
HAL Id: hal-04869218
https://hal.science/hal-04869218v1

Preprint submitted on 7 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Beyond Log-Concavity and Score Regularity: Improved
Convergence Bounds for Score-Based Generative Models

in W2 -distance
Marta Gentiloni-Silveri, Antonio Ocello

To cite this version:
Marta Gentiloni-Silveri, Antonio Ocello. Beyond Log-Concavity and Score Regularity: Improved
Convergence Bounds for Score-Based Generative Models in W2 -distance. 2025. �hal-04869218�

https://hal.science/hal-04869218v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Beyond Log-Concavity and Score Regularity: Improved

Convergence Bounds for Score-Based Generative Models in

W2-distance

Marta Gentiloni–Silveri1∗ Antonio Ocello1†

1CMAP, UMR CNRS 7641,
Ecole Polytechnique,

[marta.gentiloni-silveri, antonio.ocello]@polytechnique.edu

January 6, 2025

Abstract

Score-based Generative Models (SGMs) aim to sample from a target distribution by
learning score functions using samples perturbed by Gaussian noise. Existing convergence
bounds for SGMs in the W2-distance rely on stringent assumptions about the data distribu-
tion. In this work, we present a novel framework for analyzing W2-convergence in SGMs,
significantly relaxing traditional assumptions such as log-concavity and score regularity.
Leveraging the regularization properties of the Ornstein–Uhlenbeck (OU) process, we show
that weak log-concavity of the data distribution evolves into log-concavity over time. This
transition is rigorously quantified through a PDE-based analysis of the Hamilton–Jacobi–
Bellman equation governing the log-density of the forward process. Moreover, we establish
that the drift of the time-reversed OU process alternates between contractive and non-
contractive regimes, reflecting the dynamics of concavity. Our approach circumvents the
need for stringent regularity conditions on the score function and its estimators, relying
instead on milder, more practical assumptions. We demonstrate the wide applicability of
this framework through explicit computations on Gaussian mixture models, illustrating its
versatility and potential for broader classes of data distributions.

1 Introduction

In recent years, machine learning has made remarkable progress in generating samples from
high-dimensional distributions with intricate structures. Among various generative models,
Score-based Generative Models (SGMs) (see, e.g., Sohl-Dickstein et al., 2015; Song and Ermon,
2019; Ho et al., 2020; Song et al., 2020b,a) have gained significant attention due to their versatility
and computational efficiency. These models leverage the innovative approach of reversing the
flow of a Stochastic Differential Equation (SDE) and employ advanced techniques for learning
time-reversed processes, enabling the generation of high-quality and visually compelling samples
(Ramesh et al., 2022).

This breakthrough has spurred a rapid expansion in the applications of SGMs, which now
span diverse domains. Examples include natural language generation (Gong et al., 2022),
imputation for missing data (Zhang et al., 2024), computer vision tasks such as super-resolution
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and inpainting (Li et al., 2022; Lugmayr et al., 2022), and even applications in cardiology
(Cardoso et al., 2023). For a comprehensive review of recent advancements, we refer readers to
Yang et al. (2023).

SGMs. The primary goal of these models is to generate synthetic data that closely match
a target distribution πdata, given a sample set. This is particularly valuable when the data
distribution is too complex to be captured by traditional parametric methods. In such scenarios,
classical maximum likelihood approaches become impractical, and non-parametric techniques
like kernel smoothing fail due to the high dimensionality of real-world data.

SGMs address these challenges by focusing on the score function—the gradient of the log-
density of the data distribution—instead of directly modeling the density itself. The score
function describes how the probability density changes across different directions in the data
space, guiding the data generation process.

The generation process begins with random noise and iteratively refines it into meaningful
samples, such as images or sounds, through a denoising process that reverses a forward diffusion
process. The forward diffusion process starts with a data sample (e.g., an image) and gradually
corrupts it by adding noise over several steps through an SDE flow, eventually transforming it
into pure noise.

During generation, SGMs learn to reverse this diffusion process. Using noisy versions of the
data, the model trains a deep neural network to approximate the score function. Starting from
random noise, the model applies the learned score function iteratively, progressively removing
noise and refining the sample to match the original data distribution. At each step, small,
controlled adjustments based on the score function guide the noise toward realistic data, ensuring
that the final sample aligns closely with the target distribution.

Related literature. The power and appeal of SGMs have spurred significant interest in
establishing convergence bounds, leading to a variety of mathematical frameworks. Broadly,
these contributions can be categorized into two primary approaches, focusing on different metrics
and divergences.

The first category explores convergence bounds based on α-divergences and Total Variation
(TV) distance (see, e.g., Block et al., 2020; De Bortoli, 2022b; De Bortoli et al., 2021b; Lee
et al., 2022, 2023; Chen et al., 2023, 2022a; Oko et al., 2023). For example, Chen et al. (2022a)
derived upper bounds in TV distance, assuming smoothness of the score function. Recent works
by Conforti et al. (2023a) and Benton et al. (2024) extended these results to Kullback–Leibler
(KL) divergence under milder assumptions about the data distribution. Importantly, bounds on
KL divergence imply bounds on TV distance via Pinsker’s inequality, reinforcing their broader
applicability.

The second category focuses on convergence bounds in Wasserstein distances of order p ≥ 1,
which are often more practical for estimation tasks. De Bortoli (2022a) established W1 bounds
with exponential rates under the manifold hypothesis, assuming the target distribution lies on
a lower-dimensional manifold or represents an empirical distribution. Mimikos-Stamatopoulos
et al. (2024) provided W1 bounds on a torus of radius R, noting that the bounds depend on R
and require early stopping criteria. For W2-convergence, results by De Bortoli et al. (2021a) and
Lee et al. (2023) rely on smoothness assumptions about the score function or its estimator, often
under bounded support conditions. For such distributions, W2-distance can also be bounded by
TV distance, and thus by KL divergence, via Pinsker’s inequality.

In addition to these general approaches, reverse SDEs have been analyzed in the context of
log-concave sampling. For instance, Chen et al. (2022b) studied the proximal sampler algorithm
introduced by Lee et al. (2021), inspiring further work on W2-convergence within the strongly
log-concave framework. Current results often assume strong log-concavity of the data distribution
and impose regularity conditions on the score function or its estimator (e.g., Gao et al., 2023;
Bruno et al., 2023; Tang and Zhao, 2024; Strasman et al., 2024). For strongly log-concave
distributions, W2 bounds can also be estimated from KL divergence using Talagrand’s inequality
(Corollary 7.2, Gozlan and Léonard, 2010).
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These works share some notable features. A key insight, as highlighted by Strasman
et al. (2024), is the contraction property of the backward process, which ensures convergence
stability. Additionally, their results align with well-established findings for Euler–Maruyama (EM)
discretization schemes (Pagès, 2018), showing a

√
h dependence on the step size h. Furthermore,

Bruno et al. (2023) achieved optimal dimensional dependence in this framework, scaling as
√
d,

where d is the dimensionality of the data distribution.

Contributions. Our work breaks through the traditional constraints of log-concavity in data
distributions and strict regularity requirements for the score function or its estimator, offering a
novel perspective on the W2 convergence of SGMs.

Building on the concept of weak log-concavity (see, e.g., Conforti, 2024), we establish a
foundational framework for studying data distributions under significantly relaxed convexity
assumptions. By leveraging the regularizing properties of the Ornstein–Uhlenbeck (OU) process,
we demonstrate how its Gaussian stationary distribution progressively enhances the regularity
of the initial data distribution. This regularization propagates weak log-concavity over time,
ultimately transitioning into a strongly log-concave regime. Using a PDE-based approach
inspired by Conforti et al. (2023a,b), we rigorously track the propagation of weak log-concavity
through the Hamilton–Jacobi–Bellman (HJB) equation satisfied by the log-density of the forward
process. Our analysis provides explicit estimates for the evolution of the weak log-concavity
constant along the OU flow, culminating in a precise characterization of the transition to strong
log-concavity (see Section C).

We also identify and analyze two regimes for the backward stochastic differential equation
(SDE): a contractive regime and a non-contractive one. In Section C, we precisely quantify
the transition point where the drift of the backward process ceases to be contractive, a critical
insight for designing robust neural architectures and optimizing practical algorithms.

Additionally, we show that Gaussian mixtures inherently satisfy the weak log-concavity and
log-Lipschitz assumptions required by our framework. In Proposition 4.1, we quantify these
properties and demonstrate their compatibility with our approach. Moreover, our methods
extend to the analysis of convolutions of densities with Gaussian kernels. The OU flow, which
acts as a Gaussian kernel, regularizes the initial distribution, ensuring stability even under early
stopping regimes. This versatility underscores the broad applicability of our results, transcending
the assumptions specified in H1.

A key advantage of our approach is that it circumvents the strict regularity conditions on the
score function and its estimator imposed by prior studies (e.g., Gao et al., 2023; Lee et al., 2022;
Kwon et al., 2022; Bruno et al., 2023; Tang and Zhao, 2024). Instead, we rely solely on the mild
assumptions of weak log-concavity and one-sided log-Lipschitz regularity of the data distribution.
These assumptions suffice to derive the required score function regularity directly, eliminating
the need for additional constraints (see Appendix B). This shift broadens the applicability of
our framework while simplifying practical implementation.

Finally, we derive a fully explicit W2 -convergence bound, with all constants explicitly
dependent on the parameters of the data distribution. Unlike previous works, which often
present these constants in non-explicit forms or as arbitrarily rescaled factors, our analysis
provides transparency. This clarity enables precise assessment of how input parameters influence
convergence, facilitating informed decisions when designing neural architectures and optimizing
SGMs for real-world applications.

