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Abstract—Fluorescence microscopy is a fundamental tool for
studying biological systems at the single-molecule level. In
particular, photobleaching step patterns can provide valuable
insights into molecule interactions. Several works have proposed
an automated and robust way to estimate when photobleaching
steps occur. However, most methods are challenging to calibrate
by non-experts in statistics or signal processing and struggle with
low signal-to-noise ratios. This work introduces a supervised ap-
proach to localize photobleaching steps in fluorescent microscopy
traces. Our method does not require any calibration but instead
needs labels, that is, a few traces where an expert has manually
provided the step positions. Our algorithm uses this information
to automatically tune a change-point detection method that can
reproduce the expert’s annotations on new signals. We show on
simulated data that our approach better copes with noise than
existing ones. We then illustrate how our algorithm can be used
to estimate the translation speed of a ribosome.

Index Terms—photobleaching step analysis, fluorescence mi-
croscopy, single-molecule microscopy, change-point detection

I. INTRODUCTION

Fluorescence microscopy is a popular tool for tracking the
interactions between different biomolecules in space and time
at the single-molecule level [4]], [6]]. The measurement involves
recording fluorescence signals in the respective spectral ranges
of the fluorescent entities used to label the usually non-
fluorescent biomolecules. To ensure that labelling does not
interfere with the activity of these biomolecules, fluorescent
proteins or organic dyes, which may be small in size but are
prone to photobleaching after a certain excitation time, are
often used. A compromise must be made between signal-to-
noise ratio and observation time, making fluorescence signals
delicate to analyze [1]], [S]. A single fluorescent molecule
has a characteristic ON/OFF fluorescence signal [3]]. Either
the molecule emits photons at a constant rate, depending
on its intrinsic properties and excitation power, or it has
photobleached and can no longer emit photons. Only the
blinking phenomenon (transient transition to a black state) can
interfere with these characteristics. So, to detect interactions
between an immobile biomolecule and another capable of
diffusing in the medium, we can look locally for breaks in
the fluorescence signal of the mobile molecule.
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Fig. 1. We observe red and green fluorophores with a fluorescence
microscope to estimate ribosomes’ translation rate. This yields two image
stacks. A trace (or signal) is the intensity of a small region of interest (black
circle) across time. An abrupt downward step indicates that the observed
fluorescent marker has stopped emitting. The time difference At between the
two steps (green and red) measures the ribosome’s translation time.

For example, we are using this method to study the trans-
lation speed of a single protein [2]]. During this process,
a macromolecule called a ribosome recognizes a messenger
RNA (mRNA) and then reads its contents to translate it into
a protein. The position of the ribosome cannot be tracked in
real time. Fluorescent markers of different colours are attached
to specific points on the mRNA to obtain this information.
The ribosome will detach these during translation, losing their
fluorescence signal. In this way, we have access to the instants
at which the ribosome reaches these positions on the mRNA,
and then, via statistical processing of the instants at which
the markers disappear, we can trace the translation rate. A
schematic illustration is shown in Figure [I]

Despite its broad applicability, few works have provided ro-
bust algorithms for automatic step analysis in photobleaching
data. One of the most recent articles [3|] describes a procedure
called QuickPBSA that consists of a rough step estimation
followed by a refinement. This method requires an estimate of
the average step amplitude, which can be acquired by visually
inspecting several traces. The authors show they can correctly
estimate the step numbers on traces of around 3000 samples
from DNA origami data. Compared to the setting of [3],



our data are shorter (maximum of 200 samples) and have a
far lower signal-to-noise ratio. As shown in the experiments,
this significantly degrades detection accuracy, motivating the
introduction of a more robust approach.

Our contribution consists in an automatic and robust pro-
cedure to perform step analysis of photobleaching traces.
Our approach uses a change-point detection algorithm and
a supervised calibration procedure. The resulting algorithm,
denoted SuperSA (Supervised Step Analysis), only requires
a few annotated traces, meaning that an expert has manually
provided the step localizations on several traces. We show in
simulated experiments that SuperSA better copes with noise
than QuickPBSA. On a real task, we demonstrate that our
method only needs a dozen labels to find steps in hundreds of
traces correctly.

II. METHOD

This section describes our step detection algorithm and a su-
pervised strategy to learn the optimal algorithm’s parameters.
Here, we assume several traces have been extracted from an
image stack.

