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Kinetic Model for Myxobacteria with Directional Diffusion

L. Kanzler∗ C. Schmeiser†

Abstract

In this article a kinetic model for the dynamics of myxobacteria colonies on flat surfaces is
investigated. The model is based on the kinetic equation for collective bacteria dynamics introduced
in [S. Hittmeir, L. Kanzler, A. Manhart, C. Schmeiser, KRM, 14 (1), pp. 1–24, 2021], which is
based on the assumption of hard binary collisions of two different types: alignment and reversal,
but extended by additional Brownian forcing in the free flight phase of single bacteria. This results
in a diffusion term in velocity direction at the level of the kinetic equation, which opposes the
concentrating effect of the alignment operator. A global existence and uniqueness result as well
as exponential decay to uniform equilibrium is proved in the case where the diffusion is large
enough compared to the total bacteria mass. Further, the question wether in a small diffusion
regime nonuniform stable equilibria exist is positively answered by performing a formal bifurcation
analysis, which revealed the occurrence of a pitchfork bifurcation. These results are illustrated by
numerical simulations.
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small diffusion parameter, fixed-point, decay to equilibrium
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1 Introduction
The aim of this work is to investigate a model for the dynamics of myxobacteria colonies moving on
flat substrates. The equation of interest is the kinetic transport equation

∂tf + ω(ϕ) · ∇xf = µ∂2
ϕf +Q(f, f). (1)

for the distribution function f(x, ϕ, t) ≥ 0, where x ∈ T2, ϕ ∈ T1 and t ≥ 0 denote position, the
directional angle, and time, respectively. We consider the collision operator Q introduced in [29] and
extend the model by a diffusion term with diffusivity µ > 0 in the angular direction. Under the
assumption of constant speed (normalized to 1), the velocity is given by ω(ϕ) = (cosϕ, sinϕ). The
notation T1 and T2 is used for the one- and, respectively, two-dimensional flat tori with 2π-periodicity.
The collision operator is of the form

Q(f, g) = 2
∫

TAL→ϕ
b(ϕ̃, ϕ∗)f̃g∗dϕ∗ +

∫
TREVϕ

b(ϕ↓, ϕ↓∗)f↓g↓∗dϕ∗ −
∫

T1
b(ϕ,ϕ∗)fg∗dϕ∗ , (2)
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where
TREVϕ :=

(
ϕ+ π

2 , ϕ+ 3π
2

)
, TAL→ϕ =

(
ϕ− π

4 , ϕ+ π

4

)
,

and
ϕ̃ := 2ϕ− ϕ∗ , ϕ↓ = ϕ+ π , ϕ↓∗ = ϕ∗ + π .

Super- and subscripts on f and g denote evaluation at ϕ with the same super- and subscripts. The
model describes movement along trajectories governed by Brownian motion in velocity direction,
interrupted by hard binary collisions with collision cross-section b(ϕ,ϕ∗). Its dependence on the pre-
collisional directions ϕ and ϕ∗ is due to the shape of the bacteria. In this work we consider two possible
choices: Rod shaped bacteria are described by b(ϕ,ϕ∗) = |ω∗ · ω⊥| = | sin(ϕ − ϕ∗)|. On the other
hand, bacteria with circular shape yield a collision rate independent from the pre-collisional directions.
By analogy to a similar simplification of the gas dynamics Boltzmann equation [18], we use the name
’Maxwellian myxos’ for this imagined species, modeled by b(ϕ,ϕ∗) ≡ 1. We may note at this point the
reflection and rotation symmetries b(ϕ,ϕ∗) = b(ϕ↓, ϕ↓∗) and, respectively, b(ϕ+ α,ϕ∗ + α) = b(ϕ,ϕ∗),
α ∈ T1. The gain terms in (2) describe two different types of collisions:

• Alignment: (ϕ̃, ϕ∗) → (ϕ,ϕ) with ϕ = (ϕ̃ + ϕ∗)/2, if two myxobacteria moving in directions ϕ̃
and ϕ∗ meet at an angle smaller than π/2. The factor 2 is due to the fact that an alignment
collision produces 2 myxobacteria with the same direction. The set TAL→ϕ describes all angles ϕ∗,
which can produce the angle ϕ upon collision.

• Reversal: (ϕ,ϕ∗) → (ϕ↓, ϕ↓∗), if two myxobacteria with directions ϕ and ϕ∗ meet at an angle
larger than π/2. The set TREVϕ describes all angles ϕ∗ such that a collision between ϕ↓ and ϕ↓∗
can produce the angle ϕ.

The alignment collisions described above resemble a perfectly inelastic collision between particles
in the framework of gas dynamics, where the involved particles undergo a complete loss of kinetic
energy, hence they stick together. This results in the corresponding operator to be dissipative and
closely connected to the inelastic Boltzmann equation, widely investigated over the last years, see
[1, 26, 35, 40, 39] for instance. On the other hand, the invertible reversal collisions are even an
involution, which results in the fact that the corresponding part of the collision operator is conservative.
Properties of the model without directional diffusion

∂tf + ω(ϕ) · ∇xf = Q(f, f) , (3)

introduced and investigated in [29], will serve as motivation for the dynamics we expect in (1) in the
small diffusion regime. In both (1) and (3) the total mass is conserved and denoted by

M :=
∫

T1×T2
f(x, ϕ, t) dϕ dx.

Throughout all of this paper, we denote the uniform distribution by

f0 := M

2π , (4)

which defines an equilibrium for both (1) and (3). Numerical experiments in the non-diffusive case
[29] suggest instability of f0 and convergence as t→∞ to an equilibrium measure of the form

f∞(ϕ) := ρ+δ(ϕ− ϕ+) + ρ−δ(ϕ− ϕ↓+) , (5)
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where ρ± :=
∫

T1
±
f dϕ, with T1

+ := [0, π], T1
− := [−π, 0] and ϕ+ ∈ T1

+. The convergence can be proved
for the spatially homogeneous equation with special initial conditions. These observations give rise
to the assumption that for small µ the uniform equilibrium f0 will also be unstable for (1) and other
equilibria will occur.