The structure of this paper is as follows. Section 2 introduces SGMs, presenting the general
framework for analyzing these models and specifying the assumptions required to establish our
convergence bounds. In Section 3, we focus on the main result: the convergence bound for SGMs
in W2-distance, highlighting parallels with the key features identified in KL-divergence bounds
for SGMs. Section 4 demonstrates the validity of our assumptions by showing that the general
class of Gaussian mixtures satisfies the conditions necessary for the bound to hold, thereby
establishing a strong connection with bounds in early stopping regimes. Section 5 explores the
underlying features contributing to the remarkable success and effectiveness of SGMs, including
the contractive properties of the OU flow, which form the basis for proving our result. Finally,
Section 6 provides a concise sketch of the proof of the main result.
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2 Score Generative Models

Let πdata ∈ P(Rd) represent a probability distribution on Rd, from which we want to generate
samples. SGMs enable this by following a two-step approach: first, transforming data into noise,
and second, learning how to reverse this process to recover data from noise.

To “create noise from data,” SGMs employ an ergodic forward Markov process that begins
with the data distribution and eventually converges to an invariant distribution, usually Gaussian.
This invariant distribution serves as the starting “noise,” which is easily generated by evolving
the forward process from the data.

This corresponds to fixing a time horizon T > 0 and considering a d-dimensional ergodic
diffusion over [0, T ] via the following SDE:

d
−→
X t = b(

−→
X t)dt+ΣdBt , (1)

for t ∈ [0, T ], with b : Rd → Rd a drift function, Σ ∈ Rd×d a fixed covariance matrix, and

(Bt)t≥0 a d-dimensional Brownian motion, initialized at
−→
X 0 ∼ πdata. Under mild assumptions

on b, this equation admits unique solutions and is associated with a Markov semigroup (Pt)t≥0

with a unique stationary distribution π∞. Moreover, the law of the process
−→
X t admits a density

−→p t w.r.t. the Lebesgue measure.
To “create data from noise,” the forward process is reversed using its time-reversal, known as

the backward process. Specifically, we can sample from the noisy invariant distribution (which is
easy to do), then apply the backward dynamics starting from these noisy samples. Since we are
using the reversed process, at time t = T , the backward process ideally yields samples from the
target distribution πdata.

More rigorously, SGMs aim at implementing the time-reversal process (see, e.g., Anderson,
1982; Haussmann and Pardoux, 1986; Föllmer, 2005) defined by

d
←−
X t =

(
−b(
←−
X t) + ΣΣ⊤∇ log−→p T−t(

←−
X t)

)
dt+ΣdB̄t ,

for t ∈ [0, T ], with
←−
X 0 ∼ L(

−→
XT ) and (B̄t)t≥0 a Brownian motion, explicitely characterized in

Haussmann and Pardoux (1986, Remark 2.5).
To put into practice such procedure, three approximations must be made:

1. Since sampling from L(
−→
XT ) is not feasible, the backward process is initialized at the

easy-to-sample stationary distribution π∞.

2. The score function ∇ log−→p t(x) is unknown in closed form, as it depends on the (not
directly accessible) distribution πdata, and thus it needs to be estimated. This score
function can be interpreted as a conditional expectation (see, e.g., Equation 49, Conforti
et al., 2023a), a key insight behind the success of SGMs. By leveraging the fact that a
conditional expectation can be represented as an L2-projection (see, e.g., Corollary 8.17,
Klenke, 2013), the score function can be estimated by training a model θ 7→ sθ(t, x) to
minimize the score-matching loss

θ 7→
∫ T

0

E
[
∥sθ(t,

−→
X t)−∇ log−→p t(

−→
X t)∥2

]
dt , (2)

over a (rich enough) parametric family {sθ : θ ∈ Θ}.

3. As the continuous-time SDE can not be simulated exactly, the process is discretized, often
using the Euler–Maruyama (EM) scheme or other stochastic integrators.

The resulting algorithm (X⋆
t )t∈[0,T ] runs the EM scheme for the estimated backward process

initialized at the stationary distribution of (1): for the learned parameter θ⋆ and a sequence

of step sizes {hk}Nk=1, N ≥ 1, such that
∑N

k=1 hk = T , we set X⋆
0 ∼ π∞ and compute for

k ∈ {0, . . . , N − 1}

X⋆
tk+1

= X⋆
tk + hk

(
−b(X⋆

tk ) + sθ⋆(T − tk, X
⋆
tk )

)
+

√
2hkΣZk ,

with {Zk}k a sequence of i.i.d. standard Gaussian random variables. Finally, this aims to return
L(X⋆

T ), an approximation of πdata.
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2.1 OU-base Score Generative Models

We focus now on the OU case. In this case, π∞ is the standard Gaussian distribution, and
forward and backward processes turn respectively into

d
−→
X t =−

−→
X tdt+

√
2dBt , (3)

d
←−
X t ={

←−
X t + 2∇ log−→p T−t(

←−
X t)}dt+

√
2dBt , (4)

for t ∈ [0, T ]. Since ∇ log π∞(x) = −x, equation (4) can be reformulated equivalently as

d
←−
X t =

(
−
←−
X t + 2∇ log p̃T−t(

←−
X t)

)
dt+

√
2dBt , (5)

for t ∈ [0, T ], with p̃t the density of the law of
−→
X t against the Gaussian distribution, i.e.,

p̃t(x) =
−→p t(x)/π

∞(x) , for (t, x) ∈ [0, T ]× Rd . (6)

This framework, opposed to (4), has been adopted in several works (see, e.g., Conforti et al.,
2023a; Strasman et al., 2024), due to its advantage of maintaining the same sign for the drift
term as in the forward dynamics.

In this article, we shall consider SGMs that generate approximate trajectories of the backward
process based on its representation (5). This means that, for the learned parameter θ⋆ and a
sequence of step sizes {hk}Nk=1, with N ≥ 1 such that

N∑
k=1

hk = T ,

we consider the OU-based SGM described by X⋆
0 ∼ π∞ and

X⋆
tk+1

= X⋆
tk + hk

(
−X⋆

tk + 2s̃θ⋆(T − tk, X
⋆
tk )

)
+

√
2hkZk , (7)

for k ∈ {0, . . . , N − 1}, with θ⋆ the minimizer of

θ 7→
∫ T

0

E
[
∥s̃θ(t,

−→
X t)−∇ log p̃t(

−→
X t)∥2

]
dt , (8)

over a properly chosen parametric class {s̃θ : θ ∈ Θ}.

3 Convergence guarantees for OU-Based SGMs

To understand the performance of the proposed SGM algorithm, we aim to provide quantitative
error estimates between the distribution L(X⋆

T ) and the data distribution πdata.
First, for a given differentiable vector field β, define its weak convexity profile as

κβ(r) = inf
x,y∈Rd:∥x−y∥=r

{
(∇β(x)−∇β(y))⊤ (x− y)

∥x− y∥2

}
. (9)

This function can be regarded as an integrated convexity lower bound for β, for points that
are at distance r > 0. This definition frequently arises in applications of coupling methods to
study the long-term behavior of Fokker–Planck equations (see, e.g., Conforti, 2023, 2024). While
κβ ≥ 0 directly corresponds to the convexity of β, using non-uniform lower bounds on κβ allows
for the development of a more general notion of convexity, often called weak convexity.

Definition 3.1. We say that a vector field β is weakly convex if its weak convexity profile κβ
defined in (9) satisfies

κβ(r) ≥ α− 1

r
fM (r) , (10)

for some positive constants α,M > 0, with fM defined as

fM (r) := 2
√
M tanh

(
r
√
M/2

)
. (11)

Moreover, we say that β is weakly concave if −β is weakly convex.
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We are now able to state our assumptions.

H1 The data distribution πdata is absolutely continuous w.r.t. Lebesgue measure with πdata(dx) =
exp(−U(x))dx, for some function U : Rd → R, such that

(i) ∇U is LU -one-sided Lipschitz, with LU ≥ 0, i.e.,

(∇U(x)−∇U(y))⊤ (x− y) ≤ LU∥x− y∥2; (12)

for any x, y ∈ Rd;

(ii) U is weakly convex, with weak convexity profile κU satisfying

κU (r) ≥ α− 1

r
fM (r) , (13)

for some α,M > 0.

Remark 3.2. These weak assumptions represent a novel contribution to the literature on W2

convergence of SGMs. In fact, the entire class of Gaussian mixtures satisfies both the weak
log-concavity and (one-sided) log-Lipschitz continuity conditions. In Proposition 4.1, we provide
explicit values for the weak log-concavity constants as well as the (one-sided) log-Lipschitz
constants, illustrating the broad applicability and generality of these assumptions.

H2 There exists ε ≥ 0 and θ⋆ ∈ Θ such that for any k ∈ {0, ..., N}∥∥∇ log p̃T−tk

(
X⋆

tk

)
− s̃θ⋆

(
T − tk, X

⋆
tk

)∥∥
L2 ≤ ε ,

where the L2-norm is defined as ∥ · ∥L2 := E[∥ · ∥2]1/2.

Remark 3.3. Assumptions of this type have already been considered in the literature (see, e.g.,
Gao et al., 2023; Bruno et al., 2023; Strasman et al., 2024). We remark that, since we take
the expectation over the EM algorithm (X⋆

tk
)Nk=0, for which the density is known, Assumption

2 is not only theoretically well-founded but also practically verifiable. This makes it a robust
and applicable framework in real-world settings. In addition, in the simple case πdata = N (µ, I)
for some unknown µ ∈ Rd, when approximating the score function ∇ log p̃t(x) by means of the
neural networks {e−tθ : θ ∈ Rd}, Assumption H2 holds true for the minimizer θ = µ of (2) and
any ε > 0.

