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ABSTRACT 

 
The prominence of social influence (SI) in online social networks 

(OSNs) has grown exponentially, impacting diverse sectors such 

as marketing, political campaigns, public health, and societal 

culture. As OSNs continue to shape behaviors and interactions 

on a global scale, the need for a comprehensive understanding of 

SI and associated measures becomes critical. While existing 

measures primarily focus on network structures or graphical 

theories, behavioral investigations remain narrowly scoped. 

This study addresses this gap through an extensive focused 

literature review, analyzing 88 academic studies that provide 

deeper insights into human behaviors. From this analysis, 

twelve key human behavioral factors essential to understanding 

and measuring SI were identified, grounded in established 

sociological and psychological theories. The study further 

highlights challenges in current methodologies and proposes 

directions for future empirical validation. By adopting a 

behavioral perspective, this research offers actionable insights 

for academics and industries seeking to leverage SI, paving the 

way for more nuanced and effective measurement models in 

OSNs. 
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INTRODUCTION 

 

Social Influence (SI), as defined by the American Psychological Association, refers to changes in an individual's 

feelings, thoughts, or behaviors caused by the real, perceived, imagined, or suggested presence of others (Chaudhry 

& Irshad, 2013). Any alteration in a person's behavior, mood, or thought, influenced by others or groups—even if 

imagined, predicted, or suggested—constitutes influence, declares Burt (1987). Influencers, with their intrinsic ability 

to sway thoughts and behaviors, play a pivotal role in society, potentially sparking significant social revolutions 

(Gladwell, 2000). The rise of Online Social Networks (OSNs) has amplified their influence, providing digital 

platforms for social interaction, community building, and information dissemination to over 5.17B users globally as 

of July 2024 (Dean, 2024). These platforms allow users to form communities, share ideas, create digital content, and 

disseminate information (Yu et al., 2010). Platforms like Facebook, Twitter (X), and Instagram have transformed how 

social dynamics operate by enabling global connections and accelerating the spread of influence (Smith & Taylor, 

2017). Within OSNs, SI plays a critical role in decision-making processes, with its impact shaped by personality traits, 

psychological states, and demographics (Pratkanis, 2011). Additionally, mechanisms like information cascades and 

echo chambers contribute to the spread and reinforcement of viewpoints (Cinelli et al., 2021). Consequently, OSNs 

have evolved into powerful instruments for distributing SI, significantly shaping social norms, opinions, and behaviors 

worldwide (Goyal et al., 2013). Identifying key influencers within these networks becomes particularly crucial, as 

their ability to catalyze change can influence the social direction of communities and organizations (Gladwell, 2000). 

By recognizing the influencers, societies and organizations guide and manage SI, capitalizing on the interconnected 

nature of today's world (Rogers & Cartano, 1962). 

 

The marketing domain has undeniably taken center stage, benefiting on the vast opportunities presented by SI in OSN. 

By leveraging SI strategies, marketers have significantly influenced consumer purchasing decisions (Sridhar & 

Srinivasan, 2012). Influencer endorsements on platforms like Instagram have been particularly impactful, driving 

consumer behavior and resulting in substantial sales spikes (Mulcahy et al., 2024). Brands harness SI to stay relevant 

and maintain a competitive advantage in the evolving digital marketing landscape (Hafez, 2022). SI's influence 

extends far beyond marketing, reshaping industries and driving innovation across diverse domains. During the 

COVID-19 pandemic, SI played a pivotal role in shaping public discussions on critical issues such as immunization 

and social distancing (Lipsey & Losee, 2023). Research has linked SI to better medication adherence, higher physical 

activity, improved diet, and reduced tobacco and alcohol use (Christakis & Fowler, 2007).  Similarly, SI is known to 

exhibit a spontaneous on-off disposition in digital environments (Simon et al., 1998), triggering heightened interest in 

contagion studies (Loersch et al., 2008). Social groups can exhibit collective intelligence when averaged judgments 

contrast with individual judgments, often swayed by expert opinions (Dong & Pentland, 2007). SI also pervades 

cultural markets, influencing the adoption of scientific and technological advancements, and disseminating social 

practices, including economic influences, stimulating financial turbulence (Avery & Zemsky,1998). In the educational 

sphere, the digital era has brought new dimensions to SI, with social media and online communities becoming central 

platforms for collaborative learning and information exchange (Greenhow et al., 2009). Moreover, societal culture is 

continually reshaped and transformed by the dynamics of SI (Hofstede, 2011). 

 

Despite the prominence, it can be argued that there is a lack of a systematic and reliable model to measure SI in OSN. 

Understanding SI has piqued the curiosity of researchers and psychologists since the first recorded attempt by the 

Sophists1 to the current modern research by Robert Cialdini2  (2001). The power of influence has been long studied 

(Travers & Milgram, 1967) and, more importantly, how its orchestration in society is progressively gaining attention 

(Kapoor et al., 2018). These academic research studies have sought to characterize human influencing behaviors in 

concrete measurements through network properties, graphical measures; nonetheless, the results have been 

fragmented. Only a few researchers have attempted to depict the human behavior-influencing qualities in a network 

architecturally, but these efforts have neither been thorough nor grounded in established psychological theories. Lee et 

al. (2011), argued for an alternative theory focusing on informational SI and concluded through their experimentation 

that it played a moderating role rather than the anticipated direct role in consumer behavior. Similarly, while several 

 
1 Sophists - A sophist was a teacher in ancient Greece in the fifth and fourth centuries BC. 
2 Robert Cialdini - Renowned scientist and author of the best-selling book, “The Influence” 
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commercial product startups, like Klout3, Brandwatch4 and Kred5 , strive to discover and engage with influencers to 

benchmark their social media impact, none have created a comprehensive measure.  

This study will address this gap by examining the many measurements, and techniques used to assess SI, focusing on 

human behavior traits and their representation in OSN. To that purpose, the study particularly seeks to answer the 

following research questions: 

 

RQ1: What are the critical human behavior theories that play a role in understanding the influence 

behavior of social media users? 

 

RQ2: How do human behavior theories manifest in measuring SI in OSN? What are the 

comprehensive approaches, metrics, and methods prevalent in existing studies? 

 

RQ3: Are psychological theories represented adequately in measuring SI in OSN, and do this scale 

across multiple dimensions of OSN? 

 

By examining the academic literatures in the area through these research questions, this study offers an encyclopedic 

assertion of the subject, and approaches, to guide research and improve future studies in this field. It explicitly focuses 

on cataloging through the psychology and behavior theories and adds exhaustive reference knowledge to the 

discipline. The remainder of this paper is organized to ensure a logical flow for readers' comprehension. We begin by 

establishing the significance and scope of the research, followed by an overview of the methodology. Next, we delve 

into the literature synthesis analyzing human behavior-based characteristics through the lens of twelve psychological 

theories. We also address the challenges and limitations present in current studies, using practical examples, and 

propose potential approaches and directions for future research. Finally, the concluding section provides a concise 

summary of the study's key findings. 

 

MOTIVATION - SIGNIFICANCE OF RESEARCH 

 

The profound impact of SI in OSN reshapes how individuals connect, share, and make decisions (Guadagno & 

Cialdini, 2010). Understanding the dynamics of SI within these digital environments is critical, as they directly affect 

how people engage with brands, respond to influencer marketing, make health-related choices, navigate economic 

shifts, adapt their learning experiences, and shape their cultural perspectives. The ripple effects of SI extend beyond 

individual decision-making, influencing collective behaviors, driving trends, and shaping societal norms 

(Anagnostopoulos et al., 2008). Given the rapid information exchange and the power of digital communities to amplify 

voices, exploring the mechanisms of SI is essential for comprehending its broader social implications.  

 

Marketing: As outlined in the State of Influencer Marketing (2024), the influencer marketing industry has exploded 

into a formidable $24B sector. Incorporating a robust measure of SI in marketing strategies confers multifaceted 

benefits, enhancing the precision and efficacy of promotional efforts. Identification and collaboration with influencers, 

as a central component enable marketers to target specific demographics with unprecedented accuracy (Brown & 

Hayes, 2008). Market researchers have been working to develop a framework to guide businesses in selecting the 

most suitable influencers (Vrontis et al., 2021), a task made increasingly complex by the emergence of virtual 

influencers (Huang, 2023). Simultaneously, consumers themselves are evolving into brand ambassadors (Gensler et 

al., 2013). Moreover, the cost-effectiveness of influencer collaborations, coupled with their potential to foster engaged 

communities, positions this approach as a strategic alternative to traditional advertising channels (Jin et al., 2019). By 

aligning marketing efforts with trending topics and influencers, brands can harness the power of SI to maintain 

relevance and gain a competitive advantage in the ever-evolving digital marketing landscape. This strategic integration 

optimizes current campaigns and positions brands to anticipate and capitalize on emerging opportunities within the 

digital realm. 

 

 
3 Klout – Klout was a score platform to help identify an individual’s social influence score.  It was shut down in 2018. 
4 Brandwatch – Brandwatch acquired PeerIndex, a web technology company that enables users learn about the influence on social media platforms. 
5 Kred - Kred is a score and a platform for increasing social media user online influence. 
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World Economics: The interconnectedness facilitated by OSNs and the dissemination of information through these 

platforms profoundly impacts global economic dynamics. Research by Acemoglu et al. (2001) emphasizes the role of 

institutions in economic development, indicating that social and political structures significantly influence economic 

outcomes. OSNs catalyze trends in the digital age, affecting consumer preferences and market demands (Smith & 

Brynjolfsson, 2001). Additionally, the concept of social proof, as explored by Cialdini (2001), elucidates how 

individuals often make economic decisions based on the actions and choices of others, amplifying the ripple effect of 

SI in economic transactions. Understanding these dynamics is crucial for policymakers, businesses, and economists, 

as it enables a more comprehensive analysis of economic phenomena within the contemporary social context. 

 

Citizen Healthcare: SI plays a significant role in citizen healthcare, affecting health-related decisions, behaviors, and 

perceptions. Research by Christakis and Fowler (2007) highlights the impact of OSNs on health behaviors, suggesting 

that individuals are influenced not only by their own choices but also by the health-related choices of those within 

their social circles. Social support and influence can positively contribute to health outcomes (Umberson & Montez, 

2010). Moreover, the diffusion of health information through OSNs has become a prominent factor influencing public 

perceptions and behaviors regarding healthcare practices (Moorhead et al., 2013). Understanding the dynamics of SI 

in citizen healthcare is crucial for healthcare professionals and policymakers, as it can inform targeted interventions 

and public health campaigns to leverage positive influence for improved health outcomes. 

 

Global Politics & Diplomacy: SI is climactic in global and policy diplomacy, shaping international relations and 

decision-making processes. Research by Keohane and Nye (1987) on soft power emphasizes the significance of 

cultural and ideological influence in diplomatic interactions. In the contemporary era, digital diplomacy leverages 

social media as a tool for public diplomacy, allowing nations to project soft power and influence global perceptions 

(Seib, 2012). The concept of public diplomacy, as explored by Fisher (2011), underscores the role of SI in diplomatic 

practices, emphasizing the importance of interpersonal relationships in shaping international cooperation. 