In [12] a similar model, also of Boltzmann-type but just describing alignment interactions, was
introduced as binary collision counterpart of the Vicsek model for swarm dynamics, which on the other
hand is based on nonlocal alignment interactions between agents [41]. It was investigated further in
[13] as well as in [17], where additionally the case of Brownian forcing between binary interactions was
considered. Before, such a diffusive kinetic equation modelling alignment between agents was already
introduced and studied in [9].

Section 2 of this article is dedicated to establish existence and uniqueness of solutions of (1), as well
as asymptotic stability of the uniform equilibrium. This can only be expected under the assumption
of large enough diffusivity µ compared to the total mass M .

Theorem 1. Let fI ∈ L2
(
T1
ϕ;H2(T2

x)
)
, fI ≥ 0, and let µ/M be large enough withM =

∫
T2×T1 fI dϕ dx.

Let furthermore ‖fI − f0‖H2(T2
x)L2(T1

ϕ) be small enough with f0 = M/(2π). Then equation (1) subject
to the initial condition f(t = 0) = fI has a unique global solution f ∈ C([0,∞), L2

(
T1
ϕ;H2(T2

x)
)
,

satisfying
‖f(t)− f0‖L2(T1

ϕ;H2(T2
x)) ≤ Ce

−λt‖fI − f0‖L2(T1
ϕ;H2(T2

x)) , C, λ > 0 .

This result relies on a perturbative approach including the proof of spectral stability of the equi-
librium before extending it to the nonlinear framework, close to equilibrium. We want to mention
at this point that the theory for the dissipative Boltzmann equation is much less developed than the
one of the conservative Boltzmann equation, which is due to the lack of a-priori estimates given by
an entropy. Global existence results for the spatially inhomogeneous Cauchy problem in the inelastic
case are only known for near vacuum data [1] (i.e. the collisions do not have much impact on the
dynamics) inspired by the method using Kaniel & Shinbrot iterates [33]. More recently in [40] exis-
tence in the spatially inhomogeneous framework for inelastic collisions could be established without
the closeness to vacuum restriction. Further, theory in the one-dimensional situation, where grazing
collisions are almost elastic, can be found in [8]. Another important work in the one dimensional case
has been done in [31], carrying out the rigorous macroscopic limit towards pressureless gas dynamics.
Many more results have been established in an homogeneous framework, see e.g. [26] and [38] for
investigations on the existence and uniqueness of solutions. Besides work on the Cauchy problem,
a number of results on existence and further properties of self-similar profiles for diffusively excited
inelastic hard sphere models have been obtained. Among them to mention [14], [26] and [35, 36, 37]
for the case of a constant coefficient of restitution, while we refer the reader to [3] for considerations
on the non-constant case.

In Section 3, restricting ourselves to the spatially homogeneous setting, we carry out an explicit
analysis of the spectral stability of f0. Using bifurcation theory [19] via Fourier series expansion, we
establish the occurrence of a supercritical pitchfork bifurcation for both the cases of rod-shaped and
Maxwellian myxos. Although the aforesaid calculations remain formal, they do provide new insights
into the behavior of the model, while being consistent with already existing results. Indeed, in [17] a
rigorous proof of existence of a pitchfork bifurcation in the noisy version of a Boltzmann-type alignment
model for swarming behavior is stated. It is interesting to note that our considerations revealed that
the branch of nontrivial equilibria occurring in the pitchfork bifurcation is two-dimensional with two
opposite peaks of equal height, as opposed to the non-diffusive case (5) where the set of equilibria with
nonsymmetrical distributed masses is three-dimensional. In the second part of Section 3 we ask the
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questions whether the manifold of non-trivial equilibira, obtained in the bifurcation analysis before,
can be extended for arbitrarily small diffusion and eventually approaching the one for the system
without diffusion (5). We were able to prove the existence of a formal approximation of spatially
homogeneous equilibria in the Maxwellian case, which can be seen as regularizations of (5) in the case
of equal masses ρ+ = ρ−. A rigorous proof that these converge to (5) for vanishing diffusivity remains
open.

In Section 4 we present results of numerical simulations for the spatially homogeneous equation,
providing evidence for the bifurcation results of Section 3.

2 Decay to the uniform equilibrium
This section is dedicated to the proof of Theorem 1, relying heavily on insights from the L2-hypocoercivity
theory [28, 42]. The first step will be a proof of spectral stability by an application of the L2-
hypocoercivity method of [23]. Then this result will be extended to an H2-setting in order to be able
to control the quadratic nonlinearities of the collision operator.

2.1 Spectral stability by hypocoercivity

Following the notation of [23], we write the linearization of (1) around f0 = M/(2π) in the abstract
form

∂tf + Tf = Lf +QMf , (6)
with the dissipative operator L := µ∂2

ϕ, the conservative transport operator T := ω(ϕ) · ∇x, and
the linearized collision operator QMf := Q(f0, f) + Q(f, f0), treated as a perturbation. The linear
operators T , L, and QM are closed on the Hilbert space

H :=
{
f ∈ L2(T2 × T1) :

∫
T2×T1

f dϕdx = 0
}
,

and L+QM − T generates the strongly continuous semigroup e(L+QM−T )t on H. The scalar product
and the norm on H will be denoted by 〈·, ·〉 and, respectively, ‖ · ‖. The orthogonal projection to the
nullspace N (L) of L is given by the average with respect to the angle:

Πf := 1
2π

∫
T1
f dϕ .

The decay to equilibrium relies on two coercivity properties:

Microscopic coercivity:

− 〈Lf, f〉 = µ

∫
T2×T1

(∂ϕf)2 dϕdx ≥ µ‖f −Πf‖2 , (7)

where the last inequality is the Poincaré inequality on T1 with optimal Poincaré constant 1.