3.1 Main result

Under the previous assumptions, we now state our main result.

Theorem 3.4 (Informal). Suppose that Assumption H1 and H2 hold. Consider the discretization
{tk, 0 ≤ k ≤ N} of [0, T ] of constant step size h small enough. Then, it holds that

W2

(
πdata,L(X⋆

tN )
)
≲ e−TW2 (πdata, π

∞) + εT +
√
h
√
dT ,

up to a multiplicative constant.

ThisW2-convergence bound aligns with recent literature on these models, both by generalizing
results previously established for log-concave distributions and by identifying the key features of
these models as captured through KL divergence. In particular, our work highlights the following
aspects:

• The framework exhibits an exponential contraction property, e−T , toward the stationary
distribution—a hallmark of the forward OU process. This property is preserved during the
backward process, highlighting the inherent stability of the framework.

• The proportionality to εT . This term, arising from Assumption H2, takes track of the
score approximation error and is consistent with the related literature (see, e.g., Conforti
et al., 2023a; Lee et al., 2022, 2023; Chen et al., 2022a);
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• The
√
h-dependence on the time-grid’s mesh. This dependence is grounded in the properties

of stochastic integrals and the approximations inherent in the EM scheme (see, e.g., Pagès,
2018);

• The
√
d-dependence on the dimension. This dependence surpasses some earlier results (see,

e.g., Bruno et al., 2023; Strasman et al., 2024; Gao et al., 2023) and ensures favorable scaling
for high-dimensional distributions under minimal assumptions on the data distribution.

These features are present up to a finite multiplicative constant that depend on the parameters
α, M , and LU characterizing the data distribution πdata, and that is fully explicit.

Remark 3.5. For sake of simplicity, the theorem is presented for a uniform mesh of the interval
[0, T ]. However, proceeding as in Strasman et al. (2024), the analysis can be extended to a
non-uniform subdivision of [0, T ] by considering the forward and backward SDEs (3)-(5) as
time-inhomogeneous.

Remark 3.6. Following Conforti et al. (2023a), the bound can be reformulated to depend directly
on ε by refining Assumption H2. As the solution Xt to (3) converges in law to π∞, the modified
score function (t, x) 7→ ∇ log p̃t(x) approaches zero for large t. Accounting for this behavior
allows to scale the required precision ε as 1/T .

4 Gaussian mixture example

We demonstrate that Gaussian mixtures naturally fulfill the weak log-concavity and (one-sided)
log-Lipschitz conditions central to our framework. As the OU flow—serving as a Gaussian
kernel—regularizes the initial distribution, it guarantees stability even with early stopping.
Consequently, our approach extends to the analysis of convolutions between densities and
Gaussian kernels. This adaptability highlights the broad relevance of our findings, exceeding the
specific assumptions outlined in H1.

Proposition 4.1. Let pn be a Gaussian mixture on Rd having density law

pn(x) :=

n∑
i=1

βi
1

(2πσ2
i )

d/2
exp

(
−|x− µi|2

2σ2
i

)
, for x ∈ Rd,

with σi > 0, µi ∈ Rd and βi ∈ [0, 1], for i ∈ {1, . . . , n}, such that
∑n

i=1 βi = 1. Then, − log pn is
weakly convex and ∇ log pn is Lipschitz.

In Section A, Proposition A.1, we also quantify and express the related constants.

Remark 4.2. The result presented above can be directly generalized to the case where the
covariance matrices of each mode of the Gaussian mixture are of full rank but not scalar.
In this more general setting, the parameter 1/αpn

(respectively, 1/βpn
) corresponds to the

maximum (respectively, minimum) eigenvalue of the covariance matrices associated with each
mode. Under the full-rank assumption, these eigenvalues are strictly positive, ensuring that
the framework remains applicable and the bounds derived continue to hold with appropriately
adjusted parameters.

5 Regime Switching

By exploiting the regularizing effects of the forward process, the weak log-concavity of the data
distribution transitions to full log-concavity over time. Additionally, the drift of the time-reversed
OU process alternates between contractive and non-contractive phase, reflecting the evolving
concavity dynamics. By rigorously tracing how weak log-concavity propagates through the HJB
equation governing the log-density of the forward process, we provide an exact characterization
of the moments when the marginals of the forward OU process achieve strong log-concavity and
when the drift of the backward OU process becomes non-contractive:

7



Log-Concavity.

• −→p t is only weakly log-concave for t ∈ [0, ξ(α,M)];

• −→p t is log-concave for t ∈ [ξ(α,M), T ],

with

ξ(α,M) :=

log

(√
α2+M−α

α2

)
∧ T , if α−M < 0 ,

0 , otherwise .

Contractivity properties of the time-reversal process.

• bt(x) is contractive, for t ∈ [0, T (α,M, 0)];

• bt(x) is not (necessarily) contractive, for t ∈ [T (α,M, 0), T ],

with T (α,M, ρ) as in (28). We refer to Section C for more details.
This regime shift is a key element in the effectiveness of the SGMs. SDEs with contractive

flows exhibit advantageous properties related to efficiency guarantees (see, e.g., Dalalyan, 2017;
Durmus and Moulines, 2017; Cheng et al., 2018; Dwivedi et al., 2019; Shen and Lee, 2019; Cao
et al., 2020; Mou et al., 2021; Li et al., 2021) that we can exploit in the low-time regime.

6 Sketch of the proof of the main result

We now present a sketch of the proof of Theorem 3.4. Our analysis is based on the observation that,
in the practical implementation of the algorithm defined in (7), three successive approximations
introduce distinct sources of error: time-discretization, initialization, and score-approximation.
To analyze these errors, we work with time-continuous interpolations of the following four
processes:

• Backward OU process. The time-reversal (
←−
X t)t∈[0,T ] of the OU process defined in (5).

• EM–discretization scheme. The EM–approximation (XN
tk
)Nk=0 of the backward process

(5), started at XN
0 ∼ L(

−→
XT )

• Initialization error. The EM–approximation (X∞
tk
)Nk=0 of the backward process (5),

started at X∞
0 ∼ π∞

• Score approximation. The generative process (X⋆
tk
)Nk=0 defined in (7).

These auxiliary processes allow us to separately track the three sources of error. Using the
triangle inequality, we obtain:

W2

(
πdata,L(X⋆

tN )
)
≤ W2

(
L(
←−
XT ),L(XN

tN )
)
+W2

(
L(XN

tN ),L(X∞
tN )

)
+W2

(
L(X∞

tN ),L(X⋆
tN )

)
.

Bound on W2

(
L(
←−
XT ),L(XN

tN )
)
. Consider the synchronous coupling between (

←−
X t)t∈[0,T ] and

the continuous-time interpolation of (XN
tk
)Nk=0 with the same initialization, i.e. use the same

Brownian motion to drive the two processes and set
←−
X 0 = XN

0 . Then, it holds

W2

(
L(
←−
XT ),L(XN

tN )
)
≤

∥∥∥←−XT −XN
T

∥∥∥
L2

.

To bound the right-hand side, we aim to estimate ∥
←−
X tk+1

−XN
tk+1
∥L2

in terms of ∥
←−
X tk−XN

tk
∥L2

,

developing a recursion. Since we have considered the synchronous coupling between
←−
X and XN ,

we obtain:
←−
X tk+1 −XN

tk+1

=
←−
X tk −XN

tk +

∫ tk+1

tk

{
+2

(
∇ log p̃T−t

(←−
X t

)
−∇ log p̃T−tk

(
XN

tk

))}
dt .

8



By applying the triangle inequality, we obtain:∥∥∥←−X tk+1 −XN
tk+1

∥∥∥
L2

≤

∥∥∥∥∥←−X tk −XN
tk

+

∫ tk+1

tk

dt
{
−

(←−
X tk −XN

tk

)
+ 2

(
∇ log p̃T−tk

(←−
X tk

)
−∇ log p̃T−tk

(
XN

tk

))}∥∥∥∥∥
L2

+

∥∥∥∥∥
∫ tk+1

tk

dt
{
−

(←−
X t −

←−
X tk

)
+ 2

(
∇ log p̃T−t

(←−
X t

)
−∇ log p̃T−tk

(←−
X tk

))}∥∥∥∥∥
L2

=: A1,k +A2,k ,

For the first term, we have:

A2
1,k =

∥∥∥←−X tk −XN
tk

∥∥∥2
L2

+ h2
∥∥∥−(←−

X tk −XN
tk

)
+ 2

(
∇ log p̃T−tk

(←−
X tk

)
−∇ log p̃T−tk

(
XN

tk

))∥∥∥2
L2

+ 2hE
[(←−

X tk −XN
tk

)⊤ (
−

(←−
X tk −XN

tk

)
+ 2

(
∇ log p̃T−tk

(←−
X tk

)
−∇ log p̃T−tk

(
XN

tk

)))]
.

To establish a bound, we need regularity properties of the score function. One of the main
challenges in the proof is to derive minimal assumptions on the data that ensure the minimal
regularity properties of the score function required for the bound.

We adopt a PDE-based approach, drawing on the insights from Conforti et al. (2023a,b),
noting that (t, x) 7→ − log p̃T−t(x) solves a HJB equation. By leveraging the regularizing effects
of the Ornstein-Uhlenbeck process, we show that the regularity Assumptions H1 propagate
naturally along the HJB equation, as detailed in Appendix B.
We establish the following key properties:

• (t, x) 7→ ∇ log p̃T−t(x) which turns out to be Lt-Lipschitz in space, with Lt as in (16) and
bounded by L as in (16);

• (t, x) 7→ − log p̃T−t(x) has a weak convexity profile satisfying

κ− log p̃T−t(r) ≥ Ct ,

with Ct as in (23).