Understanding SI dynamics in global diplomacy is essential for policymakers and diplomats to navigate the 

complexities of international relations and promote effective diplomatic strategies that resonate with diverse global 

audiences. 

 

Societal Culture: SI is a cornerstone in the evolution of societal culture, shaping norms, values, and behaviors. 

Societal culture is a complex interplay of shared beliefs, customs, and traditions influenced by social interactions. The 

work of Hofstede (2011) highlights the impact of societal values on cultural dimensions, emphasizing how SI 

contributes to the formation of collective cultural traits. Furthermore, the social identity theory by Tajfel and Turner 

(1986) elucidates how individuals categorize themselves and others into social groups, influencing cultural dynamics 

through intergroup relations. In the digital age, OSNs contribute significantly to disseminating cultural trends, 

reflecting the power of SI in shaping societal norms (Boyd & Ellison, 2007). Qin et al. (2011) explore the determinants 

of user acceptance of OSNs, focusing on the role of SI. The findings reveal that both the subjective norm and critical 

mass significantly impact perceived usefulness, influencing users' intention to use the networks. Understanding the 

nuances of SI in societal culture is crucial for sociologists, anthropologists, and cultural theorists, as it unveils the 

mechanisms through which cultures evolve and adapt over time. 

 

Education & Literacy: SI plays a crucial role in education and literacy, shaping learning environments and 

educational outcomes. The digital era has brought forth new dimensions of SI in education, with social media and 

online communities serving as platforms for collaborative learning and information dissemination (Greenhow et al., 

2009). Nguyen et al. (2024) asserted that SI positively impacts students' intentions to use communication technologies 

for learning, with this effect being enhanced by daily social media use, highlighting the role of OSN in education. 

Understanding the dynamics of SI in education is vital for educators, policymakers, and researchers, as it informs 

instructional strategies, curriculum development, and literacy initiatives that harness the power of social interactions 

to enhance educational experiences. 

 

The intricate web of OSNs encompasses various facets, including commercial economics, social welfare, evolving 

social trends, generational perspectives, shifts in the political landscape, and numerous other dimensions. Individuals 

equipped with insights into the mechanisms of SI can refine their behaviors and employ influence tactics more adeptly, 

increasing the likelihood of achieving their desired outcomes.  
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RELATED WORK – ZOOMING IN ON THE SCOPE DEFINITION 

 

The current state of the union on research studies are heavily focused on understanding SI in OSN through the 

inherent graph and network theories of OSN. The significant problem of finding the most influential entities within 

the network has been resolved using gradient-based optimization techniques (More & Lingam, 2019). Samantha et 

al. (2021) measured SI by incorporating fuzzy systems to derive mathematical formulations that represent influence 

of a node within the social networks.  Influence propagation using models was established using probabilistic models 

to understand the influence from a knowledge-sharing network (Richardson & Domingos, 2002) within OSN.  

Baabcha et al. (2022) identify influential nodes using influence diffusion and maximization techniques. Studies have 

also taken advantage of the latest technology revolution with big data and machine learning to understand the 

intricacies of SI in OSN. Bonchi (2011) adopted a data mining perspective to identify influence propagators in OSN 

while clearly acknowledging the shortcomings of the study. Bhat et al. (2020) used hybrid ranking algorithm to 

identify the influencer nodes within the network and Popescu et al. (2016) coupled ranking with multiple linear 

regression to interpret the influence of social media on student learning.  

 

Commercial platforms like Klout, Kred, and Brandwatch initially gained significant attention; however, they 

struggled to differentiate between social enthusiasts engaging purely to boost their influence scores and genuine 

social media users with authentic engagement. Commercial analytical tools attempt to compute influence by reducing 

it to fit into a single number, relying on its simplest form without comprehending the complexities in human behavior 

characteristics (Anger & Kittl, 2011). Based on user contact network structure and traffic tweets (posts), each 

commercial application employs a distinct methodology to determine the impact (Del Campo-A´vila et al., 2013). 

Klout was one of the most well-known commercial products (Rao et al., 2015) that became popular given their ability 

to provide an influence score to a social media user, however, folded with the same lightning speed in which it grew 

to be a unique problem solver (Hollister, 2018). These commercial tools settled on a model to measure influence 

without adequate theoretical background to substantiate the human behaviors.  For instance, Klout prioritized 

authority, whereas Kred prioritized engagement (Mei et al., 2015) as key indicators for SI, but do not bear any 

evidence of theoretical proof. Danisch et al. (2014) found the discrepancy with the Klout score and inserted a counter 

to include the social capital of an individual to define a better measure.  This was still inadequate as it did not capture 

the full spectrum of human emotions that contribute to SI. 

 

Even the studies focused on human behaviors limited to a few characteristics.  For instance, Li et al. (2015) focused 

on relationships and conformity to measure SI.  Lorenz et al. (2011) focused on the conformity ignited by the crowd 

behavior. Wiedmann and von Mettenheim (2021) demonstrated that success criteria were more strongly associated 

with influencers than with the information in their profiles, highlighting the essential role of credibility. Danisch et 

al. (2014) investigated the organizational structure of social capitalists and the extent of their connections within the 

Twitter (X) follower-followee network, revealing their prominent presence attributed to their unique roles. Shi et al. 

(2017) considered the evolution of user interests throughout the progression of an event and identified that user 

interests significantly enhanced the ability to discern a user’s impact through changes in shared interests. Qin et al. 

(2011) explore the effects of SI on user acceptance understanding subjective norm and critical mass.  

 

Cialdini (2005) identifies a powerful form of influence at three key and frequently encountered decision-making 

stages: first, when individuals act as observers and determine the reasons behind their own behaviors; second, when 

they function as strategists and decide how to affect the actions of others; and third, when they serve as experts and 

choose whether to seek input from others.  He has done several research on the prominence of influence. His research 

in partnership with Goldstein (Cialdini & Goldstein, 2004) focuses on compliance and conformity and in another 

subsequent paper emphasize social norm (Goldstein & Cialdini, 2011).  Guadagno and Cialdini (2010) assert that 

individuals are generally consistent with their attitudes and behaviors. In his seminal work ‘Influence’, he presents 

six key principles, however, through the lens of persuasion (Cialdini, 2001).  This wisdom inspired us to retrospect 

influence based on sociological and psychological theories. 

 

While most of the studies often use graph theories, statistical models, and algorithms to analyze SI in OSNs, they 

overlook the complexity of human behavior, leading to biased predictions. Cialdini's work, though highly regarded 

in marketing and behavioral science, focuses on short-term persuasion aspect of influence governed through 

principles like reciprocity and social proof. In contrast, influence is a broader, long-term process shaped by ongoing 
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social interactions, group dynamics, and dynamics of OSN. To accurately measure SI in OSNs, a more holistic 

understanding of human behavior is essential. 

 

METHODOLOGY  

 

The literature review aims to achieve the specific objective of identifying human behaviors critical to understanding 

and measuring SI in OSNs. Systematic literature reviews (SLRs) synthesize scientific evidence to address specific 

research questions through a transparent and reproducible process. They aim to include all relevant published evidence 

on the topic while critically evaluating the quality of this evidence. Key features include exhaustive searches, explicit 

inclusion and exclusion criteria, and a comprehensive synthesis of findings, often covering diverse methodologies and 

perspectives (Lame, 2019).  While we adopted the structured rigor of an SLR, we narrowed the scope to conduct a 

focused review targeting the human behavior characteristics of SI in OSNs. This approach prioritized depth over 

breadth, emphasizing selective inclusion of literature to address a precise research question and objective. Unlike an 

SLR, it allowed for greater methodological flexibility, incorporating iterative refinements as insights emerged (Huelin 

et al., 2015). By adopting this methodology, we were able to explore relevant studies with a targeted lens, emphasizing 

contextual relevance and theoretical grounding over exhaustive breadth. As outlined in Figure 1, a structured and 

rigorous process was followed to ensure a thorough exploration of practical and critical issues related to SI in OSN. 

The focus was on evidence-based research grounded in strong theoretical frameworks, while also incorporating 

relevant observational studies, reports, and conference papers. 

 

Figure 1 - Focused Literature Review 

 

 

 

The search terms were derived from the research questions exploring the measure of SI based on human behaviors in 

the OSN. An initial exploratory search in the Rennes Multi-Source Database focused on SI in behavior theories in 

OSNs. The keywords shortlisted were ‘social influence measurements’ and ‘social influence in online social networks’ 



  

 

 
117 

and ‘human behaviors in social influence’ and ‘social influence in social media’. A total of 227 records were identified. 

The inclusion criteria for the search were linked full text, peer-reviewed studies in academic publications, English 

language, and year of publication after 2000 to focus on the current SI research.  After removal of duplicates the search 

resulted in 114 publications. The investigation was extended to Google Scholar with similar search parameters (first 

five pages each) and 36 publications were identified.   162 key references from ‘Measuring Reputation and Influence 

in Online Social Networks: A Systematic Literature Review’ (Al-Yazidi et al., 2020) and 41 key references from 

‘How to Measure Influence in Social Networks’ (Ribeiro et al., 2020) were incorporated to enrich the analysis, 

contributing to a total of 353 journal articles included in the study. Post the initial scan of review of title, and abstracts, 

introduction & conclusions in a few cases, 157 relevant literatures from the search strategy were shortlisted that would 

be suitable for further analysis and reporting.  

Two sets of criteria were used to narrow the search further to validate the quality of the journals.  The first set was 

focused on structural and qualitative components like: 

QA1: Does the literature reflect the setting in which the study was conducted? 

QA2: Is the study approach and research methodology thoroughly described within the literature? 

QA3: Does the article correctly describe the data-collecting procedures and data analysis approach? 

The second set concentrated on the relevance of the information and included: 

QA4: How does the study evaluate influence based on human behavior representation in OSN? 

QA5: Does the research paper relate to the research context from psychological theories? 

The authors convened regularly to review the 157 shortlisted articles, following established guidelines detailed above 

to assess whether each study aligned with the premise of the research. This review process evaluated the methodology, 

data collection, and overall rigor of the studies, with an emphasis on relevance to understanding human behaviors 

related to influence resulting in a final set of 88 relevant literatures (Appendix 1 shows the included literature). Zotero6 

served as the official record system for collecting the picked journals and the accompanying metadata, such as Item 

Type, Title, Authors, Abstract, Publication Year, Volume, Date, ISSN, Library Catalog, and Publisher.  

Any literature review begins with data extraction and ends with synthesis to gain a meaningful conclusion. The 

research began by defining the scope, establishing clear criteria for selecting behaviors to ensure alignment with the 

research objectives. Behaviors were then categorized based on common themes, contexts, and relevance, resulting in 

the identification of twelve distinct human behaviors. These behaviors were subsequently linked to established 

psychological theories using a structured methodology: 

• Behavioral Characteristics Analysis: Each behavior was examined in depth to uncover its underlying 

motivations, cognitive processes, emotional dynamics, and social contexts. 