Macroscopic coercivity:

‖TΠf‖2 = π

∫
T2
|∇xΠf |2 dx ≥ 8π3

∫
T2

(Πf)2 dx = 4π2‖Πf‖2 , (8)

where now the Poincaré inequality on T2 with optimal Poincaré constant 8π2 has been used. The
macroscopic coercivity constant 4π2 can be seen as a lower bound for the spectrum of the symmetric
operator (TΠ)∗TΠ on N (L).
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Diffusive macroscopic limit: The method of [23] relies on an algebraic property, which guarantees
that the macroscopic limit, when the dissipative operator L dominates the transport operator T , is
diffusive:

ΠTΠ = 0 . (9)

It is easily verified in our situation. The macroscopic limit of (6) without the perturbation (QM = 0)
is the heat equation on T2.

The modified entropy: A natural entropy for the unperturbed version of (6) is given by the square
of the norm:

d

dt

‖f‖2

2 = 〈Lf, f〉+ 〈QMf, f〉 .

The semidefiniteness of the dissipation 〈Lf, f〉, which vanishes on N (L), can be remedied by intro-
ducing the modified entropy (see [23])

H[f ] := 1
2‖f‖

2 + ε〈Af, f〉 , (10)

with an appropriately chosen small parameter ε > 0, with the operator

A = (1 + (TΠ)∗TΠ)−1(TΠ)∗ . (11)

It has been shown in [23, Lemma 1] that under the assumption (9), A and TA are bounded operators
with

‖Af‖ ≤ 1
2‖(1−Π)f‖ , ‖TAf‖ ≤ ‖(1−Π)f‖ . (12)

For ε < 1, the bound on A implies the equivalence inequalities

1− ε
2 ‖f‖2 ≤ H[f ] ≤ 1 + ε

2 ‖f‖2 . (13)

The time derivative of the modified entropy is written as

d

dt
H[f ] = −D[f ] , (14)

where the dissipation is given by

D[f ] := −〈Lf, f〉+ ε〈ATΠf, f〉+ ε〈AT (1−Π)f, f〉 − ε〈ALf, f〉 − ε〈TAf, f〉
− 〈QMf, f〉 − ε〈AQMf, f〉 . (15)

We want to note here that the terms −ε〈Af,Lf〉 and −ε〈Af,QMf〉 are not represented in the formu-
lation of D[f ], since they vanish due to the easily checked properties A = ΠA as well as

QM = (1−Π)QM (1−Π) , (16)

which the linearized collision operator

QMf = 2f0

∫
TAL→ϕ

b(ϕ̃, ϕ∗)(f̃ + f∗) dϕ∗ + f0

∫
TREVϕ

b(ϕ↓, ϕ↓∗)(f↓ + f↓∗ ) dϕ∗

−f0

∫
T1
b(ϕ,ϕ∗)(f + f∗) dϕ∗

5



inherits from Q due to mass conservation. Coercivity is provided by the first two terms as a combi-
nation of microscopic and macroscopic coercivity and of the observation that ATΠ can be interpreted
as the application of the map z 7→ z/(1 + z) to the operator (TΠ)∗TΠ:

− 〈Lf, f〉+ ε〈ATΠf, f〉 ≥ µ‖(1−Π)f‖2 + ε
4π2

1 + 4π2 ‖Πf‖
2 . (17)

It remains to show that the last five terms in (15) can be controlled by the first two. We start with
the last term of the first line. The property A = ΠA and (9) imply TA = (1 − Π)TA and therefore,
with (12),

|〈TAf, f〉| = |〈TAf, (1−Π)f〉| ≤ ‖(1−Π)f‖2 . (18)
The operator AT is bounded if and only if its adjoint is bounded which, after using the self-adjointness
of Π and the skew-symmetry of T , can be written as

(AT )∗ = −T 2Π[1 + (TΠ)∗(TΠ)]−1 .

Let us define g := [1 + (TΠ)∗(TΠ)]−1f , giving

(AT )∗f = −T 2Πg .

Furthermore, the definition of g is equivalent to g − Π(ω(ϕ) · ∇x(ω(ϕ) · ∇xΠg)) = f . After applying
Π on both sides and using the notation ρg := Πg and ρf := Πf , the equation reads

ρg −
1
2∆xρg = ρf .

Testing against ∆xρg implies ‖∆xρg‖L2
x
≤ 2‖ρf‖L2

x
. Therefore

‖(AT )∗f‖2 = ‖T 2ρg‖2 ≤ π‖∇2
xρg‖2L2

x
= π‖∆xρg‖2L2

x
≤ 4π‖ρf‖2L2

x
= 2‖Πf‖2 ,

implying
|〈AT (1−Π)f, f〉| = |〈(1−Π)f, (AT )∗f〉| ≤

√
2 ‖Πf‖ ‖(1−Π)f‖ . (19)

Since, by a straightforward computation, ΠTL = −µΠT we have AL = −µA and, thus,

|〈ALf, f〉| = µ|〈Af,Πf〉| ≤ µ

2 ‖Πf‖ ‖(1−Π)f‖ . (20)

Finally, we deal with the perturbation terms. Using 0 ≤ b ≤ 1 we easily conclude

(QMf)f ≤ f0|f |
(

6
∫

T1
|f∗|dϕ∗ + π|f↓|

)
,

and therefore, with (16) and with the Cauchy-Schwarz inequality,

〈QMf, f〉 ≤ 13πf0‖(1−Π)f‖2 = 13
2 M‖(1−Π)f‖2 . (21)

Similarly,
|QMf | ≤ f0

(
6
∫

T1
|f∗|dϕ∗ + π|f↓|+ 2π|f |

)
,

implying

‖QMf‖ ≤ f0
(
6
√

2π‖f‖+ 3π‖f‖
)

= 3M
(

2
√

2
π

+ 1
)
‖f‖ .

Combining this with (12), A = ΠA, and with (16) gives

|〈AQMf, f〉| ≤ 3M
(√

2
π

+ 1
2

)
‖Πf‖‖(1−Π)f‖ . (22)
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Hypocoercivity: Using our results (17), (18), (19), (20), (21), (22) in (14), (15) gives

d

dt
H[f ] ≤ −

(
µ− 13

2 M − ε
)
‖(1−Π)f‖2 − ε 8π3

1 + 8π3 ‖Πf‖
2

+ε
(
√

2 + µ

2 + 3M
(√

2
π

+ 1
2

))
‖Πf‖ ‖(1−Π)f‖ .