These regularity properties enable us to bound A1,k as:

A1,k ≤ δk

∥∥∥←−X tk −XN
tk

∥∥∥
L2

,

for some δk depending on Lt and Ct.
For the second term, we use the definition of the backward drift (27) to rewrite it as:

A2
2,k =

∥∥∥∥∫ tk+1

tk

{
bt(
←−
X t)− btk (

←−
X tk )

}
dt

∥∥∥∥2

L2

.

To bound this term, inspired by Conforti et al. (2023a, Proposition 2), we adopt a stochastic
control perspective. We interpret the backward process (5) as a solution to a stochastic control
problem and the term (

2∇ log p̃T−t(
←−
X t)

)
t∈[0,T ]

as the solution to the adjoint equation within a stochastic maximum principle. This allows
us to bound the term with Ch

√
h
√
d, where h is mesh of the partition, d the dimension of the

initial data and C > 0 a positive constant that may change from line to line. Combining the
bounds on A1,k and A2,k, we derive the recursion

∥∥∥←−XT −XN
T

∥∥∥
L2

≤
∥∥∥←−X0 −XN

0

∥∥∥
L2

N−1∏
ℓ=0

δℓ + Ch
√
h
√
d

N−1∑
k=0

N−1∏
ℓ=k

δℓ = Ch
√
h
√
d

N−1∑
k=0

N−1∏
ℓ=k

δℓ .

Using the explicit form of Ct, we observe that weak log-concavity of the initial data distribution
strengthens into strong log-concavity as time progresses. Additionally, the drift of the time-
reversed OU process alternates between contractive and non-contractive regimes, capturing the

9



interplay between concavity and time. We further derive a quantitative lower bound, T (α,M, 0),
for the point at which the drift transitions from contractive to non-contractive. We then analyze
the low-time and large-time regimes separately, utilizing the contractive properties of SDEs at
small times to establish δk ≤ 1, and applying brute force estimates for large times.

These remarks yields that

N−1∑
k=0

N−1∏
ℓ=k

δℓ ≤
C

h
T .

Therefore, this let us conclude that

W2

(
L(
←−
XT ),L(XN

tN )
)
≲
√
h
√
dT .

Bound on W2

(
L(XN

tN ),L(X
∞
tN )
)
. Consider again the synchronous coupling between the

continuous-time interpolations of (XN
tk
)Nk=0 and (X∞

tk
)Nk=0 with initialization satisfying

W2(π
∞,L(

−→
XT )) = ∥X∞

0 −XN
0 ∥L2 .

Then, we get

W2

(
L(XN

tN ),L(X∞
tN )

)
≤

∥∥∥XN
T −X∞

T

∥∥∥
L2

.

As done before, developping a recursion over the time intervals [tk+1, tk], we get∥∥∥XN
T −X∞

T

∥∥∥
L2

≤
∥∥∥XN

0 −X∞
0

∥∥∥
L2

N−1∏
ℓ=0

δℓ ,

with the δks as before. We bound ∥X∞
0 −XN

0 ∥L2 in the following (by now) standard way (see,
e.g., the proof of Proposition C.2, Strasman et al., 2024)∥∥∥XN

0 −X∞
0

∥∥∥
L2

=W2(π
∞,L(

−→
XT )) ≤ e−TW2(πdata, π

∞) .

Using the previous considerations on the contractivity properties of the forward flow, we get

that the product
∏N−1

ℓ=0 δℓ is uniformly bounded by a constant depending on the parameters of
the model. Therefore, this yields to have

W2

(
L(XN

tN ),L(X∞
tN )

)
≲ e−TW2(πdata, π

∞) .

Bound on W2

(
L(X∞

tN ),L(X⋆
tN )
)
. Consider, as in the first bound, the synchronous coupling

between the continuous-time interpolations of (X∞
tk
)Nk=0 and (X⋆

tk
)Nk=0, with initialization satisfy-

ing X∞
0 = X⋆

0 . Using the evolution of these processes, together with the triangle inequality, we
get ∥∥∥X∞

tk+1
−X⋆

tk+1

∥∥∥
L2

≤

∥∥∥∥∥X∞
tk
−X⋆

tk
+

∫ tk+1

tk

dt
{
− (X∞

t −X⋆
t ) + 2

(
∇ log p̃T−tk

(
X∞

tk

)
−∇ log p̃T−tk

(
X⋆

tk

))}∥∥∥∥∥
L2

+ 4

∥∥∥∥∥
∫ tk+1

tk

dt
(
∇ log p̃T−tk

(
X⋆

tk

)
− s̃θ⋆

(
T − tk, X

⋆
tk

))∥∥∥∥∥
L2

=: B1,k +B2,k .

. By reproposing a similar argument as before, we get

B1,k ≤ δk
∥∥X∞

tk −X⋆
tk

∥∥
L2

.

By using Assumption H2, we obtain

B2,k ≤ 4hϵ .

Therefore, developing the recursion, we reach the bound

W2

(
L(X∞

tN ),L(X⋆
tN ),

)
≲ εT .
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7 Conclusions

This paper introduces a comprehensive framework for deriving convergence bounds inW2 distance
for SGMs, leveraging a PDE-based approach while relaxing stringent regularity assumptions
on the data distribution, the score function and its estimator. The results mark a significant
advancement, as they rely only on mild assumptions of weak log-concavity and one-sided log-
Lipschitzianity of the data distribution, without requiring regularity conditions on the score
function or its estimator. This generality makes the proposed bounds applicable to a broad
range of data types.

Through the example of Gaussian mixtures, we demonstrate the versatility of our framework,
showing how convolutions with Gaussian kernels enhance early-stopping methods by leveraging
their regularizing properties. This flexibility highlights the broad applicability and theoretical
contribution of the presented results to the SGMs literature.

Furthermore, we explore how weak log-concavity evolves into full log-concavity over time
and describe how the drift of the time-reversed OU process transitions between contractive and
non-contractive regimes, mirroring the change in concavity.
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Appendix

The appendix includes the additional materials to support the findings and analyses presented in
the main paper. Appendix A delves into the Gaussian mixture example, establishing its weak
log-concavity and log-Lipschitz properties with explicit derivations of the associated constants.
Appendix B focuses on the propagation of regularity assumptions through the forward OU
process, leveraging PDE-based techniques to demonstrate how weak log-concavity and Lipschitz
regularity evolve over time. Appendix C examines the dynamics of concavity and contractivity
in the time-reversed OU process, rigorously characterizing transitions from weak to strong
log-concavity and identifying contractive and non-contractive regimes. Appendix Dprovides
the formal counterpart of Theorem 3.4 and the proof of it. Finally, Appendix E compiles
auxiliary results and technical lemmas needed to develop the argument carried on in the proof
of the main result.

A Gaussian mixture example

Proposition A.1. Let pn be a Gaussian mixture in Rd having density law

pn :=

n∑
i=1

βi
1

(2πσ2
i )

d/2
exp

(
−|x− µi|2

2σ2
i

)
, x ∈ Rd, (14)

with σi > 0, µi ∈ Rd and βi ∈ [0, 1], for i ∈ {1, . . . , n}, such that
∑n

i=1 βi = 1. Then, − log pn is
weakly convex with coefficients

αpn
=

1

maxi∈{0,...,n} σ
2
i

,
√
Mpn

:= 2n

n∑
i=1

∥µi∥
σ2
i

.

Moreover, we have that ∇ log pn is (βpn
+
√
Mpn)-Lipschitz, with

βpn =
1

mini∈{0,...,n} σ
2
i

.

Proof of Proposition 4.1. Step 1. Gaussian mixture of two equi-weighted modes. Con-
sider, first, the following Gaussian mixture of two modes with equal weight, i.e., β1 = β2 = 1/2,
each mode having same variance σ2I. Remark that the property of being weakly log-concave is
invariant to translation. Therefore, up to a translation, we have that the density distribution of
this law is

p2(x) =
1

2

1

(2πσ2)
d/2

exp

(
−|x− µ|

2

2σ2

)
+

1

2

1

(2πσ2)
d/2

exp

(
−|x+ µ|2

2σ2

)
,

for x ∈ Rd, with µ ∈ Rd. This means that its score function is equal to

∇ log p2(x) = −
x

σ2
+

µ

σ2

exp
(
− |x−µ|2

2σ2

)
− exp

(
− |x+µ|2

2σ2

)
exp

(
− |x−µ|2

2σ2

)
+ exp

(
− |x+µ|2

2σ2

)
= − x

σ2
+

µ

σ2

exp
(
µ⊤x/σ2

)
− 1

exp (µ⊤x/σ2) + 1
.
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We focus now on bounding κ− log p. Fix x, y ∈ Rd. We have that

− (∇ log p2(x)−∇ log p2(y))
⊤
(x− y)

∥x− y∥2

=
1

σ2
− µ⊤(x− y)
σ2 ∥x− y∥2

×

(
exp

(
µ⊤x/σ2

)
− 1

exp (µ⊤x/σ2) + 1
−

exp
(
µ⊤y/σ2

)
− 1

exp (µ⊤y/σ2) + 1

)

=
1

σ2
− µ⊤(x− y)
σ2 ∥x− y∥2

×

(
2
(
exp

(
µ⊤x/σ2

)
− exp

(
µ⊤y/σ2

))
(exp (µ⊤x/σ2) + 1) (exp (µ⊤y/σ2) + 1)

)

=
1

σ2
− µ⊤(x− y)
σ2 ∥x− y∥2

×

(
2
(
exp

(
µ⊤(x− y)/σ2

)
− 1
)

(exp (µ⊤x/σ2) + 1) (exp (−µ⊤y/σ2) + 1)

)

≥ 1

σ2
− µ⊤(x− y)
σ2 ∥x− y∥2

×

(
2
(
exp

(
µ⊤(x− y)/σ2

)
− 1
)

(exp (µ⊤ (x− y) /σ2) + 1)

)

=
1

σ2
− 2

µ⊤(x− y)
σ2 ∥x− y∥2

× tanh

(
µ⊤ (x− y)

2σ2

)
.

