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Abstract
In the tire manufacturing field, the pursuit of uncompromised product quality stands as a cornerstone. This paper introduces
an innovative multimodal approach aimed at automating the tire quality control process through the use of deep learning on
data obtained from stereo-photometric cameras meticulously integrated into a purpose-built, sophisticated tire acquisition
system capable of comprehensive data capture across all tire zones. The defects sought exhibit significant variations in size
(ranging from a few millimeters to several tens of centimeters) and type (including abnormal stains during processing, marks
resulting from demolding issues, foreign particles, air bubbles, deformations, etc.). Our proposed methodology comprises two
distinct stages: an initial instance segmentation phase for defect detection and localization, followed by a classification stage
based on severity levels, integrating features extracted from the detection network of the first stage alongside tire metadata.
Experimental validation demonstrates that the proposed approach achieves automation objectives, attaining satisfactory results
in terms of defect detection and classification according to severity, with a F1 score between 0.7 and 0.89 depending on the
tire zone. In addition, this study presents a novel method applicable to all tire areas, addressing a wide variety of defects
within the domain.

Keywords Surface defect detection · Multimodal · Tire quality control · MASK-RCNN · Severity classification · Deep
learning

Introduction

In the tire industry, as in many other industries, all the prod-
ucts must be verified at the very end of the production line.
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Historically, each one of them is manually inspected by
trained workers. Today, with the rise of industry 4.0 (Vaidya
et al., 2018), the automation of this task is necessary to
increase productivity and limit the arduousness of work due
to its repetitive and non-ergonomic part. On the other hand,
many technical and mechanical difficulties complicate the
task, such as obtaining good-quality images of all the tire
zones in a reasonable time. A bespoke acquisition machine
with an embedded stereo-photometric image acquisition sys-
tem (Mourougaya, 2019) has been designed to solve this
problem, whereas this article focuses on the image process-
ing part.

Tire quality process control is a complex process and each
manufacturer defines his own specific requirements. In order
to have an automatic inspection system, the ultimate goal is
not only to detect defects, but to classify them according to
their severity (or criticality).

Classicalmachine vision algorithms, such asSVM(Hearst
et al., 1998) and hand-crafted feature extraction have demon-
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Fig. 1 Two examples of
different tread patterns

strated that they can be highly efficient and fast in a static and
perfectly controlled environment (Kuo et al., 2019; Amin-
zadeh&Kurfess, 2019) but they are encountering troubles for
a good generalization across products, and this is particularly
the case for tireswhose treadpatterns are completely different
from one type of product to another. Moreover, a tire defect
even grouped by family doesn’t necessarily have the same
appearance as another. Because of the high variability of
defects, it is impossible to extract manual features for defect
detection. A more suitable approach would be to use deep
learning, which enables better generalization and learning
from complex backgrounds. Consequently, the prerequisite
is to collect a large database of images with a sufficient vari-
ety of defects.We provided this effort to obtain a dataset with
quality annotations and the required characteristics.

For the severity classification task, directly applying the-
oretical severity rules to detected defects proves unsuitable
due to certain unknown features (such as depth and quali-
tative aspects) and the impracticality of applying numerous
rules. Alternatively, manually analyzing the outputs of the
segmentation network to define custom rules is not conducive
to robust generalization across factories with diverse types
of tires.

This paper investigates suitable deep learning architec-
tures for defect detection and classification, with a focus on
novel areas that, to our knowledge, have not been previously
explored in visual inspection. The main contributions of this
study include:

1. Real-time processing of high-resolution stereo-photo
metric tire images, from defect detection to severity clas-
sification, stands as an innovative advancement in the tire
industry.

2. The definition of a fine-tuning strategy and training proce-
dure in order to be able to treat all areas of the tire, inside
and outside.

3. The design of an innovative two-stage architecture:

• A detection network based on MASK-RCNN, aug-
mented with two additional IoU prediction branches.

• A multimodal deep learning model for classifying
large images along with their accompanying meta-
data, leveraging GRU and the attention mechanism.

The remainder of the paper is structured as follows. Firstly,
Section “Related work" part is devoted to the state of the art
in visual inspection, with a particular focus on the detec-
tion of tire appearance defects. Secondly, Section “Dataset
presentation" part presents the dataset with its particulari-
ties and annotations. Thirdly, Section “Proposed approach"
part is dedicated to the explanation of the proposed method
for defect detection and classification. Then, the results will
be presented in the “Results" section. Lastly, the paper con-
cludes with a “Discussion and conclusion" section.