Obviously for µ > 13M/2 (as requested in Theorem 1) and for ε small enough, the right hand side
is negative definite and controls ‖f‖2 = ‖Πf‖2 + ‖(1 − Π)f‖2. With (13) we obtain the existence of
λ > 0, such that

d

dt
H[f ] ≤ −2λH[f ] ,

and therefore exponential decay of the modified entropy and also of ‖f‖ by another application of
(13). This proves spectral stability of the uniform equilibrium in L2.

Theorem 2. Let µ/M > 13/2. Then there exist positive constants λ and C, such that for any initial
datum fI ∈ H, we have

‖et(L+QM−T )fI‖ ≤ Ce−λt‖fI‖ , t ≥ 0 . (23)

This result can easily be extended to the Sobolev space L2
(
T1
ϕ;H2(T2

x)
)
∩H. Indeed, by noting that

f ∈ L2
(
T1
ϕ;H2(T2

x)
)
∩H implies that the partial derivatives of f w.r.t. x lie in H. Therefore Theorem

2 immediately carries over to the pure x-derivatives, since the coefficients in (6) are x-independent and
the x-derivatives thus solve the same equation. Hence, we have the following Corollary of Theorem 2.

Corollary 3. For µ/M large enough there exist positive constants λ and C, such that for any initial
datum fI ∈ L2

(
T1
ϕ;H2(T2

x)
)
∩H, we have

‖et(L+QM−T )fI‖L2(T1
ϕ;H2(T2

x)) ≤ Ce
−λt‖fI‖L2(T1

ϕ;H2(T2
x)) , t ≥ 0 . (24)

2.2 Nonlinear stability of the uniform equilibrium

This section is devoted to the proof of Theorem 1. We introduce the perturbation

h := f − f0 ∈ L2
(
T1
ϕ;H2(T2

x)
)
∩H ,

satisfying, with the notation introduced above,

∂th+ Th = Lh+QMh+Q(h, h) , h(t = 0) = fI − f0 , (25)

and consider the mild formulation

h(t) = et(L+QM−T )(fI − f0) +
∫ t

0
e(t−s)(L+QM−T )Q(h(s), h(s)) ds .

For the estimation of the semigroup, Corollary 3 will be used, and apart from that we need estimates
of the quadratic collision operator.

Lemma 4. Let h1, h2 ∈ L2
(
T1
ϕ;H2(T2

x)
)
∩H. Then Q(h1, h2) ∈ L2

(
T1
ϕ;H2(T2

x)
)
∩H and there exists

a constant Q̄ such that

‖Q(h1, h2)‖L2(T1
ϕ;H2(T2

x)) ≤ Q̄ ‖h1‖L2(T1
ϕ;H2(T2

x))‖h2‖L2(T1
ϕ;H2(T2

x)) .
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Proof. Because of the Sobolev inequality

‖h‖L∞(T2
x) + ‖∇xh‖L4(T2

x) ≤ cS‖h‖H2(T2
x) , (26)

it will be sufficient to find estimates in terms of the L∞-norms of h1 and h2 or of the L4-norms of the
first order derivatives with respect to x. We start with the observation due to the Young’s inequality
for convolutions

|Q(h1, h2)(ϕ)| ≤ 3‖h1(·, ϕ)‖L∞(T2
x)

∫
T1
|h2| dϕ ,

implying
‖Q(h1, h2)‖ ≤

√
3 ‖h1‖L2(T2

ϕ;L∞(T2
x))‖h2‖ , (27)

and similarly,
‖Q(h1, h2)‖ ≤

√
3 ‖h2‖L2(T2

ϕ;L∞(T2
x))‖h1‖ , (28)

Alternatively it is, by the convolution structure of the collision terms, straightforward to show∫
T1
Q(h1, h2)2 dϕ ≤ 6π

∫
T1
h2

1 dϕ
∫

T1
h2

2 dϕ ,

with the consequence

‖Q(h1, h2)‖ ≤
√

6π
(∫

T1
‖h1‖2L4(T2

x) dϕ
∫

T1
‖h2‖2L4(T2

x) dϕ
) 1

2
. (29)

By elliptic regularity, we may use the equivalent norm ‖h‖∗ = ‖h‖+ ‖∆xh‖ on H2(T2
x). We have

‖∆xQ(h1, h2)‖ ≤ ‖Q(∆xh1, h2)‖+ ‖Q(h1,∆xh2)‖+ 2‖Q(∇xh1,∇xh2)‖
≤
√

3 ‖h1‖L2(T2
ϕ;L∞(T2

x))‖h2‖+
√

3 ‖h2‖L2(T2
ϕ;L∞(T2

x))‖h1‖

+
√

6π
(∫

T1
‖h1‖2L4(T2

x) dϕ
∫

T1
‖h2‖2L4(T2

x) dϕ
) 1

2

≤ cS
(
2
√

3 +
√

6π
)
‖h1‖L2(T1

ϕ;H2(T2
x))‖h2‖L2(T1

ϕ;H2(T2
x)) ,

where we have used (27)–(29) as well as (26), which completes the proof.

Lemma 4 implies local Lipschitz continuity of Q, considered as a map on L2
(
T1
ϕ;H2(T2

x)
)
∩H and

therefore local existence and uniqueness of a mild solution. Corollary 3 and Lemma 4 imply

‖h(t)‖L2(T1
ϕ;H2(T2

x)) ≤ Ce
−λt‖fI − f0‖L2(T1

ϕ;H2(T2
x)) + CQ̄

∫ t

0
eλ(s−t)‖h(s)‖2

L2(T1
ϕ;H2(T2

x)) ds .