It is clear that, the minimum of the r.h.s. of the previous inequality, under the constraint
|x− y| = r, is reached for a vector x− y that is colinear with µ. Taking x = y − µ

|µ|r, we get

κ− log p2
(r) ≥ 1

σ2
− 2
∥µ∥
σ2

r−1 tanh

(
∥µ∥
2σ2

r

)
.

From the definition of fM as in (11) and the fact that the function M 7→ fM (r) is increasing for
a fixed r > 0, we can take

αp2
:=

1

σ2
,

√
Mp2

:= 4
√
2
∥µ∥
σ2

.

Moreover, recalling the expression we got for ∇ log p2 and repeating similar computations, we
obtain that

∥∇ log pn(x)−∇ log pn(y)∥ ≤
1

σ2
∥x− y∥+

∥∥∥∥tanh(µ⊤(x− y)
2σ2

)∥∥∥∥∥∥∥ µσ2

∥∥∥
≤ 1

σ2
∥x− y∥+

(
∥µ∥
σ2

)2

∥x− y∥ ≤ (βp2
+Mp2

) ∥x− y∥ ,

where, in the second inequality we have used the sub-linearity of x 7→ tanhx together with
Cauchy-Schwartz inequality.

Step 2. General Gaussian mixture. Consider pn defined as in (14). Therefore, its score
function is

∇ log pn(x) =
1

pn(x)

n∑
i=1

[
−βi

x− µi

σ2
i

× 1

(2πσ2
i )

d/2
exp

(
−∥x− µi∥2

2σ2
i

)]

=− x

pn(x)

n∑
i=1

βi
σ2
i

1

(2πσ2
i )

d/2
exp

(
−∥x− µi∥2

2σ2
i

)

+
1

pn(x)

n∑
i=1

βi
σ2
i

µi
1

(2πσ2
i )

d/2
exp

(
−∥x− µi∥2

2σ2
i

)
.

16



Fix r > 0 and x, y ∈ Rd such that ∥x− y∥ = r. We then have

− 1

r2
(∇ log pn(x)−∇ log pn(y))

⊤
(x− y)

=
1

r2

{
x

pn(x)

n∑
i=1

βi
σ2
i

1

(2πσ2
i )

d/2
exp

(
−∥x− µi∥2

2σ2
i

)

− 1

pn(x)

n∑
i=1

βi
σ2
i

µi
1

(2πσ2
i )

d/2
exp

(
−∥x− µi∥2

2σ2
i

)

− y

pn(y)

n∑
i=1

βi
σ2
i

1

(2πσ2
i )

d/2
exp

(
−∥y − µi∥2

2σ2
i

)

+
1

pn(y)

n∑
i=1

βi
σ2
i

µi
1

(2πσ2
i )

d/2
exp

(
−∥y − µi∥2

2σ2
i

)}⊤

(x− y)

=
1

r2

[
x

pn(x)

n∑
i=1

βi
σ2
i

1

(2πσ2
i )

d/2
exp

(
−∥x− µi∥2

2σ2
i

)

− y

pn(y)

n∑
i=1

βi
σ2
i

1

(2πσ2
i )

d/2
exp

(
−∥y − µi∥2

2σ2
i

)]⊤
(x− y)

− 1

r2

[
1

pn(x)

n∑
i=1

βi
σ2
i

µi
1

(2πσ2
i )

d/2
exp

(
−∥x− µi∥2

2σ2
i

)

− 1

pn(y)

n∑
i=1

βi
σ2
i

µi
1

(2πσ2
i )

d/2
exp

(
−∥y − µi∥2

2σ2
i

)}⊤

(x− y)

= A1 +A2 .

We now proceed in bounding the two terms in the r.h.s. of the previous equation. We see that

A1 =
1

r2
[x ψn(x)− y ψn(y)]

⊤
(x− y) ,

with

ψn(x) :=
1

pn(x)

n∑
i=1

βi
σ2
i

1

(2πσ2
i )

d/2
exp

(
−∥x− µi∥2

2σ2
i

)
.

Without loss of generality, since x and y are interchangeable, we can suppose that ψn(y) ≤ ψn(x).
From the definition of pn as in (14), we have that αpn

≤ ψn(x) and, therefore,

A1 =
1

r2
[x ψn(x)− y ψn(y)]

⊤
(x− y)

≥ 1

r2
ψn(x)(x− y)⊤(x− y) = ψn(x) ≥ αpn

.

Consider now A2 and denote ei(z) :=
1

(2πσ2
i )

d/2 exp
(
−∥z−µi∥2

2σ2
i

)
, for z ∈ Rd and i ∈ {1, . . . , n}.
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Using a telescopic sum, we have

A2 =−
n∑

i=1

1

r2

∑i−1
j=1 βj

µj

σ2
j
ej(x) + βi

µi

σ2
i
ei(x) +

∑n
j=i+1 βj

µj

σ2
j
ej(y)∑i−1

j=1 βjej(x) + βiei(x) +
∑n

j=i+1 βjej(y)

−

∑i−1
j=1 βj

µj

σ2
j
ej(x) + βi

µi

σ2
i
ei(y) +

∑n
j=i+1 βj

µj

σ2
j
ej(y)∑i−1

j=1 βjej(x) + βiei(y) +
∑n

j=i+1 βjej(y)

⊤

(x− y)

=−
n∑

i=1

1

r2

[
vi + βi

µi

σ2
i
ei(x)

γi + βiei(x)
−
vi + βi

µi

σ2
i
ei(y)

γi + βiei(y)

]⊤
(x− y) ,

with

vi :=

i−1∑
j=1

βj
µj

σ2
j

ej(x) +

n∑
j=i+1

βj
µj

σ2
j

ej(y) ,

γi :=

i−1∑
j=1

βjej(x) +

n∑
j=i+1

βjej(y) .

This means that, using that

(γi + βiei(x)) (γi + βiei(y)) ≥ γiβiei(x) + γiβiei(y)

since all γ2i ≥ 0, we get

A2 =−
n∑

i=1

1

r2

βi (ei(x)− ei(y))
(
γi

µi

σ2
i
− vi

)
(γi + βiei(x)) (γi + βiei(y))

⊤

(x− y)

≥−
n∑

i=1

1

r2

βi (ei(x)− ei(y))
(
γi

µi

σ2
i
− vi

)
βiγi (ei(x) + ei(y))

⊤

(x− y)

=−
n∑

i=1

1

r2
ei(x)− ei(y)

ei(x) + ei(y)

(
µi

σ2
i

− vi
γi

)⊤

(x− y)

=−
n∑

i=1

1

r2
tanh

(
µ⊤
i (x− y)
2σ2

i

)(
µi

σ2
i

)⊤

(x− y) +
n∑

i=1

1

r2
tanh

(
µ⊤
i (x− y)
2σ2

i

)(
vi
γi

)⊤

(x− y) .

First, note that, as in the Step 1, we have that

1

r2
tanh

(
µ⊤
i (x− y)
σ2
i

)(
µi

σ2
i

)⊤

(x− y) ≤ 1

r
fMi

(r) , with
√
Mi :=

∥µi∥
σ2
i

.

Secondly, for a fixed r > 0, we see that the function fM (r) is increasing in M . Therefore, we get

−
n∑

i=1

1

r2
tanh

(
µ⊤
i (x− y)
2σ2

i

)(
µi

σ2
i

)⊤

(x− y) ≥ −n1
r
fM̂ (r) , with

√
M̂ :=

n∑
i=1

∥µi∥
σ2
i

.

Note that vi/γi is a convex combination of the vectors {µj/σ
2
j }j ̸=i. Therefore, using again

that M 7→ fM (r) is increasing for a fixed r > 0, we have

n∑
i=1

1

r2
tanh

(
µ⊤
i (x− y)
2σ2

i

)(
vi
γi

)⊤

(x− y) ≥ −n1
r
fM̂ (r) .
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Combining the previous bounds, together with monotonicity of M 7→ tanh(
√
Mr/2) for fixed

r > 0, we can conclude that

A2 ≥ −
1

r
fMpn

(r) , with
√
Mpn

:= 2n

n∑
i=1

∥µi∥
σ2
i

.

Combining the bound on A1 with the one on A2, we can conclude that − log(pn) is weakly
convex with parameters αpn

and Mpn
.

We now bound ∥∇ log pn(x)−∇ log pn(y)∥. Following the same lines as before, we get

∥∇ log pn(x)−∇ log pn(y)∥ ≤ ∥x ψn(x)− y ψn(y)∥+
n∑

i=1

∣∣∣∣tanh(µ⊤
i (x− y)
2σ2

i

)∣∣∣∣ ∥∥∥∥µi

σ2
i

− vi
γi

∥∥∥∥
:= B1 +B2 .

From the definition of pn as in (14), we have that ψn(x) ≤ βpn
and, therefore,

B1 ≤ max {ψn(x), ψn(y)} ∥x− y∥ ≤ βpn
∥x− y∥ .