Related work

Deep learning for visual inspection

With the arrival of convolutional neural networks in 2012 and
their superior performance on Imagenet (Deng et al., 2009)
classification tasks, they were also investigated for visual
inspection and defect detection tasks in industrial environ-
ments. One of the first applications was to detect surface
defects in tunnels (Loupos et al., 2015) and (Protopapadakis
& Doulamis, 2015) and on steel surface (Soukup & Huber-
Mörk, 2014). For these specific tasks, all defects (cracks)
share important visual similarities and no further defect clas-
sification is studied. With the advent of the Fast-RCNN
(Girshick, 2015) and its improved version: Faster RCNN by
Ren et al. (2015), it has established itself as a benchmark
for object detection, opening up new horizons for defect
inspection. The main advantage of this two-stage detector
is its accuracy despite its relative slow inference time. Kang
et al. (2018) proposed a typical application of the Faster-
RCNN for the detection of surface defects in high-speed
railway insulators, in combination with a deep multitasking
network composed of a classifier and a Denoising AutoEn-
coder (Vincent et al., 2008) to deduce the defect state.
Many Faster-RCNN-based approaches have been tested with
dataset-specific enhancements such as Zhou et al. (2019)
with the use of K-Means to determine the optimal anchor
size and ratio for associated defects. Sun et al. (2019) also
suggested an upgraded version of the Faster-RCNN using
transfer learning and a modified version of ZF net (Hafizur
&Masum, 2014) with a sliding convolution layer rather than
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max pooling at the end of the RPN for wheel hub surface
defect recognition.

While many papers have opted for semantic segmentation
approaches (Tabernik et al., 2019) with favorable outcomes,
our objective is to explore the feasibility of individually
characterizing each defect, a task that proves challenging to
implement using semantic segmentation.

Transformers (Vaswani et al., 2017) are gradually being
introduced into the literature of detectionwith SAM (Kirillov
et al., 2023) as an attempt of creating a foundationmodel, but
still few visual inspection papers are using them due to the
training costs, inference timeand the consequent data needed.
For these specific data, texture information is important as
convolutional layers are better than transformers at learning
from such information. Conversely, transformers are better
at aggregating results, as they benefit from a global context
(Yan et al., 2021).

Tire surface defect detection

Recognizing tire surface defects is one of the most diffi-
cult tasks in visual inspection. The literature on this specific
subject is not very dense due to the difficulty of collecting
high-quality images, although some papers lay the founda-
tions. Tada and Sugiura (2021) presented a method using a
two-step patch classifier with the definition of three classes:
good part, quasi-good part and defective. Their results seem
to be good on their dataset, but they only treat inner surfaces,
and the metrics are not computed per defect instances but per
percentage of defect area, as their aim is not to to completely
automate the verification process but to assist the operator.

Massaro et al. (2020) studied how to detect large side-
wall deformations caused by problems during tire assembly.
For acquisition, profilometers are used to obtain a 3D
reconstruction that is then converted into a 2D image for
computational cost reasons. They compared three image
processing methods: Discrete Fourier Transform, K-Means
and Long Short-Term Memory-Fully Connected neural net-
works, and this showed that the combination of DFT and
K-Means was the best solution in terms of computational
cost and accuracy. However, two limitations should be noted:
the observed area is limited to the sidewall and the detected
defects are only deformations generated by possible mate-
rial stresses and not correct tire-wheel rim coupling caused
during assembling.

In the same field, Kuric et al. (2021) combined 3D scan-
ning and vision system in order to detect and classify tire
surface defects on the sidewall as well. They tried to use
RCNN to detect defects but did not get satisfactory results.
Rather, they designed a two-step method: 1) Unsupervised
anomaly detection with a clustering algorithm (DBSCAN)
applied to potentially anomalous data with respect to their
definition of a defect-free tire (deviations higher than 0.5

mm) 2) Classification of detected abnormalities using the
VGG-16 neural network. Their results are promising, but the
need to define what constitutes a defect-free tire prevents
easy generalization across dimensions. Moreover, the classi-
fication task is limited to two types of defects, the concept of
severity is not addressed, and the study is also restricted to
the sidewall only.

More recently, Liu et al. (2023) suggested to extract fea-
tures (HOG and LBP) from normal and defect tire images to
then pass them as input to a SVM classifier. They demon-
strated that HOG and LBP features perform better when
combined (with an approximate accuracy of 84%) than when
taken separately as input to the SVM classifier. They are
using images from different tires areas, different manufac-
turers, and different sources, without annotation masks or
polygons, meaning that the acquisition system is not con-
trolled, and only binary classification is possible. Another
binary classification study was carried out by Lin (2023)
using an improvedversion of Shufflenetwhich achieved good
results with an accuracy of 94%.