It is easily checked that for
‖fI − f0‖L2(T1

ϕ;H2(T2
x)) ≤

λ

4C2Q̄
,

Picard iteration preserves the inequality

‖h(t)‖L2(T1
ϕ;H2(T2

x)) ≤ 2Ce−λt‖fI − f0‖L2(T1
ϕ;H2(T2

x)) ,

completing the proof of Theorem 1.
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3 Spatially Homogeneous Non-Uniform Equilibria
This section focuses on finding nonuniform, spatially homogeneous equilibria of (1), i.e. stationary
solutions of the equation

∂tf = µ∂2
ϕf +Q(f, f), ϕ ∈ T1, t > 0,

f(ϕ, 0) = fI(ϕ), ϕ ∈ T1,
(30)

and further investigate their stability. We expect the uniform equilibrium

f0 = M

2π , with M =
∫

T1
fI(ϕ)dϕ ,

to be stable for sufficiently large diffusion and intend to find other equilibria in the collision dominated
regime.

We approach this problem in two ways. On the one hand, in Section 3.1 a formal bifurcation
analysis with bifurcation parameter µ shows a supercritical pitchfork bifurcation away from the uniform
equilibrium, producing a branch of nontrivial equilibria for µ less than a critical value µ∗. The
nontrivial equilibria have two reflection symmetries with two opposite maxima and two opposite
minima. We restrict ourselves to the formal computations, noting that they can be made rigorous in
a straightforward way, following the theory of bifurcations from a simple eigenvalue (see, e.g., [19]).

On the other hand, we investigate the case µ� 1. The picture we have in mind is that, as µ→ 0+,
the nontrivial equilibrium converges to

f∞(ϕ) = M

2 (δ(ϕ)− δ(ϕ− π)) ,

or to a rotated version. This is motivated by the fact that f∞ is an equilibrium for µ = 0 [29]. In
Section 3.2 we construct a formal approximation for a nontrivial equilibrium, which is a smoothed
version of f∞.

3.1 Bifurcation from the Uniform Equilibrium

Stability of the uniform equilibrium: We start by analyzing the spectral stability of f0 by
linearization of (30):

∂tf
∗ = (L+QM )f∗ ,

∫
T1
f∗ dϕ = 0 , (31)

where f∗ is the perturbation, and we recall L = µ∂2
ϕ and the linearizationQMf∗ = Q(f0, f

∗)+Q(f∗, f0)
of Q around f0. For the collision kernel, the model b(ϕ,ϕ∗) = | sin(ϕ − ϕ∗)| for rod-shaped bacteria
will be used in this section (see, however, the remark at the end of the section). The Fourier series
expansion

f∗(ϕ, t) =
∞∑
n=1

an(t) cos (nϕ) +
∞∑
n=1

bn(t) sin (nϕ) (32)

diagonalizes the problem and leads to

ȧn = λnan , ḃn = λnbn , n ≥ 1 ,

with the eigenvalues
λ1 = −µ− f0

3
(
4
√

2− 1
)
,

9



λ2 = −4µ+ 2f0
3 ,

λn = −n2µ+ 2f0

(4n sin (nπ/4)− 8
n2 − 4 + n sin (nπ/2) + (−1)n

n2 − 1 + (−1)n − 2
)
, n > 2 .

It is easily checked that λn < 0 for n 6= 2 and for all µ > 0. Thus, by the sign of λ2, the uniform
equilibrium is spectrally stable for

µ ≥ µ∗ := f0
6 , (33)

and spectrally unstable for µ < µ∗.

Pitchfork bifurcation: For understanding the nature of the steady-state bifurcation at µ = µ∗ we
observe that the problem has both a rotation symmetry (ϕ ↔ ϕ + ϕ0 with arbitrary ϕ0) and a flip
symmetry (ϕ↔ −ϕ). The rotation symmetry is the reason for the double eigenvalues in the previous
section. It can be eliminated by the additional auxiliary condition

f(ϕ = 0) = f0 .

This makes the eigenvalues (in particular λ2) simple, and we can expect a branch of bifurcating
solutions [19]. Because of the flip symmetry the generic bifurcation to be expected is a pitchfork. We
shall construct a supercritical pitchfork bifurcation with a bifurcating branch for µ ≤ µ∗, and therefore
make the ansatz

µ = µ∗ − δ2 , f(ϕ) = f0 + δf1(ϕ) + δ2f2(ϕ) + δ3f3(ϕ) +O
(
δ4
)
, (34)

with 0 < δ � 1. The corrections have to satisfy the additional auxiliary condition and mass conser-
vation:

fk(0) = 0 ,
∫

T1
fk dϕ = 0 , k ≥ 1 . (35)

Substitution of (34) in the stationary version of (30) yields

0 = (L∗ +QM )f1 + δ ((L∗ +QM )f2 +Q(f1, f1))
+δ2

(
(L∗ +QM )f3 − ∂2

ϕf1 +Q(f1, f2) +Q(f2, f1)
)

+O(δ3) , (36)

with L∗ := µ∗∂2
ϕ.

Lemma 5. The null space of L∗ + QM subject to (35) is one-dimensional and spanned by sin(2ϕ).
The solvability condition for the equation (L∗ +QM )f = g is∫

T1
g sin(2ϕ) dϕ = 0 .

Proof. The result on the null space is a consequence of the computations in the previous section and
of the observation that the cos(2ϕ)-contribution is eliminated by the additional auxiliary condition.
A straightforward computation shows that QM is symmetric with respect to the L2 scalar product,
and so is of course L∗, completing the proof.

Equation (36) with δ = 0 implies
f1(ϕ) = b sin(2ϕ) ,

10



with b ∈ R still to be determined. By a straightforward computation the inhomogeneity in the O(δ)-
equation is given by

Q(f1, f1) = −4
3b

2 cos(4ϕ) ,

which satisfies the solvability condition for

(L∗ +QM )f2 +Q(f1, f1) = 0 .

The computations in the previous section show that (L∗ +QM ) cos(4ϕ) = λ∗4 cos(4ϕ) with

λ∗4 = λ4
∣∣
µ=µ∗= −

88
15f0 .

Therefore, considering (35), we obtain

f2(ϕ) = 5b2

22f0
(cos(2ϕ)− cos(4ϕ)) .

The final computation is the evaluation of the solvability condition∫
T1

(
−∂2

ϕf1 +Q(f1, f2) +Q(f2, f1)
)

sin(2ϕ) dϕ = 0

for the O(δ2)-equation, which gives
b

(440f0
15 − b2

)
= 0 .