Analogously to the bound on A2, we now use the sub-linearity of x 7→ tanhx, Cauchy-Schwartz
inequality and the triangle one, together with the fact that vi/γi is a convex combination of the
vectors {µj/σ

2
j }j ̸=i, to get

B2 ≤
n∑

i=1

∣∣∣∣µ⊤
i (x− y)
2σ2

i

∣∣∣∣ ∥∥∥∥µi

σ2
i

− vi
γi

∥∥∥∥ ≤ ∥x− y∥ n∑
i=1

∥∥∥∥µi

σ2
i

∥∥∥∥(∥∥∥∥µi

σ2
i

∥∥∥∥+ ∥∥∥∥viγi
∥∥∥∥)

≤ 2n

n∑
i=1

(
∥µi∥
σ2
i

)2

∥x− y∥ ≤Mpn∥x− y∥ .

Putting together these inequalities, we obtain that ∇ log(pn) is Lipschitz with Lipschitz constant
(βpn +Mpn).

B Regularity properties of the modified score function

The proof of Theorem D.1 is based on some regularity properties of the score function (t, x) 7→
∇ log p̃T−t(x). Therefore, in this section, we establish the key regularity properties of ∇ log p̃,
which arise from the propagation of Assumption H1 through the OU process flow (3).

B.1 Weak-log concavity implies finite second order moment

Proposition B.1. Suppose that Assumption H1(ii) holds. Then, πdata admits a second order
moment.

Proof. Consider the following Taylor development up to order two.

U(x) = U(0) +∇U(x)⊤x+
1

2
x⊤∇2U(y)x ,

for some y ∈ {tx : t ∈ [0, 1]}. From Assumption H1(ii), we have that

−∇U(x)⊤x ≤ −α|x|2 + fM (|x|)|x| ≤ −α|x|2 +M |x| .

This means that outside a ball B(0, R) with R big enough, there exists αR > 0 such that

−∇U(x)⊤x ≤ −αR|x|2 , for x /∈ B(0, R) .

From Bouchut et al. (2005, Lemma 2.2), we get that the previous inequality implies that

∇2U ≼ −αRId .
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Therefore,∫
Rd

|x|2 exp (−U(x)) dx

=

∫
B(0,R)

|x|2 exp (−U(x)) dx+

∫
Rd\B(0,R)

|x|2 exp (−U(x)) dx

=

∫
B(0,R)

|x|2 exp (−U(x)) dx+

∫
Rd\B(0,R)

|x|2 exp
(
−U(0)− 3

2
α2|x|2

)
<∞ .

B.2 Regularity in space of the modified score function

Proposition B.2. Assume that Assumption H1(i) holds and fix t ∈ [0, T ]. Then, it holds

sup
x∈Rd

∥∥∇2 log p̃T−t(x)
∥∥ ≤ Lt ≤ L, (15)

where

Lt = min

{
1

1− e−2(T−t)
; e2(T−t)LU

}
+ 1 , L = 2 + LU . (16)

In particular, the modified score function x 7→ ∇ log p̃T−t(x) is Lt-Lipschitz, i.e.,

∥∇ log p̃T−t(x)−∇ log p̃T−t(y)∥ ≤ Lt ∥x− y∥ , (17)

for any x, y ∈ Rd.

Proof. Recall that the transition density associated to the Orstein–Uhlenbeck semigroup is given
by

qt(x, y) =
1

(2π(1− e−2t))d/2
exp

(
−∥y − e−tx∥2

2(1− e−2t)

)
. (18)

Therefore, −→p t is given by

−→p t(y) =

∫
1

(2π(1− e−2t))d/2
exp

(
−∥y − e−tx∥2

2(1− e−2t)
− U(x)

)
dx .

This means that −→p t is the density of the sum of two independent random variables Y 1
t + Y 0

t of
density respectively q0,t and q1,t, such that

q0,t(x) := etde−U(etx) = e−ϕ0,t(x) ,

q1,t(x) :=
1

(2π(1− e−2t))d/2
exp

(
− ∥x∥2

2(1− e−2t)

)
= e−ϕ1,t(x) ,

for two functions ϕ0,t and ϕ1,t. From the proof of Saumard and Wellner (Proposition 7.1, 2014),
we get

∇2 (− log−→p t) (x) = −Var(∇ϕ0,t(X0)|X0 +X1 = x) + E[∇2ϕ0,t(X0)|X0 +X1 = x]

= −Var(∇ϕ1,t(X1)|X0 +X1 = x) + E[∇2ϕ1,t(X1)|X0 +X1 = x] .

From Bouchut et al. (2005, Lemma 2.2) and Assumption H1(i), we get that the one-sided
Lipschitz assumption entails the following inequality over the Hessian of the log-density

∇2U ≼ LUId .
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Combining this with the fact that ϕ0,t(x) = U(etx) + C (resp. ϕ1 = 1/(2(1− e−2t)) ∥y∥2 + C ′)
for some positive constant C (resp. C ′), we obtain

∇2ϕ0,t ≼ e2tLU Id

(
resp. ∇2ϕ1,t ≼

1

1− e−2t
Id

)
,

which yields that

∇2 (− log−→p t) (x) ≼ min

{
1

1− e−2t
; e2tLU

}
Id .

Moreover, since the difference between ∇ log−→p t and ∇ log p̃t is a linear function, we define Lt as
in (16). Moreover, a simple computation shows that the maximum over t ∈ R+ of Lt is clearly
L defined as in (16).

B.3 Weak-convexity of the modified score function

In this section, we leverage the invariance of the class of weakly convex functions for the HJB
equation satisfied by the log-density of the OU process (demonstrated by Conforti (2024)) to
show how weak log-concavity propagates along the flow of (3). To this end, let (St)t≥0 denote
the semigroup generated by a standard Brownian motion on Rd, i.e.,

Stf(x) =

∫
1

(2πt)d/2
exp

(
−∥x− y∥

2

2t
− f(y)

)
dy , (19)

with f a general test function.

Theorem B.3 (Theorem 2.1 in Conforti (2024)). Consider the class

FM :=
{
g ∈ C1(Rd) : κg(r) ≥ −fM (r)r−1

}
.

Then, we have that

h ∈ FM ⇒ − logSte
−h ∈ FM , for t ≥ 0 . (20)

Theorem B.3 provides a substantial generalization of the the principle “once log-concave,
always log-concave” by Saremi et al. (2023), to the weak log-concave setting. Indeed, when
M = 0, i.e., e−h is log-concave, (20) implies that Ste

−h remains log-concave. We remark that
in the log-concave setting, (20) follows directly from the Prékopa-Leindler inequality, whose
application is central to the findings in Bruno et al. (2023); Gao et al. (2023); Strasman et al.
(2024).

We can now examine how the constant of weak log-concavity propagates. This result
corresponds to Conforti et al. (2023b, Lemma 5.9), under the same set of assumptions.

Lemma B.4 (Lemma 5.9 in Conforti et al. (2023b)). Assume that Assumption H1(ii) holds
and fix t ∈ [0, T ]. Then, the function x 7→ − log p̃T−t(x) is weakly convex with weak convexity
profile k̃t := κ− log p̃T−t

satisfying

k̃t(r) ≥
α

α+ (1− α)e−2(T−t)
− 1− e−(T−t)

α+ (1− α)e−2(T−t)

1

r
fM

(
e−(T−t)

α+ (1− α)e−2(T−t)
r

)
. (21)

In particular, the modified score function x 7→ ∇ log p̃T−t(x) satisfies

(∇ log p̃T−t(x)−∇ log p̃T−t(y))
⊤
(x− y) ≤ −Ct ∥x− y∥2 , for x, y ∈ Rd , (22)

with Ct given by

Ct =
α

α+ (1− α)e−2(T−t)
− e−2(T−t)

(α+ (1− α)e−2(T−t))2
M − 1 . (23)
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This lemma relies on the fact that the the flow of the OU process (3) can be rewritten w.r.t.
the flow of the Brownian motion as

p̃t(x) = S1−e−2te−(U−∥·∥2/2) (e−tx
)
.

This remark enables the application of Theorem B.3, to obtain an estimation of the constant of
weak log-concavity Ct.

C Propagation of the assumptions

As highlighted in Conforti et al. (2023a), we observe that the function (t, x) 7→ − log p̃T−t(x) is
a solution to a HJB equation. This observation allows us to establish an intriguing connection
between the study of this class of non-linear PDEs and SGMs, as further explored in Conforti
et al. (2023a); Silveri et al. (2024).

By leveraging the regularizing properties of the OU process, we observe that the assumptions
made on U are propagated along the HJB equation under question, as we will prove in Appendix
B. This has direct consequences on the modified score (t, x) 7→ ∇ log p̃T−t(x) which turns out to
be Lt-Lipschitz in space, with

Lt := min

{
1

1− e−2(T−t)
; e2(T−t)LU

}
+ 1 ,

Moreover, by leveraging the considerations made in Conforti (2023), we show that (t, x) 7→
− log p̃T−t(x) has a weak convexity profile satisfying

κ− log p̃T−t
(r) ≥ Ct , (24)

with

Ct =
α

α+ (1− α)e−2(T−t)
− e−2(T−t)

(α+ (1− α)e−2(T−t))2
M − 1 . (25)

Therefore, the modified score function (t, x) 7→ ∇ log p̃T−t(x) satisfies

(x− y)⊤ (∇ log p̃T−t(x)−∇ log p̃T−t(y)) ≤ −Ct ∥x− y∥2 ,

for any t ∈ [0, T ] and any x, y ∈ Rd.

Log-concavity. Note that the constant (CT−t+1) represents the (weak) log-concavity constant

of the density −→p t associated with the process
−→
X t. The estimate for (CT−t + 1) is coherent with

the intuition we have on the SGMs. Indeed, for t = 0 it matches the weak log-concavity constant
of πdata, as CT + 1 = α−M , and for t→ +∞ it matches the log-concavity constant of π∞, as

CT−t + 1 =
α

α+ (1− α)e−2t
− e−2t

(α+ (1− α)e−2t)2
M −→ 1 , for t→ +∞.