A. Step detection

Let y = (y1,...,yr) be a noisy observed signal with T
samples Denote by ¢, , the empirical average of the sub-
signal (Ya, Yat1,---,Yp—1) for two indexes a < b, i.e. Yo p =
b—1

/(b —a) Xy

We assume that the signal y is well approximated by
a piecewise constant signal with few shifts in value. Our
objective is to recover the true but unknown step localizations,
the indexes where there is a shift. Note that the step number
is also unknown. Let 7 = {t1,t2,...,tx} be a set of K
potential step indexes. Its cardinal is denoted |T |, i.e. |T| = K
A natural measure of the approximation quality of the ¢ is
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(By convention, tg = 1 and tx4; = T + 1 are dummy
indices.) This quantity is the squared error of the best piece-
wise constant approximation of y that only has steps at the
positions t;. Without constraint on the step number, one would
choose the trivial approximation with 7' steps to have an
error equal to 0. For this reason, we do not minimize V (7)
but rather a trade-off between data fidelity —measured by the
squared error V(7 )- and segmentation complexity —measured
by the number of steps |7 |. Formally, this yields the following
optimization problem:

minimize Vs (7, y) 5

over all step sets 7 = {t1,¢2,...} @
where V(T ,y) = V(T ,y)+|T| and 3 > 0 is a user-defined
parameter that controls the trade-off between data fidelity and
segmentation complexity. The parameter g is often referred
to as a penalty. Too large a 8 will produce an approximation
with very few steps and potentially miss true ones; the signal
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Fig. 2. Influence of the penalty value on the step detection procedure. All
three plots have the same observed signal (in arbitrary units). Vertical dashed
lines indicate the step localizations.

y is under-segmented. Conversely, too small a 5 will result
in many detected steps, including false ones; the signal y is
said to be over-segmented. The influence of the penalty 5 is
illustrated in Fig.[5] This parameter is crucial to filter out noise
and only keep meaningful steps. A procedure to calibrate 3 is
described in the next section.

For a fixed 3, there remains the question of solving the
optimization problem (2)). Such problems have been studied
extensively in statistics and signal processing and are part of
a more general setting called change-point detection or signal
segmentation [8]. In this work, we use the efficient implemen-
tation from the ruptures packageﬂ The inputs of this algorithm
are a signal y and a penalty 8 > 0; it outputs the solution
of (@), that is the step set 7 = {{1,%2,...} which minimizes
the objective function. The number of steps is K= |T]. Note
that the estimated step number and localizations depend on
the signal y and the penalty £.

B. Finding the optimal penalty

Finding a reasonable penalty § is an open problem that
receives a lot of attention [8]. In most situations, when the
data do not fit a well-known model, this parameter must be
calibrated manually by trial and error. We aim to replace this
fastidious and cumbersome process with a fully automatic
procedure. To that end, we adopt a supervised approach,
meaning that we assume that an expert has provided L
signals y) (I =1,..., L) along with their step localizations
TO = {t(l) t(l) ... }. The set of annotated signals y(") and
their annotations 7 is called a training set. Obtaining a

lgithub.com/deepcharles/ruptures
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small training set is no more burdensome than estimating
the average step height, as in QuickPBSA. Our approach
SuperSA aims at finding a penalty 3 that can reproduce the
segmentation strategy of the expert. Intuitively, for an ideal
B, the step set 7 estimated on signal y® is close to the
labelled step set TW je. TO =~ TO for all . Since there
is no easy method to find such a penalty 5, we relax our
objective: instead, we want our estimation to match the same
data fidelity/segmentation complexity as the labels, namely
Va(TW,yW) ~ V(TW,yD). This leads to an optimization
problem:

L
minimize Z|V5(T(l),y(l)) - Vg(%(l),y(l)ﬂ 3)
1=1

over 5 >0

Note that, by design, the objective function in (3) is non-
negative and equal to O if there exists a penalty 3 such that
75 = TW for all I. A method to solve this optimization
problem has first been described in [[7]]. The solution to (3]
is a penalty value Bopt that can used to detect steps on new
signals outside of the training set.

III. EXPERIMENTAL RESULTS

We study the performance of our approach SuperSA on
simulated data and image stacks from a real experiment. Our
algorithm is compared to the most recent and state-of-the-art
automatic method for step analysis, QuickPBSA [3].

A. Synthetic simulations

Setting. We generate fluorescence intensity curves over
1500 images, representative of the emission of a few single
fluorophores, as follows. Each fluorophore emits a signal
with an average value fiy that follows a Gaussian distribution
N(0.15,0). The fluorescence signal takes on a step-wise
pattern depending on the number of emitters fluorescing
simultaneously. The positions of these steps are random,
following a Poisson distribution, resulting in signals that
typically feature an average of 15 steps. Finally, Gaussian
noise is incorporated into the signal with a standard deviation
oy to take into account the photon noise. Four data sets are
generated, each having different values for oy and o, (see
Table [[). We use precision, recall and F-score to measure
the performance of our step detection analysis. A step is
considered localized if an estimated step is at the same
location. Precision is the ratio of the number of correctly
localized steps (true positives) and the number of predicted
steps; recall is the ratio of the number of true positives and
the number of true steps; F-score is the geometric mean of
precision and recall.

Results. The performance of SuperSA and QuickPBSA are
shown in Table Two observations can be made:

« Both methods have very good scores on Data Set 1, which
has the lowest noise variance and amplitude variance.

TABLE I
PARAMETERS OF THE SYNTHETIC DATA SETS: o'y IS THE STEP AMPLITUDE
VARIANCE AND 0, IS THE NOISE VARIANCE.

