achieving lower power consumption and a more 
compact area. Benefiting from the excellent bandwidth, NF 
and linearity performance, this work achieves the fastest data 
rate up to 7.2 Gb/s. 

IV. CONCLUSION 
This paper presents a fully-integrated 16-elements phased-

array TRX supporting DP-MIMO with a compact system 
architecture. Fabricated in a 65-nm CMOS process, the 
proposed phased-array TRX occupies a total chip area of 
25.76 mm2. The measured TRX can fully cover the 5G NR 
FR2 37-43.5 GHz n259 and n260 bands with a 1.6 GHz IF 
bandwidth in each sub-channel. Consuming an average 210 
mW power consumption per channel, the TRX achieves the 
OP1dB and Psat of 13.1 and 15.8 dBm, respectively, and 
supports 1200-MHz 64-QAM and 200-MHz 256-QAM with 
high output power. Furthermore, the proposed TRX achieves a 
data rate up to 7.2 Gb/s per independent data stream, which is 
very suitable for high-throughput and small-scale 5G UE 
applications. 
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