Computing when CT−t + 1 > 0, we have that two regimes appear:

• −→p t is only weakly log-concave for t ∈ [0, ξ(α,M)];

• −→p t is log-concave for t ∈ [ξ(α,M), T ],

with

ξ(α,M) :=

log

(√
α2+M−α

α2

)
∧ T , if α−M < 0 ,

0 , otherwise .

When πdata is only weakly log-concave, i.e., when α−M < 0, we have that α2+M−α
α2 > 1. Thus,

ξ(α,M) > 0 and two distinct regimes are present. Whereas, when the initial distribution πdata
is log-concave, i.e., when α −M ≥ 0, we have that ξ(α,M) = 0 and −→p t is log-concave in the
whole interval [0, T ].
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Contractivity properties of the time-reversal process. Denote by T ⋆ the following time

T ⋆ := inf
{
t ∈ [0, T ] : 2κ− log p̃T−t

+ 1 ≤ 0
}
, (26)

defining inf ∅ := T . From equation (5), we see that the time T ⋆ corresponds to the first moment
beyond which the drift bt of the time reversal process is no longer contractive, with

bt(x) := −x+ 2∇ log p̃T−t(x) . (27)

Indeed, from the very definition of κ− log p̃T−t
, we get that

(bt(x)− bt(x))⊤(x− y) ≤ −(2κ− log p̃T−t
(∥x− y∥) + 1)∥x− y∥2 ,

for any t ∈ [0, T ] and any x, y ∈ Rd. Also, denote by

T (α,M, ρ) := sup
{
t ∈ [0, T ] : 2Ct + 1 ≥ 0

}
,

for ρ ∈ [0, 1), with inf ∅ := T . From (24), we have that T (α,M, 0) ≤ T ⋆. This means that two
regimes are present in the time interval [0, T ]:

• bt(x) is contractive, for t ∈ [0, T (α,M, 0)];

• bt(x) is not (necessarily) contractive, for t ∈ [T (α,M, 0), T ].

The advantage of introducing T (α,M, ρ) is that we can compute it explicitly, thereby deriving a
quantitative lower bound for T ⋆. Indeed, a straightforward computation shows that

T (α,M, ρ) = T − η(α,M, ρ) , (28)

with

η(α,M, ρ) :=


1
2 log

(
M+ρα(1−α)

(1−ρ)α2 +

√
(1+ρ)(1−α)2

(1−ρ)α2 +
(

M+ρα(1−α)
(1−ρ)α2

)2)
∧ T , if 2α− 2M − 1 < 0 ,

0 , otherwise .

(29)

Note that the condition

M + ρα(1− α)
(1− ρ)α2

+

√
(1 + ρ)(1− α)2

(1− ρ)α2
+

(
M + ρα(1− α)

(1− ρ)α2

)2

> 1

is equivalent to the condition 2α− 2M − 1 < 0. This means that T (α,M, ρ) is well-defined and
T (α,M, ρ) ∈ [0, T ].

This regime shift is a key element in the effectiveness of the SGMs. SDEs with contractive
flows exhibit advantageous properties related to efficiency guarantees (see, e.g., Dalalyan, 2017;
Durmus and Moulines, 2017; Cheng et al., 2018; Dwivedi et al., 2019; Shen and Lee, 2019; Cao
et al., 2020; Mou et al., 2021; Li et al., 2021) that we can exploit in the low-time regime.

D Proof of the Main Theorem

Recall the main regularity properties from Section B:

1. the modified score function (t, x) 7→ ∇ log p̃T−t(x) is Lt-Lipschitz in space (uniformly in
time), with Lt as in (16), and bounded by L = LU + 2 as seen in (15);

2. the function (t, x) 7→ − log p̃T−t(x) is Ct-weakly concave, with Ct as in (23).
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In the practical implementation of the algorithm, three successive approximations are made,
generating three distinct sources of errors. To identify them, we introduce the following two
processes.

• Let (XN
tk
)Nk=0 be the EM–approximation of the backward process (5) started at XN

0 ∼
L(
−→
XT ) and defined recursively on [tk, tk+1] as

XN
tk+1

= XN
tk

+ hk
(
−XN

tk
+ 2∇ log p̃(T − tk, XN

tk
)
)
+
√
2hkZk , for t ∈ [tk, tk+1] ,

with {Zk}k a sequence of i.i.d. standard Gaussian random variables.

• Let (X∞
tk
)Nk=0 be the EM–approximation of the backward process (5) started at X∞

0 ∼ π∞

and defined recursively on [tk, tk+1] as

X∞
tk+1

= X∞
tk

+ hk
(
−X∞

tk
+ 2∇ log p̃(T − tk, X∞

tk
)
)
+
√

2hkZk , for t ∈ [tk, tk+1] .

We also recall that (X⋆
tk
)Nk=0 defined in (7) denotes the process started at X⋆

0 ∼ π∞ and defined
recursively on [tk, tk+1] as

X⋆
tk+1

= X⋆
tk

+ hk
(
−X⋆

tk
+ 2sθ⋆(T − tk, X⋆

tk
)
)
+
√

2hkZk , for t ∈ [tk, tk+1] .

By an abuse of notation, we use XN , X∞, and X⋆ to refer to both the discrete-time versions of
these processes and their continuous-time interpolations. Applying the triangle inequality, we
derive the following decomposition of the error bound

W2

(
πdata,L(X⋆

tN )
)

≤ W2

(
L(
←−
XT ),L(XN

tN )
)
+W2

(
L(XN

tN ),L(X∞
tN )
)
+W2

(
L(X∞

tN ),L(X⋆
tN )
)
.

Theorem D.1. Suppose that Assumption H1 and H2 hold. Consider the discretization {tk, 0 ≤
k ≤ N} of [0, T ] of constant step size h such that

h <
2

(2LU + 5)2
. (30)

Then, it holds that

W2

(
πdata,L(X⋆

tN )
)

≤ e(2LU+5)η(h,α,M,LU )

[
e−TW2 (πdata, π

∞)

+ 4ε (T (α,M, 0))

+
√
2h (B + 2 (2LU + 3) d) (T (α,M, 0))

]
,

with

B :=

(∫
Rd

∥x∥2πdata(dx) + d

)1/2

. (31)

In the following, we establish separate bounds for each term, contributing to the overall
convergence bound, based on the preceding analysis.
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D.1 Bound on W2

(
L(
←−
X T ),L(XN

tN
)
)

Consider the synchronous coupling between (
←−
X t)t∈[0,T ] and the continuous-time interpolation

of (XN
tk
)Nk=0 with the same initialization, i.e. use the same Brownian motion to drive the two

processes and set
←−
X 0 = XN

0 . Then, it holds

W2

(
L(
←−
XT ),L(XN

tN )
)
≤
∥∥∥←−XT −XN

T

∥∥∥
L2

.

To upper bound the r.h.s., we estimate ∥
←−
X tk+1

−XN
tk+1
∥L2 by means of ∥

←−
X tk −XN

tk
∥L2 , and

develop the recursion.
Fix 0 < ϵ < h and, with abuse of notation, use T to denote T − ϵ and N to denote (T − ϵ)/h.

This measure is necessary to enable the application of Conforti et al. (2023a, Proposition 2) later

on. As we considered the synchronous coupling between
←−
X and XN , we get

←−
X tk+1

−XN
tk+1

=
←−
X tk −XN

tk
+

∫ tk+1

tk

{
−
(←−
X t −XN

tk

)
+ 2
(
∇ log p̃T−t

(←−
X t

)
−∇ log p̃T−tk

(
XN

tk

) )}
dt .

Using triangle inequality, we obtain∥∥∥←−X tk+1
−XN

tk+1

∥∥∥
L2

≤
∥∥∥∥←−X tk −XN

tk

+

∫ tk+1

tk

{
−
(←−
X tk −XN

tk

)
+ 2
(
∇ log p̃T−tk

(←−
X tk

)
−∇ log p̃T−tk

(
XN

tk

) )}
dt

∥∥∥∥
L2

+

∥∥∥∥∫ tk+1

tk

{
−
(←−
X t −

←−
X tk

)
+ 2
(
∇ log p̃T−t

(←−
X t

)
−∇ log p̃T−tk

(←−
X tk

))}
dt

∥∥∥∥
L2

=: A1,k +A2,k ,

(32)

Bound of A1,k. The first term of r.h.s. of (32) can be bounded as

A2
1,k =

∥∥∥←−X tk −XN
tk

∥∥∥2
L2

+ h2
∥∥∥−(←−X tk −XN

tk

)
+ 2
(
∇ log p̃T−tk

(←−
X tk

)
−∇ log p̃T−tk

(
XN

tk

) )∥∥∥2
L2

+ 2hE
[(←−
X tk −XN

tk

)⊤ (
−
(←−
X tk −XN

tk

)
+2
(
∇ log p̃T−tk

(←−
X tk

)
−∇ log p̃T−tk

(
XN

tk

)))]
.