• Theory Selection: A thorough review of psychological theories was conducted to pinpoint theories that best 

aligned with the traits and nuances of each behavior. 

• Mapping Behaviors to Theories: A systematic approach was developed to map behaviors to corresponding 

theories, focusing on identifying the psychological theory that directly explained the behavior and ensuring 

its contextual alignment for added depth. 

With this approach, the human behavior factor was aligned to a relevant psychological theory allowing for a nuanced 

examination of the SI through a theoretical perspective. Table 1 summarizes the 88 papers grouped under the human 

influence factors and the corresponding psychological theory that it has been mapped into.  

  

 
6
Zotero is a free and open-source reference management software. 
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Table 1 – Journals Grouped Under Human Behaviors & Theories  
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LITERATURE REVIEW SYNTHESIS 

 

The literature review synthesis presents key findings from the 88 shortlisted research articles, categorized under twelve 

SI factors linked to established psychological theories. This structured approach as shown in Figure 2, provides a 

comprehensive view of how these behaviors shape and influence interactions within OSNs. By summarizing these 

critical factors, the review offers clarity on how SI manifests and functions, laying a strong foundation for further 

analysis and exploration. 

 

Figure 2 – Social Influence in Online Social Networks: Human Behaviors as Key Influence Factors 

 

 

 

Common Interests as an Influence Factor 

 

In an age of information overload, filtering based on common interests will assist people in inferring the information 

they are ultimately interested in. Ji et al. (2015) investigated the role of social media users’ interests in online trust 

formation, confirming that the rapid accumulation of common interests leads to trust in relationships which then 

creates influence. It finds that common interests increase significantly before trust is established and continue growing 

afterward. Users with similar tastes are more likely to form trust-based relationships, with common interest peaking 

around the time trust is created with ongoing user activity influencing the effect of taste similarity, shedding light on 

social relations in online networks. By combining lexical and sentiment analysis with domain-based content analysis, 

Bilal (2021) assessed a social media user’s influence potential based on shared content interests. This research 

investigates the impact of friends and followers on the perceived helpfulness of reviews by utilizing social network 

features. Passionate affinity groups are communities where individuals with shared interests gather, frequently online, 

to create, critique, analyze, and collaborate. Typically, members join these groups already possessing a strong interest 

in the subject matter and engaging in social interactions on dedicated websites within these communities enables 

participants to develop both new and well-established personal interests (Bergin, 2016). Another exciting perspective 

from Shi et al. (2017) accounted for changes in user interests as an event progress. Their HEE (Hot Event Evolution), a 

user-interest-based event evaluation model, dramatically improved the identification of the influence exerted by the 

user based on changes to common interests. Zhou et al. (2018) introduced DSUN (Dynamic User Networking Model), 

which accommodates a similarity-based representation of implicit ties based on topic-aware traits and an influence-



  

 

 
120 

based representation of explicit relationships based on behaviors. This research measures common interests by 

topological features such as overlap rates, taste similarity, and user degree ranking.   

Given the significant role of common interests in creating SI, we examined Social Identity Theory (Tajfel & Turner, 

1986) to better understand this phenomenon within OSNs. Social Identity Theory posits that a group consists of 

individuals who perceive themselves as members of the same social category and share common interests. In OSNs, 

these shared common interests facilitate the formation of distinct social identities as users gather in virtual 

communities centered around everyday topics. This internalization emphasizes intragroup similarities and intergroup 

differences, fostering a sense of belonging and loyalty that enhances SI. OSN features such as groups, forums, and 

hashtags amplify this process by promoting visibility and interaction among members. As a result, group norms are 

reinforced, information dissemination aligns with group interests, and trust among members facilitates effective 

influence. By leveraging Social Identity Theory, the research can elucidate how shared interests within OSNs create 

robust social identities that drive influential user behaviors and interactions. 

 

Relationships as an Influence Factor 

 

As Carnegie 7  says, “If authentic leadership is about influence, then the influence is about relationships, and 

relationships are about the investments made into people.” Social relationships in online communities are formed 

when members join the group, knowing one or a few members. The homophily principle states that similarity fosters 

connections in relationships like friendship, work, and support, making personal networks largely uniform in 

characteristics such as race, age, and education. This similarity limits the diversity of information and interactions 

individuals receive, and fosters relationships within the group (McPherson et al., 2001). De Choudhury et al. (2010) 

explores how the tendency for similar individuals to connect impacts the diffusion of information on social media. By 

analyzing diffusion characteristics across various user attributes (e.g., location, activity), the study finds that 

accounting for these attributes can improve predictions of information diffusion by 15-25%, highlighting their 

significant role in explaining actual diffusion patterns and external trends. Peng et al. (2017) develop a social 

relationship graph, providing a robust foundation for understanding SI. Additionally, they introduce an evaluation 

model that measures both direct and indirect influence by incorporating friend entropy and interaction frequency 

entropy, which capture the complexity and uncertainty inherent in SI in OSN. Once social media users become part 

of a group, they organically become subjected to the influence of ideas and thoughts shared within the group.  

 

The study by Anagnostopoulos et al. (2008) focuses on understanding and comprehending SI in OSN through two 

factors of relationship: Homophily and Confounding. The paper examines how social ties in online systems impact 

user behavior and tackles the challenge of distinguishing SI from other factors like homophily. The authors propose 

two tests to separate SI from social correlation. Simulations on Flickr data reveal that while social correlation exists 

in behaviors like tagging, it cannot be solely attributed to SI. Cataldi et al. (2013) focused on tracking changes in user 

relationships based on the topic of conversations. In their study, they use an N-gram model classification strategy to 

categorize the information into domains to estimate a user’s influence on a community within the domain. Using case 

studies from Twitter (X), their research demonstrates the validity of this approach in understanding information 

diffusion and user influence across different domains. On a relative note, the MapMe algorithm from Ma et al. (2017) 

uses the Doc2vec technique to calculate user relationship similarity based on the user’s ego network properties 

integrated with the user profile. Their approach of using the organic nature of OSN ego networks combined with user 

profile outperforms the existing methods with 10% on average accuracy in detecting relationships. The study by 

Smailovic et al. (2018) estimates an influencer’s social impact by the user’s placement in the social network and their 

relationships with fellow users. Given getting complete user data from OSN is often a complex or impossible tasks, 

the authors propose an alternate to evaluate algorithms that calculate SI using limited data, focusing on accuracy and 

precision. Building on traditional approaches from statistics and machine learning, the methodology is demonstrated 

through a case study with four different algorithms, identifying the most accurate methods for predicting SI. Shi et al. 

(2014) present the statistical associations between user characteristics found in social networks and retweeting habits. 

With their two-stage consumption-sharing model, they demonstrate that unidirectional weak relationships are more 

 

7 Dale Carnegie -November 24, 1888 – November 1, 1955) was an American writer and lecturer 
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likely to participate in exchanging social content. Romero et al. (2011) offered an all-encompassing model of influence 

based on the notion of inactivity or passiveness in a social network. This paper introduces a novel influence measure 

on Twitter (X) that incorporates both network structure and user passivity. The algorithm considers the influenced 

audience's size and passivity, distinguishing it from traditional measures that rely only on topical metrics like follower 

count or retweets. 

Investigating Social Exchange Theory in the context of SI within OSNs is crucial because it provides a comprehensive 

lens for understanding core aspects of social relationships and their interactions, such as power, dependence, 

reciprocity, and social cohesion (Cook & Emerson, 1987). By examining these interactions through the lens of Social 

Exchange Theory, we gain insights into how individual behaviors are shaped by the expectations of reciprocity and 

mutual benefit, which are central to how SI operates. This understanding is essential to reveal how influence flows 

through networks, how alliances and social bonds strengthen or weaken over time, and how individuals' roles and 

relationships drive individual and collective actions within OSNs. In essence, relationships and exchange are central 

to understanding how ideas, behaviors, and trends propagate, making them a crucial focus for any investigation into 

SI in digital environments. A deeper exploration of these concepts in OSNs will enable a more accurate and nuanced 

measurement of SI, reflecting the complexities and bidirectional nature of relationship interactions, ultimately leading 

to a clearer understanding of how influence shapes behaviors in digital communities. 

 

Social Capital as an Influence Factor 

 

The benefits of sociability are referred to as social capital. The human capacity to regard others in social relationships 

and social structures, to think and behave generously and collaboratively, is the source of social capital. Julien’s (2015) 

summary encapsulates the main arguments and contributions highlighting the shift from American communitarianism 

to Bourdieu’s framework on social capital and the introduction of an agonistic model for understanding online 

interactions and influences. A deep relationship exists between one’s ability to influence and their accrued social 

capital. Badawi et al. (2019) research offers evidence for the significance of these relational components. Their 

research contributes to the literature by integrating social capital theory, examining how six social capital constructs 

(ability, benevolence, integrity, flexibility, information exchange, and solidarity) relate to three relationship quality 

constructs (trust, satisfaction, and relationship atmosphere) and how these constructs influence the effectiveness of 

key account management. Similarly, the study by Subbian et al. (2014) postulates that people with substantial social 

capital are frequently key network influencers and create a value-allocation model to compute the social capital in 

OSN and allocate their fair share of this capital to everyone involved in the collaboration to create a data driven 

generalized influence model.  Ram and Rizoiu (2021) instead examine the diffusion and conductance feature through 

networks and the distribution of social capital. Their study introduces a generalized influence model inspired by 

psychosocial theories incorporating diffusion network conductance and social capital distribution. It proposes an 

active learning framework using human-labeled data to rank users' SI more accurately by correcting biases like over-

reliance on follower count. Applying this model to COVID-19 discussions, the study finds that influential users are 

often executives, media figures, and military personnel rather than healthcare experts. Bakshy et al. (2011) assert that 

word-of-mouth diffusion can only be harnessed reliably by targeting large numbers of potential influencers, thereby 

capturing average effects. Their study analyzed the attributes and influence of 1.6 million Twitter (X) users by tracking 

74 million diffusion events over two months in 2009.  It also shows that while highly influential users may sometimes 

be cost-effective, ordinary influencers often offer better performance under various marketing strategies.  

