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Between healthy cells and gliomas : an invisible margin

Fluorescence spectra normalization and data augmentation
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The interest of normalizing data acquired from different patients

How to manage a small number of unbalanced data ?

Results and Discussion
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Perspectives

Gliomas are infiltrative primary brain tumors, meaning that their margins are not well-

defined and can be difficult to distinguish from healthy tissue. Resecting far from the

tumor is not a viable option as the neurosurgeon has to preserve functional brain areas.

Consequently, the main challenge is to identify the invisible areas infiltrated by the tumor,

especially in Low Grade Gliomas (LGG) which are more infiltrative than High Grade

Gliomas (HGG).

The 5-ALA molecule, orally taken by the patient, is a

precursor of protoporphyrin IX (PpIX), which selectively

accumulated in tumor cells. PpIX emits fluorescence when

excited by a laser (two wavelengths are used – 375 and

405 nm) and eases the detection of tumor cells.

Endogenous fluorophores present in tumor cells are also

excitable and produce autofluorescence in the same

spectral bandwidth as the PpIX one.

Yet, omitting an endogenous fluorophore or using an

incorrect emission spectrum can lead to an over or under

evaluation of the fluorescence signal of the PpIX.

This work aims to develop a biopsy-selection-assisted per-

operative tool.

The fluorescence spectra obtained from 35 patients with the experimental system

developed by A. Gautheron during his PhD thesis [1] highly vary in intensity for each

patient. Thus, it is required to normalize the spectra before applying machine learning

algorithms.

Several ways to normalize the data have been explored :

o Dividing each spectrum by its respective emission laser power ;

o Dividing each spectrum by the total autofluorescence intensity ;

o Dividing each spectrum by the healthy samples mean intensity.

Unfortunately, the size of the database and the balance between the different classes

depends on the number of patients, the type of their tumors and the number and location

of the samples.

Two data enhancement algorithms have been tested :

o Synthetic Minority Over-sampling Technique (SMOTE) [2] : introduce synthetic

examples in the neighborhood of the minority class samples.

o Localized Random Affine Shadowsampling (LoRAS) [3] : create random affine

combinations of noised samples to keep the synthetic samples in the same manifold as

the minority class.
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o Enhance the database with new acquisitions during future surgeries.
o Apply several machine learning algorithms and tune the hyperparameters to get the best classification model.
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