Dataset presentation

Image acquisition

Before considering image processing, the first step is to
choose the right acquisition system suitable for this task.
Detecting defects on black textured surfaces like tires is chal-
lenging and requires some specific industrial equipment. Two
classical choices seem the most suitable:

• A linear camera with a white light
• A 3D profilometer

The first option produces a 2D image with a high verti-
cal resolution (3096 pixels) but without depth information, as
opposed to the profilometerwhich generates lower resolution
with less texture information but with depth information. The
adopted solution is based on stereo-photometry. The main
idea is to have different lighting angles with the same cam-
era viewpoint. Theoretically, it’s possible to estimate normal
surfaces and depth from these different lightning conditions.
We are not considering the option of reconstructing the depth
or Albedo map, as this would consume too much time. Also,
it’s possible to use deep learning networks for this reconstruc-
tion, but the computational cost is high, especially for high
resolution images. For these reasons, we decided to concate-
nate each light modality along the channel dimension, with
the intuition that the depth information is already present
since the surface map can be obtained from these plans only.
The number of lights varies from 3 to 4 depending on the
zone, but we have chosen to process 3 lights only in order to
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Fig. 2 An example of defects from the same visual family (Bumps) in the annotation interface on the inside of the tread, but with different degrees
of severity (Top defect: severe, to repair / Bottom defect: not severe)

facilitate transfer learning between zones. Figure6 displays
how lighting conditions affect the visualization of defects.
Furthermore, we observe the distinct contributions of each
lighting condition in enhancing or diminishing the visibility
of defects, depending on the specific tire zone and type of
defect.

A complete tire acquisition necessitates 11 cameras, each
equipped with its own embedded lighting system. The defi-
nition of tire zone names is explained in Fig. 4. A simplified
schematic representation of the acquisition machine, derived
from the patent Mourougaya (2019), is depicted in Fig. 5.
To manage the diversity of tire dimensions, the acquisition
machine automatically adapts the placement of its cameras
using complex predefined PLC (Programmable Logic Con-
troller). Therefore, the vertical resolution, tailored to the
defect size under consideration, may vary based on the tire
zone and dimensions. Additional details regarding the acqui-
sition machine are available in the referenced patent.

Annotations

Having quality annotations is a mandatory criterion to local-
ize and classify defects. The total number of annotated

images is 25,450 (14,100 of which are healthy). We have
defined 10 defect types:

• Bumps (2107 instances)
• Surface Roughness (3298 instances)
• Imprint (1210 instances)
• Cut (837 instances)
• Contrast Difference (2086 instances)
• Tread Pattern Erosion (70 instances)
• Flashes (3726 instances)
• Smooth Dent (214 instances)

According to the zone, some defects will be more or less
present, sometimes with visual differences. In other terms,
the intra-class differences are low for the same camera zone
but can be high between zones. Common defects samples
under the different possible lighting conditions are shown in
Fig. 6.

We also have another annotation information at the poly-
gon scale: the associated risk level, with 4 levels of severity
that we decided to simplify into two levels: severe or not
severe. This combination helps to rebalance severity classi-
fication.
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Fig. 3 The proposed method for the detection and classification of tire surface defects

All our experiments were performed on truck tires com-
ing from the same factory. The annotations were made by
experts directly in the factory to ensure the accuracy of their
annotations. In fact, some annotation errors still persist in
the dataset since even for an expert this task is extremely
challenging.

In addition to these annotations,we also have tiremetadata
at our disposal. This textual information contains the tire’s
dimensions and range (for example size 385/65R225 with X
LINE ENERGY range).

Proposed approach

The global approach is shown in Fig. 3. Our proposed
approach divides the global method into two parts: defect
detection and defect severity classification. We will see that
these two tasks cannot be easily combined, as some defects
may have the same visual aspect but different degrees of
severity (see Fig. 2). We have chosen to first detect and
segment defects according to their visual families as direct
detection of severity makes no sense, given the large num-
ber of defects of the same type with different severity levels.
We prefer to predict severity in a subsequent step, using a

dedicated network. The advantages of decoupling the detec-
tion and severity classification processes can be summarized
as follows:

• Alignment with real-world operations: By mirroring the
sequential workflow of an aspect operator who first
detects defects and then applies specific rules for clas-
sification, the model’s operational realism is enhanced.

• Reduced black-box effect: decoupling the tasksmitigates
the opacity inherent in attempting to perform both in a
single step.

• Enhanced memory efficiency: working with high-resolu
tion images becomesmorepractical andmemory-efficient
when tasks are separated, as combining them would lead
to a cumulative rise in memory usage.

• Correction of false positives: the second classification
stage has the capacity to rectify instances of false pos-
itives encountered in the initial detection stage, thereby
improving overall accuracy.