 

Horng et al. (2020) focus on how online social capital behaviors such as bonding and bridging impact SI. They also 

examine how the social capital mediates the relationship with SI and explore a more detailed relationship amongst 

these constructs by dividing the OSN behavior into browsing and participating, social capital into bonding and 

bridging, and SI into receiving and giving. Social capitalists are apparent because of their specific roles, according to 

Dugue et al. (2015) analysis of how they are structured and how far their connections reach beyond the Twitter (X) 

follower-followee network. Their study finds that social capitalists hold specific roles that grant them high visibility 

by analyzing their position in the network's community structure and examining their behavior, organization, and 

influence. Additionally, it identifies limitations in existing topological measures of community roles and proposes a 

more flexible, unsupervised approach to understand these dynamics better. Danisch et al. (2014) took a very interesting 

approach. Rather than relying on the traditional way, they defined a classifier developed based on user profiles and 

behaviors that separates social capitalists from genuine users to balance Klout’s influence score. Social Capital Theory 

is defined as social context features that offer productive advantages. 
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Given the significant role of shared interests in creating SI, we examined Social Capital Theory (Bourdieu, 2011) to 

better understand this phenomenon. Bourdieu (2011) defines social capital as "institutionalized relationships of mutual 

familiarity and recognition" accumulated over time, encompassing resources like trust and information sharing that 

enhance one's ability to influence others. Studies have shown that individuals with high social capital in OSNs possess 

greater reach and credibility, enabling them to shape opinions and disseminate information effectively. However, the 

psychological mechanisms behind why people are more influenced by those they have developed positive 

relationships with remain underexplored. Addressing this gap is crucial for fully understanding how social capital 

translates into effective SI in digital environments. 

 

Social Contagion as an Influence Factor 

 

Spontaneous transmission of traits, sentiments, or disorders within a network is organically called contagion (Levy 

& Nail, 1993). Since the late 19th century, social scientists have studied phenomena, albeit precise definitions have 

varied because most of the research on the topic was based on ambiguous or contradictory ideas. In general, social 

contagion is thought to be distinct from the group behavior that directly results in SI. Gustave Le Bon (Bon, 1908), a 

French philosopher, created the Contagion Theory in his seminal work, ”The Crowd: A Study of the Popular Mind.” 

He claimed that people behave rationally while alone but get practically hypnotized by a crowd’s energy and behave 

emotionally and impulsively. Individuals tend to exhibit irrational and sometimes even vicious acts as they seem to 

lose control of their unconscious instincts (Bosanquet, 1899) and it is important to understand this phenomenon and 

its impact on SI. 

 

Collective behavior is emotional and mostly irrational and results from the crowd’s hypnotic influence, result in echo 

chambers in the OSN. Human social networks often exhibit the ‘three degrees of influence’ phenomenon, where the 

impact of an individual's behaviors, emotions, and decisions extends to their friends, their friends' friends, and even 

their friends' friends' friends, driving the spread of various ideas and behaviors such as obesity, smoking, cooperation, 

and happiness (Christakis & Fowler, 2013). Liang (2021) investigates retweeting behavior on social media, focusing 

on how social contagion and homophily influence information spread across different diffusion depths. Analyzing 

over 87,000 tweets, the findings reveal that as cascades deepen, social contagion effects—such as interaction 

frequency and multiple exposures—diminish, while homophily's influence increases, suggesting that the role of 

social contagion in information diffusion varies with cascade depth. Ferrara and Yang (2015) study on Twitter (X) 

explored emotional contagion by examining how exposure to positive or negative posts influences users' subsequent 

tweets and identified a relationship between the emotional tone of the content users encounter and the emotions they 

express in their own posts, highlighting varying susceptibility levels to contagion.  

 

The study by Jung and Neusch (2019) finds that a high number of views on a YouTube video not only serves as a 

quality signal but also enhances the perceived suitability of discussing the video with others, independent of its 

content. These findings highlight how social contagion can drive the popularity and discussion of content, impacting 

aspiring influencers. Herrera et al. (2015) challenge the common assumption in marketing and diffusion research 

that social interactions remain static over time and analyze how social contagion influences adoption processes over 

a decade. Findings suggest that while social contagion is important for diffusion, its role in shaping adoption is less 

significant when social dynamics among community members are considered. The study by Cinelli et al. (2021) 

compares how different social media platforms influence information spreading and the formation of echo chambers. 

The research focuses on homophily in interaction networks and bias in information diffusion towards like-minded 

peers and the results indicate that users tend to cluster in homophilic groups across platforms. Social contagion 

caused by network exposure can boost favorability ratings of ideas or products, declared Kwon et al. (2014).  

Although social contagion may occur more inadvertently than direct solicitation, their findings imply that Facebook 

messages demonstrate the power of network exposures. Given the rapid growth of adaptation to OSN and the massive 

threat such contagions can cause to society, a more structural investigation of this is required to incorporate the 

relevance for SI measurement and, more importantly, find ways to control this human behavior tendency. 

Shared Sentiments as an Influence Factor 
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As Dr. Simon8   noted, sentiments and emotions affect, distort, and sometimes entirely dictate the result of a 

significant number of decisions we face each day. Several studies have explored shared sentiments through multiple 

lenses. Human psychology dictates that anyone who wants to make the most objective judgments should learn 

everything about emotions and their impact on decision-making. Emotions as social information (EASI) theory states 

that emotional expressions shape SI by eliciting effective reactions and inferential processes in observers (van Kleef, 

2009). Thus, academics are increasingly interested in how user sentiments and feelings about a subject or an issue 

affect influence. We propose that it is important to understand the accounting of people’s innate propensity to be 

influenced by emotions when evaluating SI in OSN.  

Bae and Lee (2012) focused on the fundamentals to prove that the influencer's sentiment may influence the followers' 

perception and credibility, as well as how they respond to such stimuli. This study uses sentiment analysis to assess 

influence by distinguishing between positive and negative sentiments expressed toward popular Twitter (X) users. 

The results demonstrate that the sentiments of influential users significantly impact their audience's sentiments. By 

applying a positive-negative influence measure, the Granger causality analysis reveals a correlation between shifts 

in audience sentiment and real-world sentiment about these users, providing valuable insights into how user influence 

operates on Twitter (X). Wu and Ren (2011) research provide insights into how sentiment spreads and interacts in 

online social networks. Their paper explores sentiment influence in social networks, explicitly analyzing Twitter (X) 

data to model both the sentimental influencing and influenced probabilities of users. The study reveals a strong 

correlation between users' likelihood to influence others' sentiments and their susceptibility to being influenced. 

Additionally, most Twitter (X) users balance influencing and being influenced sentimentally. Arora et al. (2019) 

focused on sentiment analysis across multiple social media networks using simple regressions and a cumulative 

scoring model based on engagement, outreach, sentiment, and growth attributes. As OSN is becoming a common 

medium for people to share information, symbols and emoticons are becoming very popular. The study emphasizes 

the importance of audience reactions, such as comments and replies, and incorporates overall sentiment scores to 

compute the influencer index. In their study, Sun and Ng (2014) aimed to assess the effect of a post’s favorable or 

unfavorable emotion through a comprehensive vocabulary model dealing with symbols and emoticons. While it was 

a great start, they could not continually maintain classification, given the rapid growth in the number of emoticons 

and memes. However, this study is vital as it established the framework to measure sentimental influence of posts. 

Servi et al. (2014) introduced a novel method by devising a quantitative technique for text processing and coupled it 

with a statistical algorithm to find emotion patterns, a significant departure from just using links or tweets. This paper 

redefines online influence by emphasizing its ability to shift emotional levels expressed by social media users. It 

introduces a novel methodology that links changes in emotional expression patterns to specific users, using text 

analysis and mathematical algorithms to detect shifts and predict future trends. The study by Stieglitz and Dang-

Xuan (2013) examines the impact of emotions in social media content on information diffusion, with a focus on 

political communication on Twitter (X). The findings reveal that emotionally charged messages are more likely to 

be retweeted quickly and frequently than neutral ones, highlighting the importance of sentiment analysis in 

understanding SI. 

 

Social Conformation as an Influence Factor 

 

Conformity, which involves adjusting one’s behavior to align with the responses or expectations of others, plays a 

key role in influencing your fellow members on social media. According to Deutsch and Gerard (1955), conformity 

is driven by two distinct motivations: informational and normative. Informational influence arises from the need to 

develop an accurate understanding of reality; individuals look to others as sources of information, especially in 

uncertain situations, using their behavior as cues to form their own beliefs or actions. On the other hand, normative 

influence is driven by the desire for social acceptance and approval; individuals conform to fit into their social group 

or avoid disapproval. In the context of SI in OSN, these forms of conformity are critical for understanding how 

content, trends, and behaviors spread.  

 

Book and Tanford (2020) offer a measurement tool by representing these complex phenomena in online networks. 

They confirmed that conformity significantly influenced participants' choices based on traveler reviews. For 

instance, when only a minority favored a green resort, subjects were less likely to choose it, conforming to the 

majority opinion. Those with pro-environmental attitudes felt dissonance when choosing a nongreen option, however 
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evaluated their choice more favorably and sought supportive information to reduce dissonance. A study on 

Groupon.com indicates that social media herding can greatly enhance product awareness by spreading information 

and amplifying quality signals. The findings reveal that the spread of information is especially effective, with herding 

having a greater impact on experience, while social media influences both experience and search goods similarly (Li 

& Wu, 2018). Muchnik et al. (2013) illustrate that SI significantly affects rating dynamics in systems that harness 

collective intelligence. They discovered that it was topic-dependent, and the positive herding behavior was influenced 

by whether the opinions were of friends or adversaries. Similarly, Lorenz et al. (2011) show that the ‘social influence 

effect’ reduced crowd variety while increasing crowd accuracy overall and that the ‘confidence impact’ increased 

people’s conviction despite the lack of enhanced accuracy. Cialdini and Goldstein (2004) examine the conformity 

theory as the foundation of a target’s receptivity to external influences to reward human cognition. SI is shaped by 

group norms, primarily when individuals strongly identify with a group. Goldstein and Cialdini (2007) distinction 

between descriptive (what people do) and injunctive (what people should do) norms further shows that SI works 

through different motivational channels, impacting behaviors by reinforcing group conformity and societal 

expectations. Together, these theories highlight the complexity of how SI shapes individual actions. Li et al. (2011) 

created a model called CASINO, to study the connection between conformity and influence and how they interact 

based on topics in OSN. They later created a revolutionary conformity-aware cascade model CINEMA that 

employed a greedy algorithm to further enhance the concepts to the interconnected activities. While they employed 

graphical theories to understand the diffusion of influence through the networks, their approach confirmed the human 

behavior to conform at second and third levels (Li et al., 2015). Information shared in OSN not only shapes beliefs 

but also exert social pressure to conform to collective norms, thereby amplifying SI in OSN and guiding both 

individual and group behaviors. 

 

Personal Brand as an Influence Factor 

 

Scholars are keen to learn more about how personal branding affects an influencer’s ability to persuade their 

followers in OSN. For instance, Faliagka et al. (2018) assess a social media user’s personal brand strength based on 

their social media engagement relevancy and high level of social web activity towards an influence indication score. 

Their motivation is to embed this within an organization’s recruiting system to choose the right candidate for the 

right job.  Yamaguchi et al. (2020) present TURank (Twitter User Rank), a link-based system for evaluating users’ 

authority ratings on Twitter (X) using ObjectRank highlighting that users who frequently share valuable information 

are considered highly authoritative. Zacharopoulos and Rigou (2021) introduces a tool for evaluating candidates' SI 

on Facebook, aiding recruiters in ranking applicants based on their social activity and personal branding. By allowing 

customizable ranking criteria and visual comparisons, the tool supports more informed recruitment decisions, linking 

SI on candidate suitability. Siedman (2013) research results indicate that conscientious individuals are cautious about 

their online self-presentation, while those high in neuroticism, agreeableness, and extraversion are more likely to 

express their actual selves.  