The nontrivial solutions determine the bifurcating branch

f(ϕ) = f0 ±

√
440f0(µ∗ − µ)

15 sin(2ϕ) +O(µ∗ − µ) , µ ≤ µ∗ ,

of nontrivial equilibria. Supercriticality implies stability of the bifurcating branch (see the bifurcation
diagram in Figure 1). Recalling mass conservation and rotational symmetry we obtain for each 0 <
µ∗ − µ� 1 a two-dimensional set of nontrivial equilibria of the form

f(ϕ) = M

2π +

√
220M(µ∗ − µ)

15π sin(2(ϕ− ϕ0)) +O(µ∗ − µ) ,

parametrized by the mass M ≥ 0 and the rotation angle ϕ0 ∈ [0, π). Note that the different signs in
the second term can be realized by rotation by π/2.

11



Figure 1: Bifurcation diagram of the supercritical pitchfork bifurcation. Solid lines represent stable
branches, while the dashed line represents the unstable region of the uniform equilibrium.

Remark 1. The above calculations have been carried out for b(ϕ,ϕ∗) = | sin(ϕ−ϕ∗)|, modelling the
case of rod-shaped myxobacteria. It is easily checked that the important property that the linearized
operator is diagonalized by Fourier decomposition holds for every model of the physically reasonable
form b(ϕ,ϕ∗) = b̂(|ϕ − ϕ∗|). In particular, the same type of bifurcation result holds for Maxwellian
myxos, i.e. b ≡ 1, with the bifurcation value

µ∗Maxwell = f0

(
1− π

4

)
> µ∗ .

3.2 Equilibria for Small Diffusivity

In [29] it has been shown that the set of nontrivial equilibria of Q is three-dimensional and of the form

f∞(ϕ) := ρ+δ(ϕ− ϕ0) + ρ−δ(ϕ− ϕ↓0) , (37)

with arbitrary ϕ0 ∈ T1 and ρ+, ρ− ≥ 0, satisfying ρ+ + ρ− = M . On the other hand, in the previous
section we have found a manifold of equilibria of µ∂2

ϕ+Q, which is two-dimensional for each µ smaller
than and close to µ∗. The question is: Can these results be connected by the limit µ→ 0+? Motivated
by the fact that the bifurcating equilibria of the previous section have two symmetric maxima, our
conjecture is the following: The manifold of nontrivial equilibria starting at the bifurcation at µ = µ∗

can be extended to arbitrarily small µ > 0. Its limit as µ→ 0+ is the family

f∞(ϕ) := M

2 δ(ϕ− ϕ0) + M

2 δ(ϕ− ϕ↓0) , M ≥ 0 , ϕ0 ∈ T1 . (38)

For small µ, µ∂2
ϕ +Q possesses a three-dimensional family of metastable states close to (37).

So far we cannot prove any of this, but in the remainder of this section we shall present a first
small step: We shall prove the existence of a formal approximation for equilibria of µ∂2

ϕ +Q close to
(38) for the case of Maxwellian myxos. The corresponding considerations for the kernel b(ϕ,ϕ∗) =
| sin (ϕ− ϕ∗)| are more involved due to the convolution structure of the nonlocal ODE, which hindered
us to come to the desired conclusion. Some more evidence will be provided by the numerical simulations
presented in the following section.
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The stationary equation with b(ϕ,ϕ∗) ≡ 1 can be written as

0 = µ∂2
ϕf(ϕ) + 2

∫ ϕ+π
4

ϕ−π4
f(2ϕ− ϕ∗)f(ϕ∗) dϕ∗ + f(ϕ+ π)

∫ ϕ+π
2

ϕ−π2
f(ϕ∗) dϕ∗ −Mf(ϕ). (39)

We look for a reflection symmetric solution (f(ϕ) = f(ϕ+ π)) with mass concentrated around ϕ = 0
and ϕ = π (close to (38) with ϕ0 = 0). Concentrating on the peak at ϕ = 0, we introduce the new
unknown F (ξ) by the scaling

ϕ =
√

2µ
M

ξ , f = M

2

√
M

2µ F ,

and rewrite (39) as

0 = ∂2
ξF (ξ) + 2

∫ ξ+π
4

√
M
2µ

ξ−π4

√
M
2µ

F (2ξ − ξ∗)F (ξ∗) dξ∗ + F (ξ)

 2
M

∫ ξ
√

2µ
M

+π
2

ξ
√

2µ
M
−π2

f(ϕ∗) dϕ∗ − 2


Since, by the symmetry assumption,

∫ π
2

√
M
2µ

−π2

√
M
2µ

F (ξ∗) dξ∗ = 2
M

∫ π/2

−π/2
f(ϕ∗) dϕ∗ = 1 ,

holds, the limit µ→ 0 gives

0 = ∂2
ξF (ξ) + 2

∫ ∞
−∞

F (2ξ − ξ∗)F (ξ∗) dξ∗ − F (ξ) ,
∫ ∞
−∞

F (ξ) dξ = 1 . (40)

With the Green’s function of ∂2
ξ−id we can rewrite (40) as the fixed point problem

F = S(F ) with S(F )(ξ) :=
∫ ∞
−∞

∫ ∞
−∞

e−|ξ−ξ̃|F (2ξ̃ − ξ∗)F (ξ∗) dξ∗ dξ̃ .

We claim that S maps the set

B :=
{
F ∈ L1

+(R) ∩ CB(R) : F (ξ) = F (−ξ) ,
∫ ∞
−∞

F (ξ) dξ = 1 ,
∫ ∞
−∞

ξ2F (ξ) dξ = 4
}
.

into itself. For F ∈ B we obviously have S(F ) ≥ 0, S(F )(ξ) = S(F )(−ξ), and∫ ∞
−∞
S(F )(ξ) dξ = 2

∫ ∞
−∞

∫ ∞
−∞

F (2ξ̃ − ξ∗)F (ξ∗) dξ∗ dξ̃ =
∫ ∞
−∞

∫ ∞
−∞

F (ξ̂)F (ξ∗) dξ∗ dξ̂ = 1 .