• Modular training approach: the ability to train the
two stages separately provides flexibility and efficiency,
allowing for focused training efforts on the second stage,
which typically requires less time to train compared to
the entire network.
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Fig. 4 Tire zone nomenclature

Fig. 5 Schematic representation of the acquisition system

First stage: defect detection

For defect detection, our network architecture uses aMASK-
RCNN with two additional branches:

• A mask-IOU branch to predict Intersection-over-Union
(IoU) between the predicted mask and its ground truth
mask. The aim is to describe the segmentation quality
of instances and eliminate false positives not only based
on classification scores but also with this predicted IoU.

The IoU branch architecture is taken from Huang et al.
(2019).

• A bbox-IOU branch inspired from Wang et al. (2020) to
predict IoU between the predicted bbox and its ground
truth bbox for the same reasons as the mask-IOU branch.

By providing insights into the segmentation and detec-
tion quality of instances, these branches play a crucial role
in mitigating false positives, thereby enhancing the overall
precision of defect detection. Furthermore, they enrich the
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Fig. 6 Samples of common defects, each demonstrating its visual characteristics under varying lighting conditions

extracted features for the following classification stage by
incorporating the two predicted IoU values together with the
confidence score present in the original MASK-RCNN.

We have defined a training procedure to finetune models
shown in Fig. 8. First, we take the weights of the pre-trained
MASK-RCNN on the COCO dataset. Next, we train the neu-
ral network globally with all the images at the original ratio
but re-scaled to fit a size of 1024 by 1024. This first training
allows the network to adapt to stereo-photometric images and
localize defects. After that, a zone-by-zone fine-tuning strat-
egy is applied with respect to the original image’s ratio and
size. We keep the maximum possible resolution with respect
to the memory available on our GPUs (16 GB) for training.

Loss functions

For training the improved version of the MASK-RCNN, we
minimize an overall loss which is the weighted sum of the
following loss functions:

The RPN classification loss Lrpn_cls which is a cross-
entropy loss for anchor classification between background
and objects:

Lrpn_cls = − 1

Nrpn_cls

Nrpn_cls∑

i=1

[yi · log(pi )

+ (1 − yi ) · log(1 − pi )]
(1)

with Nr pn_cls the number of proposed anchors, yi the target
value (1 if an object is present, 0 for the background), pi the
predicted probability by the RPN that there is an object in
the ith anchor.

The RPN regression loss Lrpn_reg for the regression of
the anchors localization:

Lrpn_reg = 1

Nrpn_reg

Nrpn_reg∑

i=1

p∗
i · smooth_l1(ti − t∗i ) (2)
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Fig. 7 The detailed architecture of the defect detection and feature extraction modules

Fig. 8 Zone-by-zone fine-tuning strategy

with Nr pn_reg the number of sampled anchors from the can-
didates, p∗

i the binary ground truth label indicates whether
anchor i is a positive sample, ti the predicted offset for the
ith anchor, t∗i the target offset for the ith anchor.

The definition of the smooth-l1 function:

smooth _ l1(x) =
{
0.5x2/β, if |x | < 1

|x | − 0.5 ∗ β, else
(3)

The faster-rcnn classification loss Lcls which is a cross-
entropy loss for the classification of bounding boxes accord-
ing to their classes:

Lcls = − 1

Ncls

Ncls∑

i=1

M∑

c=1

yc log(pc) (4)
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with Ncls the number of sampled bounding boxes ater theROI
head, M the number of classes, pc the predicted probability
that the i-th bounding box is of the c-th class and yc the binary
target that the i-th bounding box is of the c-th class.

The faster-rcnn regression loss Lreg which is the same
as the RPN regression loss except that the loss is applied on
a sampled set of Regions Of Interest:

Lreg = 1

Nreg

Nreg∑

i=1

p∗
i · smooth_l1(ti − t∗i ) (5)

with Nreg the number of sampled ROI from the proposed,
p∗

i the binary ground truth label indicating whether the i-th
ROI is a positive sample, ti the predicted offset for the i-th
bounding box, t∗i the target offset for the i-th bounding box.

The previous losses all come from Ren et al. (2015). The
mask branch generates an m × m mask for every Region of
Interest (RoI) and each of the M classes, resulting in a total
output size of Mm2. Since the model aims to learn a distinct
mask for each class, there is no competition among classes
in generating masks. Therefore, we can formulate the mask
loss, Lmask, as follows (defined in He et al. (2017))::

Lmask = − 1

Nmaskm2

Nmask∑

i=1

M∑

c=1

m2∑

j=1

[yicj log(picj )

+ (1 − yicj ) log(1 − picj )]
(6)

with Nmask the number of ROI used for the mask branch
(which is equal to Nreg less the ROI number without object
to segment), m the resolution of the masks (in pixels), yicj

the ground-truth value of the j-th pixel in the c-th mask for
the i-th ROI (1 if the pixel belongs to the object, 0 otherwise),
picj the predicted probability of the j-th pixel in the c-thmask
being part of the object class c for the i-th ROI.