 

The personal brand and the charisma of the influencer to continuously present themselves in the right light play a 

critical role in determining their influencing ability. Celebrity endorsers are used by marketers in anticipation that 

their fame will propagate the image of the brand or product (Erdogan, 1999). Given the prevalence of celebrity 

endorsement and the popularity of personal brand management, we propose to review self- presentation theory to 

further understand the behavior in the context of SI in OSN. Self-presentation theory, developed by Erving Goffman 

(1949), examines how people wish to be viewed and how they are regarded by their peers. Personal branding and 

self-presentation theory go hand in hand. While celebrity endorsement has long been prevalent in influencer 

marketing, present methodologies focus primarily on the influencer syndrome that enable everyone to become an 

influencer, limiting generic expertise and standard branding techniques. It is worth examining this human behavior 

around personal branding based on the psychological theory foundation for translation, interpretation, and 

measurement of SI on OSN. 

 

Likability as an Influence Factor 

 

We are more likely to trust others when we like them, which makes for more substantial personal and professional 

relationships. Networking success depends on being likable and tied to your most ingrained, enduring habits and 

attributes. People’s willingness to comply with requests was allegedly influenced by the SI principles of likability 
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and interpersonal validation, especially in online environments (Guadagno et al., 2013). Taillon et al. (2020), further 

accentuate this idea in their research, concluding that beauty predicts favorable sentiments toward the influencer 

word-of-mouth, whereas similarity predicts follower word-of-mouth. Furthermore, the effect of likability on attitude 

toward the influencer was mitigated by proximity. Mei et al. (2015) takes a unique approach using Twitter (X) data 

to identify the significant hidden social attributes that create SI using the principal component analysis, rank 

correlation analysis, and stepwise multiple linear regression algorithms. According to their research, the three social 

factors that impact user influence most are popularity, engagement, and authority. The study by Li and Yin (2018)   

emphasizes that attractiveness and closeness as traits that positively impact social media participatory behaviors, 

while expertise has no significant effect. Further findings show that attractiveness is more effective in stimulating 

low-level participation, whereas closeness is more influential in encouraging higher levels of participation, such as 

content creation and contribution. Robert Cialdini has spent years studying what makes people more influential and 

persuasive and in his best-selling book ‘Influence’ asserts that likability drives persuasion (Cialdini, 2001). Qasem 

et al. (2017) quantifies an actor’s SI as the power with which an actor may entice other significant actors into a 

networked community. Although the model provides the framework, it does not offer a thorough perspective into the 

more general element of examining all human social activities, which deserves additional research. Chekima et al. 

(2020) explore the shift from celebrity endorsements to social media influencers focusing on how influencer 

credibility—particularly attractiveness—impacts advertising effectiveness. Spokespeople with high physical 

attractiveness are seen as delivering more credible messages, being more expert sources, and having greater 

persuasive power. Although physical attractiveness enhances perceptions of credibility, expertise, and 

persuasiveness, social cues—such as tone of voice, facial expressions, body language, and contextual signals—exert 

an even stronger influence. These cues often override the effects of physical attractiveness, enhancing the perceived 

credibility and expertise of less attractive individuals. This suggests that leveraging social cues can be an effective 

strategy in communication, particularly in crisis contexts, to boost persuasiveness and message credibility (Hong et 

al., 2019).  Myers (2021) examine how the source attractiveness model applies to top Instagram influencers, 

analyzing data on familiarity and likeability. More familiar influencers tend to have more followers but lower 

engagement, while more likeable influencers have fewer followers but higher engagement, suggesting that 

familiarity and likeability lead to varying social media outcomes. The study by Batenburg and Bartels (2017) found 

that integrating personal and professional contacts on Facebook leads to higher likability, while posting self-

enhancing messages generates more respect than self-verifying messages.  

 

Attractiveness creates an emotional connection between its supplies and its recipient. In other words, when someone 

wants to identify with the source, they are more likely to be persuaded by it and more inclined to identify with 

likable persons (Kelman, 1961). The first crucial aspect of attractiveness, according to McGuire’s idea of “likability,” 

is an attachment for the source due to physical appearance, personality, or other personal traits. (McGuire, 1985). 

Considering attractiveness, often equated with likability, is crucial for understanding influence as evidenced with the 

abundance of literature reference in that domain. Likability significantly impacts how messages are perceived and 

spread. Attractiveness enhances the perceived credibility, relatability, and appeal of a person or message, making 

users more likely to engage, share, and adopt the behaviors or opinions being communicated. In OSNs, where content 

competes for attention, spokespeople with high attractiveness can more effectively capture interest, drive 

engagement, and shape trends or opinions, thereby amplifying their SI. So, it is prudent to consider that within the 

measure of SI. 

 

Dynamic Social Impact as an Influence Factor 

 

Many aspects of our lives have been affected by the ability of an individual to cause social impact, creating shifts in 

our thoughts and behaviors. Social impacts are weighing increasingly heavily on people’s decisions, from how we 

assess how organizations operate to the products we buy. Traditionally, the focus has been on how leaders influence 

their followers. However, Oc and Bashshur (2013) highlight that followers also have a dynamic impact on leadership, 

particularly in shaping leader behaviors reviewing through the lens of social impact. Miller and Brunner (2008) 

looked at the Social Impact Theory to better understand the origins and goals of interpersonal impact during network-

generated interactions. They discovered that exaggeration and assertiveness were the two behavior qualities 

significantly contributing to influence compared to emotional intensity and sensitivity. DiFonzo et al. (2011) indicate 

that group-level characteristics like cohesiveness and follower count matter along with individual factors of an 

influencer, such as strength and availability. They explore rumor as a form of SI, focusing on three key aspects: 
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shared sensemaking, rumor propaganda, and rumor spread. They identify that rumors can shape expectations and 

have been strategically used in misinformation and propaganda campaigns, with malicious intent sometimes driving 

their origin or spread. The study by Bullock (2007) examined how facial attractiveness, weight, and immediacy 

affect SI in dyadic online discussions, and results showed that attitudes became more similar and interrelated over 

time in line with the impact. 

  

Latane’s (1981) Social Impact Theory is based on the idea that society is a complex, self-organizing system 

comprising inter-dependent individuals who each abide by basic social impact principles, and a person’s 

susceptibility to SI depends on the group’s strength, proximity and size of the group. The Dynamic Social Impact 

Theory aims to explain how social impact affects behavioral changes, subjective sensations, and emotions. The 

theory seeks to explain the changes in the OSN group resulting from the SI exerted by the influencer and is captured 

by the individual impact they exert through their actions and interactions (Latane, 1996). So, it is most certainly 

worthy for scholars and researchers to understand and experiment with the interrelation between the individual ability 

to dynamically impact the social behaviors that would connect to their ability to influence fellow social media users. 

 

Expertise as an Influence Factor 

 

Expertise is widely regarded as the most critical social attribute in creating influence. Psychological studies over the 

decades have confirmed that people gain trust when they understand and agree with each other’s intentions from 

expertise (Ericsson & Smith, 1991).  While experts' capability to influence their followers on social media is highly 

valued, few scholars understand how user-generated content links to a social media user’s expertise, much alone how 

this relates to the content creator’s influencing power. The Expertise Theory, as defined by Goodall (2012), 

emphasizes that expertise emerges through a combination of inherent knowledge, practical skill (or craft), and the 

full acquisition of technical and business acumen. Goodall’s theory highlights that expertise is not only about formal 

training but also involves immersive observation, empathy, and a deep understanding of the domain, achieved 

through sustained engagement and experience. When translating, interpreting, and measuring SI in OSN, the 

increasing importance of expertise in shaping and guiding the growing volume of content must be emphasized. 

Extensive academic research, experiments, and surveys have been conducted to explore how experts affect societal 

dynamics and, more importantly, how their expertise enhances an influencer’s ability to persuade and engage their 

followers on OSNs. 

 

Zhao et al. (2016) developed a computational method for determining the relationship between expertise and 

influence and found that high-knowledge users had the ability to exert influence even outside of their area of 

expertise. Influencer expertise is more significant than the topic's relevance, as top experts often encourage their 

audiences to engage with topics outside their expertise. These insights provide a deeper understanding of influence 

variation and the role of expertise in social media. Hall and Blanton (2009) investigate the role of normative expertise 

as a moderator of SI and its effects on behavioral intentions and actions. The findings suggest that when speakers 

with normative expertise praise an action to encourage it, they may unintentionally imply that the action is 

uncommon, potentially weakening their influence on behaviors shaped by normative perceptions. In contrast, 

speakers without normative expertise can frame messages differently without altering normative assumptions, 

allowing them to influence behavior more effectively. Askarisichani et al. (2020) find that individuals with greater 

expertise and social confidence tend to exert more influence, whereas low-performing group members often 

underestimate the expertise of their higher-performing teammates. The study's hypotheses, supported by empirical 

evidence, draw on theories such as transactive memory systems, social comparison, and confidence heuristics.  

 

van der Valk (2017) investigated how social media interactions influence decision-making without face-to-face 

communication.  The findings revealed that participants exposed to an expert's opinion improved their judgment 

accuracy, while those influenced by a novice saw a decrease in accuracy. Additionally, decision confidence increased 

across all groups, and trust levels were significantly higher for experts than for novice or neutral peers. Identifying 

topic-based influencers is a common technique in social media, largely because these influencers are often considered 

experts in their respective areas. Alp and Oguducu's (2018) research seek to identify topical experts on Twitter (X) 

by combining network structure with user activities related to specific topics. The approach leverages user-specific 

features, such as topical focus rate, activeness, authenticity, and response speed, to pinpoint influencers who 

demonstrate expertise in particular areas. Similarly, Fang et al. (2014) proposes a Topic-Sensitive Influencer Mining 
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(TSIM) framework to identify topic-level experts in interest-based social media networks. Unlike traditional 

approaches focusing solely on textual information or general influence, they use hypergraph learning to capture 

various relationships, including visual-textual content and social links between users and images, to identify experts 

who are topic-specific influencers. Kong and Feng (2011) propose a method to identify and rank influential authors 

on micro-blogs, focusing on users who post high-quality, topic-specific content. The quality of a tweet is determined 

based on its topic focus, retweet behavior, and the topic-specific influence of users who retweet it, extending user 

relationships beyond the traditional follower-friend model to more dynamic, tweet-based interactions. Weng et al. 