A preliminary computation for the evaluation of the variance is∫ ∞
−∞

ξ2e−|ξ−ξ̃| dξ = 4 + 2ξ̃2 ,

implying∫ ∞
−∞

ξ2S(F )(ξ) dξ = 4
∫ ∞
−∞

∫ ∞
−∞

F (2ξ̃ − ξ∗)F (ξ∗) dξ∗ dξ̃ + 2
∫ ∞
−∞

∫ ∞
−∞

ξ̃2F (2ξ̃ − ξ∗)F (ξ∗) dξ∗ dξ̃

= 2 + 1
4

∫ ∞
−∞

∫ ∞
−∞

(ξ∗ + ξ̂)2F (ξ̂)F (ξ∗) dξ∗ dξ̂

= 2 + 1
2

∫ ∞
−∞

∫ ∞
−∞

(ξ2
∗ + ξ∗ξ̂)F (ξ̂)F (ξ∗) dξ∗ dξ̂ = 4 ,
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where the evenness of F has been used in the last equality. Finally, for any ξ ∈ R,

S(F )(ξ) ≤
∫ ∞
−∞

∫ ∞
−∞

F (2ξ̃ − ξ∗)F (ξ∗) dξ∗ dξ̃ = 1
2 ,

whence S : B → B, since the uniform continuity of S(F ) is obvious.

Lemma 6. With the above definitions, the set S(B) is relatively compact in CB(R).

Proof. By the estimate

|S(F )(ξ1)− S(F )(ξ2)| ≤
∫ ∞
−∞

∫ ∞
−∞
|ξ1 − ξ2|F (2ξ̃ − ξ∗)F (ξ∗) dξ∗ dξ̃ = 1

2 |ξ1 − ξ2| ,

S(B) is equi-Lipschitz-continuous. By the Arzelá-Ascoli theorem, a sequence {Fn} ⊂ S(B) possesses
for every compact set K ⊂ R a subsequence, which converges uniformly on K. The standard diagonal
procedure produces one subsequence {Gn} ⊂ {Fn}, such that Gn → G pointwise in R and uniformly
on each compact set. It remains to prove that the convergence is uniform on R.

Let ξ0 ≥ X > 0. Then, as a consequence of the Lipschitz continuity,

F (ξ) ≥ F (ξ0)− 1
2(ξ − ξ0) , for ξ0 ≤ ξ ≤ ξ0 + 2F (ξ0) .

Thus,

F (ξ0)2 =
∫ ξ0+2F (ξ0)

ξ0

(
F (ξ0)− 1

2(ξ − ξ0)
)

dξ ≤
∫ ∞
X

F (ξ) dξ ≤
∫ ∞

0

ξ2

X2F (ξ) dξ = 2
X2

With the analogous estimate for ξ0 ≤ −X we have

F (ξ) ≤
√

2
X

, for F ∈ S(B) , |ξ| ≥ X .

The same is true for the pointwise limit G of {Gn} and, thus,

sup
R
|Gn −G| = max

{
2
√

2
X

, sup
(−X,X)

|Gn −G|
}
,

which can be made arbitrarily small by choosing first X and then n sufficiently large.

Theorem 7. Problem (40) has a nonnegative smooth solution satisfying∫ ∞
−∞

ξ2F (ξ) dξ ≤ 4 .

Proof. For an application of the Schauder fixed point theorem it remains to prove continuity of S with
respect to the supremum norm: For F1, F2 ∈ B,

|S(F1)(ξ)− S(F2)(ξ)| ≤
∫ ∞
−∞

∫ ∞
−∞

e−|ξ−ξ̃|
(∣∣∣F1(2ξ̃ − ξ∗)− F2(2ξ̃ − ξ∗)

∣∣∣F1(ξ∗)

+ |F1(ξ∗)− F2(ξ∗)|F2(2ξ̃ − ξ∗)
)

dξ∗ dξ̃

≤ sup
R
|F1 − F2|

∫ ∞
−∞

∫ ∞
−∞

e−|ξ−ξ̃|
(
F1(ξ∗) + F2(2ξ̃ − ξ∗)

)
dξ∗ dξ̃

= 4 sup
R
|F1 − F2| .
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An application of the Schauder theorem shows that S has a Lipschitz continuous fixed point. The
boundedness of the variance implies tightness and therefore the fixed point is a probability density,
satisfying the upper bound of the variance. It is easily seen that the map ξ 7→

∫∞
−∞ F (2ξ−ξ∗)F (ξ∗) dξ∗

is Lipschitz continuous and therefore the differential equation (40) implies F ∈ C2(R). Bootstrapping
gives higher regularity.

A formal approximation as µ→ 0+ for an equilibrium can now be given as

f(ϕ) ≈


M
2

√
M
2µ F

(
ϕ
√

M
2µ

)
, |ϕ| ≤ π

2 ,

M
2

√
M
2µ F

(
(ϕ− π)

√
M
2µ

)
, |ϕ− π| ≤ π

2 .

The rigorous justification remains open.

Remark 2. For the case of the rod-shaped myxos the steady-state equation is of the form

0 = µ∂2
ϕf(ϕ) + 2

∫ ϕ+π
4

ϕ−π4
b(2ϕ− ϕ∗, ϕ∗)f(2ϕ− ϕ∗)f(ϕ∗) dϕ∗

+ f(ϕ)
∫ ϕ+π

2

ϕ−π2
b(ϕ,ϕ∗)f(ϕ∗) dϕ∗ − f(ϕ)

∫
T1
b(ϕ,ϕ∗)f(ϕ∗) dϕ∗.

(41)

In this case, we introduce the scaling

ϕ = µ1/3ξ, f = µ−1/3F,

through which the steady state equation (41) can be written as

0 = ∂2
ξF (ξ) + 2µ−

1
3

∫ ξ+µ−
1
3 π

2

ξ−µ−
1
3 π

2

b
(
µ

1
3 (2ξ − ξ∗), µ

1
3 ξ∗
)
F (2ξ − ξ∗)F (ξ∗) dξ∗

− µ−
1
3F (ξ)

∫ ξ+µ−
1
3 π

2

ξ−µ−
1
3 π

2

b
(
µ

1
3 ξ, µ

1
3 ξ∗
)
F (ξ∗) dξ∗ .