The IoUbbox lossLIoU _ bbox (used inWang et al. (2020))
which is a MSE loss between the target IoU (between the
predicted bounding boxes and the target bounding boxes)
and the predicted IoU:

LIoU _ bbox =
Nreg∑

i=1

(I oUi − I oU∗
i )2 (7)

with Nreg the number of sampled ROI from the proposed,
I oUi the predicted IoU, I oU∗

i the target IoU.
The IoU mask loss LIoU _ mask (used in Huang et al.

(2019)) which is exactly the same as for the IoU bbox loss
except that the IoU is computed per pixel inside each bound-
ing box.

The Total lossmay be written as the weighted sum of the
previous losses:

LTotal =λ1 · Lrpn _ cls + λ2 · Lrpn _ reg + λ3 · Lcls

+ λ4 · Lreg + λ5 · Lmask

+ λ6 · LIoU _ bbox + λ7 · LIoU _ mask

(8)

Second stage: severity classification

After the detection, we need to extract the characteristics of
eachdetected defect instance in order to classify themaccord-
ing to their severity. These specific features are selected as
follows:

• Coordinate of the defect (bounding box center), as sever-
ity depends on its location.

– Relative vertical position (y) in the image.
– Horizontal position, represented by a discrete value
ranging from 1 to 12, corresponding to the twelve
sectors into which the tire is divided.

• Height and Width of the defect’s bounding box and the
ratio Height/Width.

• Classification branch class probability.
• Mask IoU and bbox IoU predictions.
• Defect area calculated on the defect mask.
• Metadata information (Tire range, width, height, diam-
eter). Some defects are more likely to appear on certain
dimensions or ranges.

In regard to the severity classification part of our process-
ing pipeline, we compared two approaches. The first is our
baseline, which strictly utilizes the top layer of the neural net-
work and a machine learning classifier based on the output
of the extracted features. In order to improve our results, we
proposed an approach which incorporates the original image
with the extracted features using a customized multimodal
deep learning neural network. There is one dataset per tire
zone, with one instance of detected defect per line. The algo-
rithm used to build this dataset is described in Algorithm 1

The deep learning approach we suggest for the severity
classification is composed of 3 parts:

• A MLP to extract features from tabular data.
• Amethod of feature extraction using a Resnet18 encoder
to extract features from patches and a GRU to catch inter-
actions between patches.

• A network using MLP and the attention mechanism to
fuse visual and tabular features.

In order to imagine this architecture, we drew our inspi-
ration from the medical field. For skin lesion classification,
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Fig. 9 Baseline Model: machine Learning classification with a boosting tree model

Fig. 10 Our proposed deep learning-based severity classification approach

Algorithm 1 Build severity classification dataset
Input
GT D is the set of Ground Truth Defects annotated as severe
P D is the set of Predicted Defects by the MASK-RCNN
ε is the arbitrary minimum IoU threshold between a detected and a GT
defect
Output
D is the tabular dataset we are building, D is initially empty
1: for each detected defect d in P D do
2: Severi t ytgt ⇐ 0
3: for each annotated defect d ′ in GT D do
4: if I oU (d, d ′) > ε then
5: Severi t ytgt ⇐ 1
6: break
7: end if
8: end for
9: d.severi t ytgt ⇐ Severi t ytgt
10: Add d in D
11: end for

metadata are important because certain factors such a per-
son’s sex or age, are linked to the type of the lesion. Ou et al.
(2022) showed that incorporating metadata improves classi-
fication results and that their multi-modal architecture with
the attention-mechanism is better than a simple concatena-

tion to fuse multimodal features. The self-attention module
enables the network to exclude irrelevant information (such
as background).The cross-attentionmodule ensures that each
modality guides the other. For instance, due to the pattern
designs (see Fig. 1), a given dimension may result in some
false positives appearing on the tread, and this cross-attention
module can learn these complex relations.

For feature extraction in the image, we first trained a
resnet18 encoder per zone to classify small patches accord-
ing to their severity with 3 classes (no defect, not severe
defect, severe defect). This pre-training task ensures that the
extracted features are relevant. Then, we use a method tested
in the medical sector proposed by Tripathi et al. (2021) for
breast tumor classification. This BiLSTM approach using
context-based patch modelling has the ambition to classify
sequence of patches from high resolution-images. The RNN
is useful to treat sequences of different lengths. Moreover,
this makes our method independent from the original image
size, the defect bounding box area in our case, and we can
treat the image at full resolution without resizing it. We
kept the same scanning technique to sample patches, but we
replaced the BiLSTM with a bi-directional GRU (Chung et
al., 2014) because it gave us better results empirically and has
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less parameters. The drawback of our architecture is that it
is very sensitive to hyperparameters. To overcome this prob-
lem, we have done automatic hyperparameters research with
the framework optuna. Before the input in the GRU layer, we
added two linear layers separated by a Relu activation. The
parameters of the search are the following:

• GRU parameters:

– Number of stacked GRU (between 1 and 5)
– Dropout between GRU layers (between 0 and 0.5)
– Number of hidden nodes (between 16 and 1024)

• MLP parameters:

– Dropout of the final linear classifier (between 0 and
0.5)

– Embedded sizes of the linear layers (between 8 and
512)

• Initial learning rate (between 0.0001 and 0.001)

For the research, we use a Tree-structured Parzen Estimator
sampler (Bergstra et al., 2011) with a HyperBandPruner (Li
et al., 2017). The metric to optimize is the F1-score. It can
be defined as follows:

Fβ -score = (1 + β2) · precision · recall
(β2 · precision) + recall

(9)

with β = 1
This metric is suited for our classification task, as the

dataset may be unbalanced depending on the tire zone.

Attention mechanism for multimodal features fusion

A self-attention layer may be useful to focus on the most
relevant information inside each modality. As we have two
modalities (images and tabular data), each of them has its
own multiheaded self-attention module. This attention mod-
ule first linearly projects its input into a Query (Q), Key (K)
and Value (V). Then, the vector V is multiplied by the atten-
tionweight obtained from the scaled dot-product of theQuery
and Key passed through a Softmax layer. Formally, it can be
written as follows:

x′ = Sof tmax(
Q · K T

√
d

) · V (10)

Q = Wq · x, K = Wk · x, V = Wv · x (11)

Applied to ximg and xtab, we obtain two output vectors
x ′

img and x ′
tab respectively.

The multiheaded attention is based on this mechanism
except that each combination of K, Q, V is split into multiple

heads and the dot-product attention is applied to each head
independently.

The Cross-Attention for inter-modality feature fusion
module also relies on the same principle as for the self-
attention. The main difference lies in the fact that we want
image feature to guide the selection of relevant features from
tabular data and vice versa. For this purpose, the cross-
attention module is designed as follows: the Query Qimg

and Value Vimg come from x ′
img projection and the Key Ktab

is taken from the output of the tabular features went through
its self-attention module. This time, the output can be written
as:

x ′′
img = Sof tmax

(
Qimg · K T

tab√
d

)
· Vimg (12)

Qimg = Wqimg · x, K = Wktab · x, Vimg = Wvimg · x (13)

The same module is built symmetrically in order to guide
the selection of relevant tabular features from images:

x ′′
tab = Sof tmax

(
Qtab · K T

img√
d

)
· Vtab (14)

Qtab = Wqtab · x, K = Wkimg · x, Vtab = Wvtab · x (15)

Finally, we concatenate x ′′
img and x ′′

tab to obtain the final
feature vector that is passed to the last MLP.

Implementation details

In our experiments, for each zone, we are splitting the data
with 80% for training and 20% for validation. To get an
equal amount of samples viewed with the majority class
for each zone, a balancing method is used: we repeat the
less represented classes. For the defect detection and sever-
ity classification tasks, the training and validation sets differ
because we want our severity classification model to be able
to generalize on less certain predictions from the detection
model (training examples will generally have a higher clas-
sification and IoU score than validation samples from the
MASK-RCNN). In regard of the deep learning parts, our
implementations are based on the pytorch framework, and
the Adam optimizer (Kingma & Ba, 2014) is used.

Detection stage

For the first global training, we take all images from dif-
ferent tire zones, and we resize them to a size of 1024*1024
pixels. The initial learning rate is 0.0002 with a batch size
of 4 per GPU and the weights of the loss are equal to
λ1 = λ2 = λ3 = λ4 = λ5 = λ6 = λ7 = 1. After
each epoch, the learning rate is decreased by 0.5 and we
train the network until there is no further improvement after
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6 epochs. As for the data augmentation, we consider that
the acquisition system is well controlled and for this reason
we only apply Color Jitter before resizing. Adding unrealis-
tic augmentations would not help generalization as images
have a low real variability. Mixed precision is applied with
a distributed data parallel strategy on eight T4 GPUs. All
the original MASK-RCNN hyperparameters are kept as they
were initially in torchvision except the box_nms_threshold
and rpn_nms_threshold with custom values set at 0.05 and
0.3 respectively.

For the fine-tuning of the MASK-RCNN per zone, we
retain the same parameters as for the global pre-training apart
from the initial learning rate, whose value is reduced to 5e-
05. The number of images used and the custom size per zone
is defined in Fig. 8. The batch size per GPU is set to 1.