Data set name ‘ or ‘ on
DATA SET 1 0.05 0.03
DATA SET 2 0.05 0.05
DATA SET 3 0.10 0.05
DATA SET 4 0.07 0.07
TABLE 11

PERFORMANCE ON THE SYNTHETIC DATA SETS (BEST SCORES IN BOLD)

Data set Algorithm Recall (%) Precision (%) F-score (%)
DATA SET 1 SuperSA 90.1 94.8 924
QuickPBSA 84.0 78.5 81.2
DATA SET 2 SuperSA 72.2 81.9 76.7
QuickPBSA 70.3 62.3 66.1
DATA SET 3 SuperSA 67.4 84.1 74.8
QuickPBSA 64.8 62.2 63.5
DATA SET 4 SuperSA 52.9 69.9 60.2
QuickPBSA 53.8 51.8 52.8

The F-score deteriorates when noise increases, and step
amplitude varies more.

e SuperSA has a better F-score than QuickPBSA for all
data scenarios. For Data Set 4, which has high noise
variance and high amplitude variance, QuickPBSA has
a slightly higher recall but worse precision. On all other
data sets, SuperSA has better precision and recall.

B. Study of the translation speed of a single protein

We use a setting similar to [2]], where a reporter assay is
developed to time an assembly of single ribosomes during
translation. As mentioned in the introduction, the speed of
the ribosome is deduced from the measurement of the time
at which it detaches different fluorescent oligonucleotides
hybridized at specific locations on the messenger RNA. To
estimate those specific moments, we detect abrupt steps in
the mean value of the fluorescence signals with our procedure
SuperSA.

Experimental setup. It consists of a total internal reflec-
tion microscope (TIRFM): 2 laser beams (resp. 561 nm and
640 nm) are expanded and combined. They are focused off-
optical axis in the back focal plane of an oil-immersion large
numerical-aperture microscope objective, and totally reflected
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Fig. 3. Experimental total-internal-reflection fluorescence microscopy setup
for studying the translation speed of a single protein, see Section BE
is a beam expander, and PBS is a polarizing beam splitter.
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Fig. 4. Tllustration of the preprocessing procedure. Peaks are detected on each
frame (green and red) with a rough algorithm (peak detection step). Only those
who appear in both frames are kept (solid black circles); the others (dashed
black circles) are discarded (colocalization step).

at the glass-water interface of the coverslip. Two fluorescent
signals are collected (one in green, one in red) by the ob-
jective and imaged by the tube lens on an EMCCD sensor
after passing through the appropriate emission filter. Home-
made electronics synchronise the different elements for data
acquisition. A schematic view is shown in Figure [3]

Preprocessing. The background is removed on each frame
using a rolling ball algorithm (radius: 50 pixels). Then we
detect bright spot positions as follows: we pick one frame,
smooth it with a Gaussian filter (width: 1 pixel) and find all
local maxima above the background noise level. This crude
peak detection procedure is refined by a second step where
we filter out spots that only appear in the red video or the
green video. We allow a distance of 2 pixels between matched
spots. See Fig. [] for an illustration. For each spot, the signal
is the average of the surrounding pixels (3x3 square) across
all frames. After this preprocessing, 1524 traces are extracted
in each colour (2 x 1524 traces in total), and Fifty traces have
been manually labelled in each colour to learn the penalty
value.

Results. Using SuperSA, we learn two penalty values, one
for each colour and then perform step analysis. For our
application, we only keep traces with a single downward step
in both colours. This allows us to compute the time difference
between the green and red steps, as in Figure|l} The histogram
of the time differences is shown in Figure E} From this, we
can estimate that a ribosome takes 74 seconds on average to
go from the red marker to the green marker. Note that this is
a rough estimate of the translation time, as a more elaborate
statistical modelization is needed to account for particles that
spontaneously stop emitting without any intervention of the
ribosome.

As mentioned, this result is obtained using 100 annotated
traces (50 in each colour). To show that we can cope with
fewer labels, we randomly draw 20 annotated traces (10 in
each colour) and execute SuperSA a second time, using
only the smaller training set. This operation is repeated 100
times. When we compare the steps obtained with the complete
training set and the ones obtained with the smaller set, 94%
of the time, the same number of steps is detected, and when
that happens, 97% of step localizations are the same for both
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Fig. 5. Density estimation of green step times minus the red step times

training sets. This supports the fact that even with limited
annotations, SuperSA still produces the same results.

On a final note, we point out that the proposed pipeline takes
only 14.5 seconds to process a stack of 300 512 x 512 images
on a standard computer (Intel(R) Core(TM) i5-1030NG7 CPU
@ 1.10GHz); most of the computation time (13 seconds) is
devoted to extracting the traces and the remaining time (1.5
seconds) is spent on SuperSA. This low computational cost
makes our approach suitable for interactive use.

IV. CONCLUSION

In this work, we have introduced an automatic and
calibration-free photobleaching step detection procedure for
fluorescent microscopy. It is supervised, meaning that it re-
quires annotated traces from an expert. Experiments on a real
application have shown that the number of labelled signals can
be in the dozens to detect steps in hundreds of new traces.
Furthermore, our method is fast and can be used interactively.
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