Remembering b(ϕ,ϕ∗) = | sin (ϕ− ϕ∗)| the above equation becomes

0 = ∂2
ξF (ξ) + 4

∫
R
|ξ − ξ∗|F (2ξ − ξ∗)F (ξ∗) dξ∗ − F (ξ)

∫
R
|ξ − ξ∗|F (ξ∗) dξ∗ . (42)

after considering the formal limit µ → 0. An existence analysis similar to that of (40) might be
possible. However, because of the ξ-dependent coefficient in the last term, an appropriate Green
function would not be explicit and dependent on F.

4 Numerical Simulations with the Spatially Homogeneous Model
Discretization: The results of the preceding section will be illustrated by numerical simulations
with the spatially homogeneous model (30) with the collision kernel b(ϕ,ϕ∗) = | sin (ϕ− ϕ∗)| for
rod-shaped myxos. Discretization in the angular direction is based on an equidistant grid

ϕk = kπ

n
, k ∈ Z2n ,
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with an even number of grid points, representing a discrete torus. The collision operator is approxi-
mated by quadrature, chosen such that mass is conserved and post-collisional states are on the grid
(see [29, Section 5] for details). Diffusion is discretized by the standard three-point scheme, and the
explicit Euler scheme is used for the time discretization, such that mass conservation is guaranteed.
The scheme has been implemented in Matlab.

All simulations have been carried out with n = 51 and with time steps satisfying a parabolic CFL
condition. This has not been too restrictive since only rather small values for the diffusivity µ have
been used. The mass has been normalized, i.e. M = 1, leading to the bifurcation value (see (33))

µ∗ = 1
12π ≈ 0.0265 .

The plots in the figures below show distributions initially (red dotted lines), at an intermediate time
(blue dashed lines), and at the end of the simulation time (black solid lines), the latter typically close
to an equilibrium state.

Simulations in the bifurcation regime: First we show simulations with values of the diffusivity
µ just below and just above the bifurcation value µ∗.

In Figure 2 the initial data have been chosen as random perturbations of the constant equilibrium,
which is stable for µ > µ∗ (right), and unstable for µ < µ∗ (left). In the latter case, the solution
converges to a nonuniform steady state with peaks centered around two unpredictable, but always
opposite points.

In Figure 3 the constant equilibrium is initially perturbed only at one grid point. The results are
as above.

Figure 2: Random perturbation of the constant equilibrium as initial conditions. Left: With diffusivity
smaller than the bifurcation value (µ = 0.02) the solution converges to a nonuniform equilibrium with
peaks at unpredictable positions. Right: For µ = 0.03 > µ∗ convergence to the constant steady state
f0 = 1/(2π) is observed.
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Figure 3: Initial perturbation of the constant equilibrium at one grid point. Left: µ = 0.02 < µ∗.
Right: µ = 0.03 > µ∗.

Simulations in the small diffusion regime: The remaining simulation results support the con-
jecture formulated in Section 3.2. For the value µ = 0.001 of the diffusivity we always observe
convergence to a nonuniform equilibrium with opposite peaks of equal mass. As expected the dy-
namics passes through metastable states with two peaks of different masses, where the convergence
to the final equilibrium becomes slower with decreasing values of µ. This is the reason why a rather
moderate value has been chosen, where the concentration effect is not too strong.

The simulations shown in Figure 4 start with initial datum nonzero only at the two opposite points
−π

2 and π
2 , weighted differently. We observe two time scales. First the peaks are smoothed and then

mass is transferred to make them of equal size. In Figure 5 the initial datum again is nonzero only at
two points with different weights, but placed at non-opposite angles. In this case not only mass has
to be transferred, but the peaks also move to produce the distance π between them.

Both figures also show the masses in opposite half intervals, which stay approximately constant
at the beginning of the simulation. In a second phase they converge towards each other. As soon
as the reversal operator comes to play, they start converging towards each other. For µ > 0 we
never observe non-symmetric equilibria in simulations, which exist and are stable for µ = 0 [29]. (For
further insights we refer to [29], Section 3.) Symmetrization requires the interplay between diffusion
and reversal. Figure 6 shows simulations with initial data as in Figure 5, but without reversal. In
this case the smaller peak is absorbed by the larger one as a consequence of the alignment interaction.
The role of the reversal operator seems to be rather subtle and is the subject of ongoing research.

Nonetheless, further simulations in Figure 6, which were performed in absence of the reversal
dynamics, encourage the conjecture that the reversal and the diffusion operator are conjointly respon-
sible for the symmetrization. We again start with an initial datum only nonzero at two points with
different weights, placed at −π

2 and π
2 . Also here, the smoothening of the peaks can be observed first,

followed by redistribution of the mass from the small peak to the bigger peak leading eventually to
the disappearance of the smaller peak.
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Figure 4: Initial condition with masses concentrated at −π/2 and π/2, weighted differently. Diffusion
constant µ = 0.001. Left: Time evolution with smoothing of the peaks, followed by redistribution of
mass. Right: Time evolution of the mass in [−π, 0] and in [0, π].

Figure 5: Different masses initially concentrated at −3π/4 and at π/2, diffusion constant µ = 0.001.
Left: Time evolution with smoothing and relocation of the peaks, followed by redistribution of mass.
Right: Time evolution of the mass in [−π, 0] and in [0, π].
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Figure 6: Different masses initially concentrated at −π/2 and at π/2, diffusion constant µ = 0.001.
These simulations where produced just with the alignment and the diffusion operator. Left: Time
evolution with smoothing of the peaks and redistribution of the mass to the bigger of the two peaks,
while the smaller one vanishes completely. Right: Time evolution of the mass in [−π, 0] and in [0, π],
where it becomes even clearer that the peak in the negative part of the torus vanishes.
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