(2010) tackle the challenge of identifying influential users on micro-blogging platforms like Twitter (X), where users 

can follow others freely. To measure influence, they propose "TwitterRank," an extension of the PageRank algorithm 

that incorporates both topical similarity and network structure to identify true influencers based on their expertise in 

specific topics. However, with the evolution of Twitter (X) and changes in its algorithmic structure, the relevance of 

TwitterRank is not relevant, however the idea of relying on expertise to identify the influencer retains relevance. Liu 

et al. (2012) offer a generative graphical model that extracts topic-level impact strength from a diverse array of links 

and rich content associated with each user in the network to determine influence propagation, both conservative and 

non-conservative, to derive aggregation mechanisms. Hamzehei et al. (2017) consider user-generated material and 

user interactions within network topology to assess topic-based influence and their experiments with a Twitter (X) 

dataset demonstrate that their approach effectively measures user influence based on topic expertise. Tang et al. 

(2009) present topical affinity propagation to model topic-level social impact on vast networks to answer the 

fundamental challenges of measuring and differentiating SI. Their approach analyzes topic-based SI and enhance 

expert finding in social networks. Using a graphical probabilistic model and a scalable algorithm the approach 

effectively identifies topic-specific influences. Zhaoyun et al. (2013) aim to identify true influencers in micro-

blogging contexts like Twitter (X), where large numbers of users can discuss any topic but vary greatly in influence. 

To measure user influence based on expertise, the study analyzes multi-relational interactions such as retweets, 

replies, reintroductions, and reads through random walks using a novel method to handle the uncertainty in 

reintroduce and read operations and to determine transition probabilities in uncertain networks. The proposed 

approach also accounts for both intra- and inter-network transitions in a combined random walk model to effectively 

identifying influencers. 

 

Opinion Leader as an Influence Factor 

 

People often become opinion leaders in a culture when they provide helpful interpretations of daily life and current 

events that help others, mainly when important events occur. So, locating them helps us identify the influencers. 

Popular YouTubers and Instagrammers frequently serve as today’s thought leaders. Because of this, there is more 

interest in understanding, quantifying, and predicting how these opinion leaders’ influence will grow in OSN (Rogers 

& Cartano,1962). The Two-Step Flow of Communication hypothesis by Katz and Lazarsfeld (1959) explains that 

media messages influence the public indirectly through opinion leaders, who first absorb and interpret the 

information. These leaders, viewed as credible and knowledgeable, then share and contextualize it with their social 

circles, shaping opinions and behaviors. This model highlights the critical role of interpersonal communication in 

public influence and serves as the foundation for understanding how opinion leadership originates and operates. 

In that regard, Bergsma et al. (2014), used machine learning to develop a methodology based on scientific and non-

scientific aspects that precisely quantifies the researcher’s influence while considering their interpersonal, cognitive, 

behavioral, and linguistic abilities.  A different approach was taken by Oro et al. (2017), who concentrated on utilizing 

social media to more accurately gauge the acceptance of themes and viewpoints to identify opinion leaders. The 

volume of citations, number of contacts, comments from followers, and the overall network activity monitoring are 

ways to gauge the influence of opinion leaders. Afridiana et al. (2019) investigate the influence of opinion leader 

postings on Instagram to determine how educational content shared by popular figures affects millennials' intention 

to pay zakat. Utilizing the Theory of Planned Behavior and Source of Credibility, the study evaluates four opinion 

leaders based on their expertise, trustworthiness, and attractiveness. Zhao et al. (2018) investigate opinion formation 

in e-commerce communities, focusing on how opinion leaders influence group opinions. They develop a bounded 

confidence model to simulate opinion evolution by categorizing social agents as either leaders or followers. The 

study finds that opinion leader influence is shaped by their proportion, followers' confidence levels, and trust. Ma 

and Liu (2014) introduce the SuperedgeRank algorithm, an innovative approach for identifying opinion leaders by 

integrating social network analysis, text mining, and super network theory. They establish a super network model 

with multidimensional subnetworks to evaluate and identify key influencers within the network. Bodendorf and 
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Kaiser (2009) present a novel approach that uses text mining and social network analysis to identify opinion leaders 

and trends, offering a deeper understanding of how opinions are formed in OSNs. van Eck et al. (2011) explore the 

crucial role of opinion leaders in adopting new products, finding that these leaders not only hold central positions in 

networks but also possess more accurate product knowledge, show more significant innovation, and are less swayed 

by social norms. Farivar et al. (2021) explores the combined influence of opinion leadership and parasocial 

relationships on followers' purchase intentions in influencer marketing, revealing that parasocial relationships have 

a more significant impact than opinion leadership, particularly when storytelling posts are employed. 

 

Credibility as an Influence Factor 

 

Credibility may be traced back to Aristotle’s Rhetoric theory. According to Aristotle, rhetoric is the capacity to 

recognize what may be convincing in any situation. It simplifies your life if you have credibility and people know, 

like, and trust you, as you are not required to prove yourself (Zeller, 1897). According to the Source Credibility 

Theory, individuals are more likely to be convinced when the source appears credible (Hovland & Weiss, 1951). 

Academics should have a genuine interest in understanding the impact of credibility on an influencer’s capacity to 

persuade their followers and the effect of other social and innate psychological behavior traits to get to an accurate 

measure of SI. 

 

Increased communication on diverse topics builds credibility (Huffaker, 2010). The findings indicate that online 

leaders influence others through active communication, high credibility, central roles within their networks, and the use of 

affective, assertive, and linguistically diverse messaging. Abu-Salih (2020) underscores the importance of 

comprehensively understanding the contextual credibility content of social media users to measure their SI accurately. The 

study proposes a time-aware framework for estimating and predicting credibility in OSN based on user activity in specific 

domains. The approach incorporates semantic and sentiment analyses to assess the content produced by users and 

introduces a set of advanced attributes to measure accurately influential users within designated domains, demonstrating 

its practical applicability. Alrubaian et al. (2017) propose a novel approach combining a user's reputation on specific 

topics and their sentiment to identify credible sources. A new reputation metric is introduced, incorporating unique 

features beyond existing models. By incorporating sentiment analysis, it evaluates both a user's reputation on a 

specific topic and their sentiment in discussions, leading to a significant improvement in the accuracy of identifying 

topically relevant and credible sources of information on Twitter (X). The study's introduction of a new reputation 

metric that includes sentiment features demonstrates the approach's effectiveness, outperforming traditional machine 

learning methods. Khrabrov and Cybenko (2010) created a metric system for identifying people with rising influence 

based just on the format and tempo of their conversations. They saw context with its own “mind economy,” which 

could be manipulated to improve participant rankings.  Scheinbaum and Wang (2018) were among the few who sought 

to build their algorithm based on this theory and confirmed that trustworthiness was the one quality that consumers 

found to be most compelling.  

 

The conclusion only reinforced advertisers to utilize reputable celebrity endorsers with a worldwide appeal to boost 

brand reputation. In a similar vein, Wiedmann and Von Mettenheim’s (2021) study examined, via the lens of the 

source-credibility model, how success criteria were more closely related to influencers than to the data in their profile 

to illustrate the necessity for credibility and trustworthiness. Wijesekara and Ganegoda, (2020) develop a machine 

learning model based on user reputation to estimate the source credibility of the Twitter (X) feeds.  This provides a better 

understanding of the credibility impacts influence on social media. Hu et al. (2019) study reveals that peers’ expertise and 

trustworthiness are key elements of source credibility, significantly affecting both informational and emotional SI on 

consumers. These credible sources facilitate influence, particularly in the social commerce setting, contributing to 

impulsive purchasing behaviors. The findings emphasize the importance of source credibility in shaping consumer 

decisions in social commerce, which integrates social media and commerce, enabling users to discover, share, and purchase 

products directly through social platforms. 

 

DISCUSSION 

 

This discussion synthesizes findings uncovering key themes that deepen our understanding of how SI functions 

within the ever-changing digital landscape. While theoretical research has successfully conceptualized the role of 

human behavior in SI, its insights often remain fragmented, reflecting the complexity of influence across diverse 
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platforms and contexts. The vast content generation capabilities of OSNs further intensify these dynamics. Moreover, 

the rapidly evolving nature of online influence and the continuous surge in digital content demand innovative 

approaches to building, measuring, and sustaining influence. By examining these interconnected elements, this 

discussion provides valuable insights and practical implications for researchers, practitioners, and marketers seeking 

to refine their understanding and application of SI in OSNs. 

 

Fragmented landscape   

 

The literature review, centered on human behaviors to understand SI in OSNs, showcases a pattern of the tendency 

of the scholars to a narrow focus on select, easily measurable human characteristics, resulting in an incomplete grasp 

of the concept's complexity. SI is often oversimplified when studies isolate its definition to single traits or 

frameworks that lend themselves to quantification, making it challenging to develop a comprehensive measure. For 

instance, some scholars emphasize the influencer's likability (Guadagno et al., 2013), personal branding (Faliagka et 

al., 2018), or dynamic social impact (Oc & Bashshur, 2013) as core indicators of SI. Other studies consider social 

conformity (Muchnik et al., 2013), shared sentiments (Bae & Lee, 2012), or social contagion (Christakis & Fowler, 

2013) as the driving factor. Common interests (Ji et al., 2015), relationships (McPherson et al., 2001) and social 

capital (Badawi et al., 2019) are well studied to be creating a significant impact on determining SI in OSN. 

Additionally, character traits like expertise (Zhao et al., 2014), credibility (Alrubaian et al., 2017), and opinion 

leadership (Bergsma et al., 2014) contribute further unique dimensions to understanding and applying SI in digital 

contexts. While these perspectives bring valuable insights, they represent only isolated fragments of a much broader 

influence landscape. This wide range of definitions and approaches highlights the challenge of creating a unified, 

robust measure of influence. The difficulty lies not only in pinpointing what constitutes influence but also in 

capturing its complex, multifaceted nature across various social contexts and behaviors within OSNs. This lack of 

cohesion and fragmented approach to measuring human behaviors significantly constrains current research, 

hindering the development of reliable and universally applicable metrics for SI in OSN. 

 

Proliferation of Massive Content Across Multiple OSNs  

 

Humans are inherently social beings, and their widespread adoption of social media has revolutionized how they 

communicate and interact. The rapid expansion of social media, now encompassing approximately 5.17B users globally—

more than doubling from 2.07B in 2015 (Dean, 2024)—has significantly increased both the volume and diversity of the 

social media landscape.  With millions of new users joining platforms like TikTok, LinkedIn, and Instagram, and an 

average user engaging with about 6.7 platforms simultaneously (Dean, 2024), the dynamics of SI have become 

increasingly complex. The sheer volume of daily content generation is staggering - users produce 2.5 quintillion bytes of 

data daily (Marr, 2018), and IBM reports that 90% of the data in use today was created in just the past two years. This 

explosion in content volume poses immense challenges for tracking and measuring SI. Traditional metrics such as follower 

counts, and engagement rates fail to capture the nuances of platform-specific behaviors. For example, Instagram’s visually 

driven environment fosters different interaction patterns compared to TikTok’s focus on viral video trends or Reddit’s real-

time discussions within niche communities. Each platform introduces unique communication styles and engagement 

dynamics, requiring SI to be contextualized. Moreover, users’ fragmented behaviors across platforms add to the 

complexity—an individual influential on Instagram might engage differently on TikTok or Twitter (X). The rise of niche 

communities, emphasizing deeper interactions and specific interests, further diversifies how SI is exerted, often 

transcending conventional metrics in favor of meaningful engagement. As a result, measuring SI necessitates a dynamic 

and multifaceted approach that considers the increasing content volume, platform diversity, and the ever-evolving patterns 

of influence. 