Severity classification stage

The process of extracting patch features involves fine-
tuning of a resnet18 classifier previously trained on Imagenet.
The patch size is 128*128 for all zones, except for the interior
shoulder with a patch size of 258*258 because of the differ-
ence in size of the original image. The batch size is 128, the
initial learning rate is 0.0005 and the network is trained for 15
epochs with cross-entropy loss. We also trained one model
per zone, utilizing the same images as in the detection stage,
albeit at a patch scale.

The tabular data processing encodes categorical fea-
tures (defect type, camera zone and tire informations) with
embeddings. The number of neurons chosen for each embed-
ding corresponds to half of the possible input values (for
example if we have 4 dimensions in the dataset, the cor-
responding embedding will encode this information into 2
neurons). In addition, as proposed by Cai et al. (2022), we
introduced a Soft Label Encoder (SLE), which means that
instead of filling negative categorical values with 0, we fill
themwith the value 0.1. The aimof SLE is to help the categor-
ical tabular features to be more expressive and more suitable
for the input of the network. We create a special category for
rare occurrences of categorical features where we can group
them together. After the individual features extraction from
categorical and numerical values through embeddings and
a linear layer respectively, these features are concatenated
and sent to a new MLP which stacks two successions of lin-
ear layers, batch normalizations and ReLu separated with a
Dropout. For the self-attention and cross-attention modules,
we fix the head number of the multiheaded attention to 8.

As this stage relies on the initial detection outputs, the
number of rows (where each row corresponds to a detection
in the first stage) is provided in Table 1. As evident, the count
of detected instances is higher in the exterior zones due to
the larger quantity of images and a comparatively elevated
defect rate.

Table 1 Number of rows (detections) per zone used for the severity
classification stage

Zone Raws number

EXT SHOULDER 18927

EXT BEAD 51218

EXT TREAD 24418

INT SHOULDER 8446

INT BEAD 15674

INT TREAD 7330

The Hyperparameters search is constrained by the fol-
lowing settings: the maximum number of epochs is set to 70
and the minimum number of epochs before early stopping
is set to 20. The optimizer is coupled with a step scheduler
which multiply by 0.2 the learning rate every 10 epochs. The
parameters of the resnet18 are frozen, only the GRU and
metadata parts are trained to optimize the cross-entropy loss.

Results

Detection stage

Aswecan see inTable 2, theF1-score is not uniformacross
the zones anddefect types, aswedependon available data and
the quality of the annotation. Furthermore, defects may vary
from one zone to another, and the number of examples also
varies. These results might seemweak at first glance, but this
detection task can be extremely difficult; for instance, it takes
an aspect operator six months to get proficient at detecting
these defects directly on the tire.

If we look at the results in details, contrast differences and
surface roughness have the lowest scores in average, because
it’s hard to label them as they can be diffused. As a result,
even if the metric is not as high as expected, the qualita-
tive results are satisfying (see Table 4) which we believe is
sufficient for the next part since the severity classification
task will reduce false positives. In addition, the quality of the
annotations could be challenged: some defects are very hard
to label due to their diffuse shape or because of the proxim-
ity between certain classes which leads the model to predict
several instances of each defect type that are similar at the
same location. These annotation difficulties are illustrated in
Table 5.

Severity classification stage

Aswe can see in Table 3, our deep learningmultimodal archi-
tecture improves the F1-score by an average of 21% per zone
compared with our baseline. Our experiences showed that
LightGBM (Ke et al., 2017) performed best for this classi-
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Table 2 F1-score per zone and per defect type for a IoU threshold at 0.1 (X is used when there are no defect type instances for the concerned zone)

Defect type Zone

EXT TREAD INT TREAD INT BEAD INT SHOULDER EXT BEAD EXT SHOULDER

Bumps X 0.83 0.51 0.70 X 0.48

Contrast Difference 0.58 0.55 0.47 0.44 0.21 0.28

Cut 0.83 0.54 0.44 0.71 0.54 0.56

Flashes 0.64 X 0.83 X 0.56 0.49

Imprint X 0.57 0.64 0.68 0.48 0.34

Surface Roughness 0.40 0.57 0.45 0.50 0.49 0.39

Tread Pattern Erosion 0.59 X X X X 0.50

Smooth Dent X 0.66 0.64 X 0.80 X

Table 3 F1-score per zone for classifying defects according to their
severity

Zone Baseline Proposed approach

EXT SHOULDER 0.63 0.83

EXT BEAD 0.52 0.70

EXT TREAD 0.68 0.82

INT SHOULDER 0.58 0.89

INT BEAD 0.53 0.76

INT TREAD 0.64 0.84

fier with one fine-tuned model per zone. As a reminder, this
simple model consists of a binary classifier that only takes
tabular data as input. We used the library Pycaret for this
experiment.