 

Everyone is an Influencer 

 

In the age of social media, the power to influence is no longer reserved for celebrities or public figures—everyone has 

the potential to be an influencer. Influencer endorsements on platforms like Instagram significantly shape consumer 

behavior, whether it comes from a local neighbor or global celebrity like Kylie Jenner9, driving massive sales spikes 

(Mulcahy et al., 2024). The ‘State of Influencer Marketing’ (Influencer Marketing Hub, 2024) accounts for this with 

 
9 Kylie Jenner – American media personality and socialite 
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the fact that the industry has grown into a $21.1B powerhouse. With platforms such as Instagram, TikTok, Twitter 

(X), and LinkedIn enabling diverse content creation, even users with small followings can make a substantial impact 

through authentic, relatable content. The recognition of nano, micro, and macro-influencers further exemplifies this 

trend, as macro-influencers achieve 5% to 25% engagement and micro-influencers reach 25% to 50%, proving that 

influence spans far beyond just a handful of high-profile figures (Conde & Casais, 2023). The democratization of 

influence allows personal experiences, niche interests, and unique perspectives to spread widely, often resonating 

more deeply than polished, professionally curated messages. As users share, comment, and react to content within 

their networks, they amplify their voices and play a pivotal role in shaping conversations and social norms. This 

transformation of influence demands a more dedicated and strategic approach to understanding and leveraging the 

power held by a wide range of social media users. 

 

Quantifying Human Emotions  

 

Social relationships are built on trust and shared goals within groups or networks, making their understanding critical 

to studying influence. Academics have long explored how these relationships are represented (Anagnostopoulos et 

al., 2008) and measured (Cataldi et al., 2013) in online social networks (OSNs). Meeker’s (1971) foundational model 

suggests that interpersonal exchanges function as individual decision-making processes. However, a significant 

challenge lies in assessing the broader emotional connection between influencers and their audiences, as highlighted 

by Ferrara and Yang (2015). The lack of in-person interaction and vocal inflection makes detecting subtleties such 

as irony even more difficult in traditional OSNs. This challenge intensifies in the metaverse10, where communication 

shifts to immersive environments. Sentiment measurement becomes even more critical as trust and emotional bonds 

are conveyed through avatars, virtual gestures, and digital settings. These multimodal forms of expression require 

advanced tools to interpret nuanced emotional signals, ensuring that authenticity and trust are preserved in this 

evolving virtual landscape. Sentiment research must go beyond words because social media users rapidly adopt 

memes, emojis, and emoticons. Memes were created by human culture, spread through language, and then competed 

for viewers’ attention on the internet, one of the world’s most significant testing grounds. Since they are flexible and 

can respond to changing conditions incredibly quickly, memes can serve as containers for various viewpoints 

because humor weakens audiences’ natural defenses (Tiffany et al., 2018). Similarly, using emojis in social media 

and digital messaging with or in place of words to convey an idea, entity, sentiment, status, or event has gained 

immense popularity. We could even refer to them as contemporary hieroglyphics (Blagdon, 2013). They are currently 

regarded as significant in both Western and global popular culture. The Face with ‘Tears of Joy’ emoji was selected 

as the word of the year for 2015 by Oxford University Press (2024). Any measure of SI in OSN must be flexible to 

adapt to this new communication form. 

 

Fake Accounts, Bots and Deepfakes 

 

Several studies (Lorenz et al., 2011), (Huffaker, 2010) have relied on an influencer’s ‘number of followers’ or ’number 

of friends’ as a straightforward numerical interpretation. This archaic ‘follow for follow’ pattern has led to network 

growth without authentic relationship-building or genuine interest misleading the true influential quotient. This pattern 

is getting even worse with the advancement of technology, which allows anyone to purchase followers and add 

automated bots or bogus profiles made by robots. A new phenomenon called click farm11 has started to plague social 

media platforms. These farms offer ‘followers’ to be purchased in bulk for a cost (Paquet-Clouston et al., 2017). 

Automated bot followers that mimic real users, are making it increasingly difficult to distinguish between genuine 

accounts and fake profiles as these bots blend seamlessly with real user activity (Haustein et al., 2016). Although 

several cutting-edge tools are continuously working to eliminate fraud and phony accounts, there are no international 

laws or audit regulations that would deter the behavior. Tracing the distribution of information within the network and 

determining its origin presents a problem across all social network applications (Anand et al., 2020). Deepfakes are 

another form of synthetic media that uses artificial intelligence techniques and intense learning algorithms to create 

highly realistic but entirely fabricated videos, audio recordings, or images (Mirskey & Lee, 2021). These 

manipulations can convincingly depict individuals, leading to concerns related to misinformation, privacy, and 

potential harm. Deepfakes have raised critical ethical, legal, and technological challenges, necessitating ongoing 

 
10 Metaverse is iteration of the Internet as a single, universal and immersive virtual world 
11 A click farm is a form of click fraud 
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research and countermeasures to detect and mitigate their impact on society (Chesney & Citron, 2019). The inherent 

prevalence of fake accounts, bots, and deepfakes in OSNs poses a persistent challenge to create a mechanism that 

would accurately measuring SI in OSN. 

 

LIMITATIONS OF THE STUDY  

 

While this study provides valuable insights in comprehending SI in OSN, the limitations must be acknowledged. These 

include potential biases in the thematic categorization and context of human behaviors, as well as methodological 

constraints related to the selection and synthesis of diverse literature. The rapidly changing nature of social media and 

the inherent complexity of defining and measuring SI add further constraints. These limitations underscore 

opportunities for future research to build on the current work, addressing these constraints and enhancing the 

understanding of SI in digital spaces. 

 

Potential Bias in Thematic Categorization and Context 

 

The interdisciplinary nature of SI research required synthesizing studies from diverse fields, each with unique 

terminology and context, creating challenges in achieving a coherent integration of findings, especially when the 

behaviors were mapped to the associated psychology theory. The subjective grouping of behaviors into categories 

posed the risk of bias, as different researchers might categorize the literature differently. Moreover, the context-

specific focus—whether based on platform, demographics, or geography—may have limited the generalizability of 

the findings and potentially overlooked more subtle forms of influence, such as passive consumption. To mitigate 

these biases, the review process was structured across multiple stage, with all four authors from diverse background 

and geography, critically challenging and refining the categorizations, thereby enhancing the rigor and reducing the 

potential for subjective bias. 

 

Time-Bound Constraints and Rapid Evolution of the Field 

 

The fast-evolving nature of social media trends and technologies, including platform developments and the rapid 

growth of AI and Gen AI technologies, poses challenges to the relevance of identified behaviors over time. Many of 

the reviewed studies are cross-sectional, offering only a snapshot of current behaviors without accounting for their 

long-term evolution as platforms and user interactions change. While the literature coverage is extensive, it may not 

fully capture emerging trends, highlighting the need for continuous updates as the field progresses rapidly. However, 

the value lies in linking these behaviors to proven psychological theories, providing a timeless component to the 

evaluation and ensuring that core principles of SI remain applicable despite technological advancements. 

 

Subjective Nature of Measuring SI 

 

Measuring SI based on human behaviors is inherently complex due to factors like cultural differences, ethical 

considerations, and the interconnectedness of behaviors, all of which make researching the topic inherently difficult. 

The definition of influence varies widely across contexts, platforms, and user perceptions, complicating efforts to 

isolate individual behaviors. Maybe it was this complexity that resulted in the search results dominantly to be either 

conference papers or studies that have used graphical or scientific methods to capture behavior patterns.  We believe 

that itself offers a unique value to this research paper laying the ground in providing a unique behavioral perspective 

for further interesting research.  

 

IMPLICATIONS 

 

This focused review not only catalogs the present-day research, but also lays a solid foundation for future that paves 

the way for establishing universally accepted standards for SI measurement in OSN. We recommend that researchers 

develop a flexible model that allows both horizontal adaptability—enabling the inclusion or exclusion of different 

theoretical dimensions—and vertical depth, providing the ability to delve deeper into specific behavioral aspects, such 

as sentiment analysis. The potential for further exploration and application of our findings promises significant 

advancements in academic, knowledge and industry practices. 
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Academic Implications 

 

Our focused literature review, meticulously cataloging studies up to 2021 that measure SI in OSN, stands out for its 

emphasis on human behavior characteristics. While most studies in this area focus on graphical theories and structural 

network topological attributes, our review offers a meaningful examination of psychological and sociological behavior 

theories. It enriches the theoretical understanding of SI by offering a multidimensional perspective that connects 

theories to specific behaviors in digital contexts, providing a clearer conceptual insight. This structure serves as a 

foundation for future research to explore the nuances of human behaviors across various contexts and fosters cross-

disciplinary integration, addressing the often-fragmented nature of SI studies across fields like psychology, graph 

theory and social networks. Clarifying complex constructs, the categorization breaks down SI into more digestible 

components, enhancing the ability to isolate and study specific aspects of influence. The consolidated understanding 

encourages methodological innovations, prompting sophisticated data collection and mixed-method approaches. 

Overall, this categorization not only advances theoretical clarity but also bridges the gap between academic inquiry 

and real-world application, enhancing the study of influence within the rapidly evolving landscape of OSNs. Our 

research has established a foundation for a sustainable theoretical framework that predicts a quantifiable measure of 

SI by integrating perspectives on twelve pivotal human behaviors. By focusing on the actions and outcomes of human 

behaviors in social media, particularly how they may evolve behind a keyboard or a click, we provide a transparent 

analysis of twelve identified human behavior traits across various characteristics. Our summary of the limitations of 

current approaches and the merits of potential avenues for further research fosters intrinsic curiosity, encouraging 

researchers to build upon this study with practical ideas and innovative strategies for implementation. The potential 

for further research and development is significant, inspiring and engaging the audience. 

 

Industry Implications 

 

Understanding SI in OSN has significant industrial implications across various domains. Influencer marketing has 

revolutionized consumer engagement, with platforms like Instagram and TikTok enabling several consumer brands 

leverage influencers to increase product visibility. Campaigns such as TikTok’s viral #GucciModelChallenge12 or 

Instagram’s Chiara Ferragni’s13 posts, exemplifies the power of SI by driving consumer engagement and brand loyalty 

through partnerships with global brands. Political landscapes have been equally affected, as demonstrated in recent 

elections and social movements worldwide, where SI plays a crucial role in shaping voter opinions, mobilizing 

support, and spreading messages rapidly, as seen in the U.S. presidential elections 2016, 2020 and 2024, and the 

European Parliament campaigns including Brexit14.  The COVID-19 pandemic further highlighted the power of SI, as 

social media became a primary channel for disseminating information on public health guidelines, vaccination drives, 

and community support, but also misinformation. Social culture has evolved as well, with movements like 

#BlackLivesMatter15 and #MeToo16 gaining momentum through SI on social media platforms, amplifying social 

justice causes globally. E-commerce platforms like Amazon17 and Etsy18 use SI principles by encouraging user 

reviews and ratings, which heavily influence purchasing decisions. Similarly, Starbucks19 utilized SI by promoting 

user-generated content through campaigns like #RedCupContest20 to drive engagement and brand loyalty. Streaming 

services like Netflix21 and HBO22 have capitalized on SI by encouraging social discussions around shows such as 

Stranger Things or Game of Thrones,23 turning them into cultural phenomena and enhancing viewership through 

 
12 #GucciModelChallenge involves distilling a ‘Gucci look’ into staples that are probably already in everyone closet. 
13 Chiarra Ferragni - An Italian blogger, businesswoman and a fashion influencer on Instagram with 29 million followers. 
14 Brexit - An abbreviation of 'Britain' and 'exit' referring to the withdrawal process of the UK from the EU.  
15 #BlackLivesMatter – A decentralized social movement that highlights the discrimination experienced by black people and 
promote anti-racism. 
16 #MeToo - An international campaign to denounce sexual assault, rape, and harassment. 
17 Amazon – Multinational technology company and the largest retail marketplace globally. 
18 Etsy - An American ecommerce website focused on selling handmade and vintage items. 
19 Starbucks – An American multichain coffee house and roastery reserves headquartered in Seattle. 
20 #RedCupContest – Instagram contest encouraging consumers to show their creativity in using Starbucks Red Cup. 
21 Netflix - An American subscription video on-demand over-the-top streaming service 
22 HBO – An American pay television network, a unit of Warner Bros. 
23 Stranger Things and Game of Thrones – Popular series on HBO 
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word-of-mouth buzz. These examples highlight SI's ability to shape consumer behavior, mobilize communities, and 

influence public sentiment, making it a critical tool for businesses and public organizations to refine strategies in 

today’s digital age. Companies and public sectors can leverage these insights to enhance communication strategies, 

drive behavioral change, and better understand consumer sentiment, making SI in OSNs a critical aspect of influencing 

and navigating today’s digital society. 

 

DIRECTIONS FOR FUTURE STUDY  

 

Merits of Exploring the Synergies between the Twelve Human SI Factors 

The Yellow Jacket24 movement in France exemplifies how human behaviors drive SI through collective action. What 

started as a protest against fuel taxes by a few individuals, soon grew into a movement that united people through 

Facebook, bound by a shared sense of injustice and common interests. Over time, the protesters built strong 

relationships through consistent exchanges within the group, facilitated by the OSNs, allowing for sustained influence 

and collective action (Gauthier, 2022). The movement demonstrated how common interests and relationship building 

can lead to the accumulation of social capital, which helped the Yellow Jackets maintain influence to create a 

meaningful revolution. 

 

The AMC short squeeze25, orchestrated by retail traders on Reddit’s WallStreetBets26, highlights SI fueled by shared 

sentiments, emotional contagion, and social conformity. The rapid spread of the idea to collectively buy AMC shares 

ignited a wave of emotional group responses, with participants driven by fear of missing out or a collective rebellion 

against institutional investors (Mancini et al., 2022). This emotional contagion led to massive price fluctuations, 

demonstrating the power of immediate, group-driven influence. Social conformity played a pivotal role, as many retail 

investors followed the crowd despite significant financial risks. 

Elon Musk27, renowned for his influential tweets, exemplifies how individual likability and personal brand promotion 

through self-presentation create dynamic impact. For instance, his tweet about Dogecoin28 caused immediate market 

fluctuations (Ante, 2023). Musk’s tech-savvy image and vast follower base amplify his dynamic social impact, as 

people react swiftly to his opinions by trading based on his statements, demonstrating how an individual can wield 

significant dynamic social impact in real time through likability and personal brand. 

Greta Thunberg29 represents sustained, long-term SI through her credibility, expertise, and opinion leadership. Her 

persistent climate advocacy on social media and beyond has established her as a trusted opinion leader in the 

environmental movement (Sabherwal et al., 2021). By consistently sharing knowledgeable and ethically grounded 

messages, Thunberg has influenced global public opinion and policy discussions, illustrating how long-term 

credibility can shape SI across diverse platforms. 

 

These examples reveal the intricate interplay of human behaviors in shaping SI within the twelve identified human 

behavior factors. Future research should empirically validate these synergies and explore how these dynamics vary 

across social media platforms, demographics, and cultural settings. Such validation is essential for refining the 

theoretical understanding of SI and enhancing its practical applications in digital environments. 

 

Merits of Concept Modeling Approach 

 

Continuing to investigate and enhance behavior modeling as a representation of SI theories is crucial. With a robust 

foundation from existing literature, particularly concerning twelve human behaviors based on psychological theories 

and consolidated propositions based on lay theories, further examining these concepts is prudent.  Creating a 

framework and modeling this concept brings structure, clarity, and efficiency to the process, making it an invaluable 

tool for addressing complex issues, decision-making, and process management (Humphrey et al, 2010). The 

approach of deconstructing abstract concepts into manageable elements validated by experts enhances 

 
24 The Yellow Vests Protests – A series of populist, grassroots weekly protests in France that began on 17 November 2018. 
25 AMC – short squeeze is short selling information for shares of AMC Entertainment Holdings Incorporated in 2021. 
26 WallStreetBets – A subaccount within Reddit groups that played an active role in AMC short squeeze. 
27 Elon Musk – A billionaire social entrepreneur and political influencer 
28 Dogecoin – A cryptocurrency created by software engineers Billy Markus and Jackson Palmer 
29 Greta Thunberg – a social climate activist 
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comprehension, supports theory development, and fosters critical thinking. Ultimately, this method contributes to a 

more informed and comprehensive framework and model for addressing various challenges and subjects (van Ingen 

et al., 2021). In a unique attempt by van Maanen  and van der Vecht (2014), Cialdini’s model (2011) of SI was 

simulated using agent-based modeling. Using a Dutch television show as a use case, they demonstrated the ability 

to model SI on Twitter (X) backed through five progressive versions of decision models (van Maanen & van der 

Vecht, 2013). However, they were very restrictive in adapting variables that characterized human behavior traits. Even 

with that limitation, this is very promising research as it provides transparency to measuring SI based on human 

behaviors.  We anticipate that the social scientists will be prepared to work together on multidisciplinary modeling 

initiatives to further examine the intricate dynamics of problems like SI informed by the detailed literature review 

and proposition presented. 

 

Merits of AI and Deep Learning  

 

Similarly, it is vital to capitalize on deep learning advancements to understand SI across multiple OSNs to accentuate 

understanding human behaviors. Scholars have expressed increased interest in taking advantage of the growing art of 

the science of machine learning and deep learning algorithms to represent and measure human behaviors in OSN 

(Tang et al., 2009) (Cataldi et al., 2013). The theoretical framework based on the dual-process and social influence 

theory was conceptualized by Kwon et al. (2021) in which they empirically investigated a significant amount of actual 

customer review data. While their study had limitations, it captured restrictive data sets and qualitative feature sets that 

covered comprehensive factors across domains that explained the human decision-making process. This cutting-edge 

neural network model faced two common problems, as with any deep neural network: interpretability and scalability. 

Even with those inherent limitations, there is an opportunity to examine human behavior-based traits and discover an 

equivalent system model to express and quantify SI in OSN. Another aspect where deep learning will be very useful 

is in sentiment analysis of the contents. The user’s SI depends on how popular and emotional they are about a specific 

topic. The user’s engagement, outreach, sentiment, and growth attributes determine the impact of SI. Sentiment 

influences perception, credibility, and how individuals respond to such stimuli (van Kleef, 2009). Academics are, 

therefore, increasingly interested in understanding how user sentiments and emotions affect influence (Zhang et al., 

2018). Researchers must weigh sentiment analysis to understand the Intricacies of the SI human behaviors in response 

to the industry’s expanding interest. 

 

Merits of Systems Thinking 

 

Systems Thinking is a school of thought that focuses on recognizing the interconnections between the parts of a system 

and synthesizing them into a unified view of the whole (Kim & Anderson, 1999). The psychology, motivations, and 

emotions that drive user actions must be considered to create a more cognitive measure (Cabrera et al., 2015). Systems 

thinking is a valuable approach to understanding SI in OSN as it involves analyzing complex systems and considering 

the interconnections and feedback loops among various components. The key aspects of using systems thinking to 

comprehend SI would aid in recognizing the eco-system's interconnected elements and non-linear dynamics. Systems 

thinking recognizes that social media ecosystems are interconnected, including users, content, algorithms, and 

platforms (Finegood et al., 2014) These elements interact dynamically, impacting each other and the overall system, 

and any model must consider these dynamic aspects comprehensively. It also acknowledges that cause-and-effect 

relationships in social media are often non-linear. Small changes can have disproportionately large effects due to the 

networked nature of the platforms. Social media systems can exhibit emergent behaviors, which are outcomes that 

result from the interactions between components but are not explicitly designed. Viral trends, echo chambers, and the 

spread of misinformation are examples of emergent behavior driven by SI. It highlights potential unintended 

consequences when attempting to influence social media systems (Stroh, 2015). Systems thinking recognizes the 

sensitivity of social media systems to initial conditions. A small change or introduction of an influential user can lead 

to significant shifts in the system's behavior. Also, changes in SI and their consequences may take time. A social media 

user's thoughts and knowledge may evolve, and its effects on opinions or behaviors may take a while to become 

apparent. Given the dynamic nature and complexity of the ecosystem, it is vital to have a feedback loop so the model 

can use retrospectives to learn and continually evolve. Understanding these loops is crucial to grasp the amplifying 

effects and identify points of intervention. By understanding the system's dynamics, policymakers, researchers, and 

platform operators can identify areas where they can influence or regulate SI for desired outcomes, such as mitigating 

the spread of disinformation or promoting positive behaviors. 
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CONCLUSION 

 

The primary goal of this focused literature study was to find relevant scholarly and scientific evidence to evaluate and 

synthesize appropriate metrics to measure SI in OSN. Consequently, 88 papers were reviewed in-depth, answering 

research questions, identifying related theories, assessing the content in the light of psychological traits, and analyzing 

approaches for their merits and usefulness. This study makes a noteworthy academic contribution to the field of 

research by summarizing the state-of-the-art studies on SI in OSN. While methodological weaknesses and limitations 

were inherent, we also investigated merits for continued research by pointing up connections in the literature and 

augmenting with merits on a few approaches for consideration. Continuing this research by exploring the directions 

for future study and beyond will enable academics to establish a standard cognitive measure for SI in OSN. This will 

help extend the proliferation of capitalizing on an individual’s SI and, more importantly, benefit the influencer in 

understanding their worth and monetizing their SI. Commercials can also benefit from standardized and regulated 

governance.  
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