Due to the dependency of this classification stage on the
quality of the detection stage, it is imperative to experimen-
tally verify the utility of IoU branches for the classification
process. Essentially, this entails assessing whether the pre-
dicted IoU effectively supplements the severity classifier
when MASK-RCNN fails to provide confident detections.
In such instances, the predicted IoU is expected to be low,
thus becoming a crucial feature for severity classification.
To scrutinize this aspect, we employed the Shapley additive
explanations (SHAP) method (Lundberg & Lee, 2017) to
analyze the feature importance of the baseline boosting tree
classifier. The Shapley values derived from the boosting tree
model trained on interior tread data are illustrated in Fig. 11.
Notably, the box IoU emerges as the third most influential
feature, preceding even the confidence score, while the mask
IoU also demonstrates significant importance as the eighth
feature. This observation validates our hypothesis, affirming
two key points:

1. The effectiveness of the additional branches predicting
Mask IoU and bbox IoU.

2. The resilience of the severity classification stage in rela-
tion to the detection stage, as it can leverage predicted

IoU scores as confidence features to refine severity pre-
dictions. In instances where the initial detection model’s
performance is inadequate for certain images, this defi-
ciency is accounted for by the second stagemodel through
the confidence score and predicted IoU scores.

Upon further analysis of Fig. 11 (refer to Second stage:
severity classification subsection for detailed definitions of
each feature), it becomes evident that both the area and
vertical position are the most influential factors for this
zone, exhibiting a clear positive correlation in the former
and a more intricate relationship in the latter. This finding
is logical and confirms that the model prioritizes relevant
features; indeed, it is well-established that a larger defect
area generally correlates with increased severity probability.
Additionally, regarding vertical position, certain locations
exhibit abrupt increases in defect severity, underscoring its
significance in the model’s decision-making process.

TheTop12Shapley values reveal several other noteworthy
features. For instance, Sector 12 (where a tire is segmented
into 12 sectors to assess the horizontal position of a defect)
indicates a lower likelihoodof severe defects overall. Further-
more, Visual Family Bumps emerges as another significant
criterion positively correlated with severity for the interior
tread, a conclusion consistent with expert opinions.

In summary, the Shapley values align with established
quality rules. It would be intriguing to explore whether this
model interpretation could potentially simplify these rules in
future analyses.

We also wanted to evaluate the impact of the metadata
tire information, which is why we made an ablation study
focused on the area most affected: the exterior of the tread
(tire metadata such as the range is correlated to the tread
patterns). As a result, we noticed a +1% point increase on
the F1-score with the addition of tire metadata on this spe-
cific zone. We didn’t pursue experiments on other zones due
to the computational cost of searching for hyperparameters.
For the same reasons, we didn’t compare the effectiveness of
the multimodal concatenation through attention with a sim-
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Fig. 11 Feature importance
analysis of baseline boosting
tree model tuned on interior
tread zone: focusing on the Top
12 Shapley values

ple concatenation. Besides, this concatenation method has
alreadybeenvalidated as beingbetter formultimodal features
fusion (Ou et al., 2022) and (Cai et al., 2022). Nevertheless,
we carried out empirical tests on the outer tread area and
found a gain of around 1% point on the F1-score with the
attention mechanism.

Discussion and conclusion

A new approach for detecting tire defect surfaces and clas-
sifying their severity is proposed in this article, with an
F1-score that varies from 0.7 to 0.89 depending on the tire
zone. These results are highly satisfactory in relation to the
task difficulty and the huge quantity of defect types. While
the performance of the second stage relies on the outcomes of
the initial detection phase, our experimental findings under-
score its robustness and validate the significance of the two
IoU prediction branches in encapsulating a form of uncer-
tainty inherent in the initial model, effectively captured by
the classificationmodel. This is also the first study to propose
a functional method for all tire zones at the same time. The
novelty also lies in the use of tire metadata and the multi-
modal aspect. However, our results can be further improved
by working on the data: using model output to improve the
quality of annotations. Also, for the time being, we aren’t

defining an aggregation strategy for the predictions, the tire
severity decision is taken at the bounding box scale, but ide-
ally, we would like to have a model that makes a single
decision at the image or tire scale, i.e., one that can cap-
ture the existing relationships between the detected defects.
Additionally, our architecture is deployable but complex to
implement, as it involves a certain number of steps (detection,
pre-training of patches classifier, hyperparameters searching
etc...). Without any optimization, the total inference time for
each zone of the tire is empirically measured at 20 s. It would
be interesting to study whether this time could be reduced.

Another interesting approach that has not yet been tested is
semantic segmentation,which involves a simpler architecture
but does not allow individual defect instances to be identified.

Data Availibility The datasets generated during and/or analyzed as part
of the current study are not publicly available due to the confidential
information they contain about the process and quality standards.
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