Since h satisfies (30), using Lemma E.2, we have that

h ≤ 2Ct + 1

2(2LU + 5)2
∧ 1 , for t ∈

[
0, T − η(α,M, (2LU + 5)2h/2)

]
,

with η(α,M, ρ) as in (29).
Define Nh := sup

{
k ∈ {0, ..., N} : tk ≤ T − η(α,M, (2LU + 5)2h/2)

}
. Using the regularity

properties of the score function from Proposition B.2 and Proposition B.4, we have

A1,k ≤


∥∥∥←−X tk −XN

tk

∥∥∥
L2

(
1 + h2

(
2Ltk + 1

)2 − 2h
(
2Ctk + 1

))1/2
, for k < Nh ,∥∥∥←−X tk −XN

tk

∥∥∥
L2

(
1 + h2

(
2Ltk + 1

)2
+ 2h

(
2Ltk + 1

))1/2
, for k ≥ Nh

(33)

:= δk

∥∥∥←−X tk −XN
tk

∥∥∥
L2

. (34)
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Bound of A2,k. Given the definition (27) of the backward drift bt, Jensen’s inequality implies

A2
2,k =

∥∥∥∥∫ tk+1

tk

{
bt(
←−
X t)− btk(

←−
X tk)

}
dt

∥∥∥∥2
L2

= E

[∥∥∥∥∫ tk+1

tk

{
bt(
←−
X t)− btk(

←−
X tk)

}
dt

∥∥∥∥2
]

≤ h
∫ tk+1

tk

E
[∥∥∥bt(←−X t)− btk(

←−
X tk)

∥∥∥2] dt .
Applying Itô’s formula and Conforti et al. (Proposition 2, 2023a), we obtain

dbt

(←−
X t

)
= −d

←−
X t +

(
2∇ log p̃T−t

(←−
X t

))
dt

=
{←−
X t − 2∇ log p̃T−t

(←−
X t

)
+ 2∇ log p̃T−t

(←−
X t

)}
dt+

√
2
(
1 + 2∇2 log p̃T−t

(←−
X t

))
dBt

=
←−
X tdt+

√
2
(
1 + 2∇2 log p̃T−t

(←−
X t

))
dBt .

Therefore, using Jensen’s inequality, Ito’s isometry, Proposition B.2 and Lemma E.1, we get

E
[∥∥∥bt (←−X t

)
− btk(

←−
X tk)

∥∥∥2] = E

[∥∥∥∥∫ t

tk

←−
X sds+

√
2

∫ t

tk

(
1 + 2∇2 log p̃T−s

(←−
X s

))
dBs

∥∥∥∥2
]

≤ E
[
2

∫ t

tk

∥∥∥←−X s

∥∥∥2 ds+ 4

∫ t

tk

∥∥∥I+ 2∇2 log p̃T−s

(←−
X s

)∥∥∥2
Fr
ds

]
≤ E

[
2

∫ t

tk

∥∥∥←−X s

∥∥∥2 ds+ 8

∫ t

tk

d

{
1 + 4

∥∥∥∇2 log p̃T−s

(←−
X s

)∥∥∥2
op

}
ds

]
≤ 2

∫ tk+1

tk

E
[∥∥∥←−X s

∥∥∥2] ds+ 8hd
(
1 + 4L2d

)
≤ 2hB2 + 8hd

(
1 + 4L2

)
.

where we have used that

∥A∥2Fr ≤ d∥A∥2op , for a symmetric matrix A ∈ Rd×d ,

with ∥ · ∥Fr (resp. ∥ · ∥op) the Frobenius norm (operatorial norm) of a matrix.
Consequently, we have that

A2,k ≤
(
h

∫ tk+1

tk

{
2hB2 + 8hd

(
1 + 4L2

)}
dt

)1/2

=
√
2h (B + 2 (2LU + 3) d)h .

Finally, we obtain∥∥∥←−X tk+1
−XN

tk+1

∥∥∥
L2

≤ δk
∥∥∥←−X tk −XN

tk

∥∥∥
L2

+
√
2h (B + 2 (2LU + 3) d)h . (35)

Developing the recursion (35) and using the fact that
←−
X 0 = XN

0 , we get

∥∥∥←−XT −XN
T

∥∥∥
L2

≤
∥∥∥←−X 0 −XN

0

∥∥∥
L2

N−1∏
ℓ=0

δℓ +
√
2h (B + 2 (2LU + 3) d)h

N−1∑
k=0

N−1∏
ℓ=k

δℓ

=
√
2h (B + 2 (2LU + 3) d)h

N−1∑
k=0

N−1∏
ℓ=k

δℓ .

Lemma E.2 yields that δk ≤ 1 for k < Nh. Whereas, for k ≥ Nh, Proposition B.2 yields

δk =
(
1 + h2

(
2Ltk + 1

)2
+ 2h

(
2Ltk + 1

))1/2
≤ 1 + h(2LU + 5) .

26



Combining the previous remarks, we have

N−1∑
k=0

N−1∏
ℓ=k

δℓ =

Nh−1∑
k=0

Nh−1∏
ℓ=k

δℓ ×
N−1∏
ℓ=Nh

δℓ +

N−1∑
k=Nh

N−1∏
ℓ=k

δℓ

≤ Nh

N−1∏
ℓ=Nh

δℓ +

N−1∑
k=Nh

N−1∏
ℓ=k

δℓ

≤ Nh

(
1 + h (2LU + 5)

)N−Nh +

N−1∑
k=Nh

(
1 + h (2LU + 5)

)N−k−1

≤ Nh

(
1 + h (2LU + 5)

)N−Nh +

N−Nh−1∑
k=0

(
1 + h (2LU + 5)

)k
= Nh

(
1 + h (2LU + 5)

)N−Nh +
1−

(
1 + h (2LU + 5)

)N−Nh

1−
(
1 + h (2LU + 5)

)
≤
(
Nh +

1

h (2LU + 5)

)
×
(
1 + h (2LU + 5)

)N−Nh

≤
(
T − η(α,M, (2LU + 5)2h/2)

h
+

1

h (2LU + 5)

)
e(2LU+5)η(α,M,(2LU+5)2h/2) .

Putting all these inequalities together, we get∥∥∥←−XT −XN
T

∥∥∥2
L2

≤
√
2h (B + 2 (2LU + 3) d)

(
T − η(α,M, (2LU + 5)2h/2) +

1

2LU + 5

)
e(2LU+5)η(α,M,(2LU+5)2h/2)

≤
√
2h (B + 2 (2LU + 3) d)

(
T (α,M, 0) +

1

2LU + 5

)
e(2LU+5)η(α,M,(2LU+5)2h/2) ,

where, in the last inequality, we have used the fact that

T (α,M, (2LU + 5)2h/2) = T − η(α,M, (2LU + 5)2h/2) ≤ T − η(α,M, 0) = T (α,M, 0) .

Recalling that we have used T to denote T − ϵ, we get∥∥∥←−XT−ϵ −XN
T−ϵ

∥∥∥2
L2

≤
√
2h (B + 2 (2LU + 3) d)

(
T (α,M, 0) +

1

2LU + 5

)
e(2LU+5)η(α,M,(2LU+5)2h/2)

≤
√
2h (B + 2 (2LU + 3) d)

(
T (α,M, 0) +

1

2LU + 5

)
e(2LU+5)η(α,M,(2LU+5)2h/2) .

Letting ϵ going to zero and using Fatou’s lemma, we obtain∥∥∥←−XT −XN
T

∥∥∥2
L2

≤
√
2h (B + 2 (2LU + 3) d)

(
T (α,M, 0) +

1

2LU + 5

)
e(2LU+5)η(α,M,(2LU+5)2h/2) .

D.2 Bound on W2

(
L(XN

tN
),L(X∞tN )

)
Consider the synchronous coupling between the continuous-time interpolations of (XN

tk
)Nk=0 and

(X∞
tk
)Nk=0 with initialization satisfying

W2(π
∞,L(

−→
XT )) = ∥X∞

0 −XN
0 ∥L2 .
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Then, we have that

W2

(
L(XN

tN ),L(X∞
tN )
)
≤
∥∥XN

T −X∞
T

∥∥
L2
.

As done in Section D.1, we aim to develop a recursion over the time intervals [tk+1, tk]. To this
end, note that, based on the definitions of (XN

t )t∈[0,T ] and (X∞
t )t∈[0,T ], and using the triangle

inequality, we have that∥∥∥XN
tk+1
−X∞

tk+1

∥∥∥
L2

=

∥∥∥∥XN
tk
−X∞

tk
+∫ tk+1

tk

{
−
(
XN

tk
−X∞

tk

)
+ 2
(
∇ log p̃T−tk

(
XN

tk

)
−∇ log p̃T−tk

(
X∞

tk

) )}
dt

∥∥∥∥
L2

.

(36)

Proceeding as in Section D.1, we get∥∥XN
T −X∞

T

∥∥
L2
≤
∥∥XN

0 −X∞
0

∥∥
L2

N−1∏
ℓ=0

δℓ ,

with δk defined as in (34) We bound the first factor in the following (by now) standard (see, e.g.,
the proof of Proposition C.2, Strasman et al., 2024)∥∥XN

0 −X∞
0

∥∥
L2

=W2(π
∞,L(

−→
XT )) ≤ e−TW2(πdata, π

∞) .

To bound the second factor, we proceed as in Section D.1 and get

N−1∏
ℓ=0

δℓ ≤
N−1∏
ℓ=Nh

δℓ ≤ (1 + h(2LU + 5))
N−Nh ≤ e(2LU+5)η(α,M,(2LU+5)2h/2) .

Putting these inequalities together, we get∥∥XN
T −X∞

T

∥∥
L2
≤ e−T e(2LU+5)η(α,M,(2LU+5)2h/2)W2(πdata, π

∞) .

D.3 Bound on W2

(
L(X∞tN ),L(X

⋆
tN
)
)

Consider the synchronous coupling between the continuous-time interpolation of (X∞
tk
)Nk=0 and

(X⋆
tk
)Nk=0, with the same initialization, i.e. use the same Brownian motion to drive the two

processes and set X∞
0 = X⋆

0 . Then, it holds

W2

(
L(X∞

tN ),L(X⋆
tN )
)
≤ ∥X∞

T −X⋆
T ∥L2

.

As done in Sections D.1-D.2, we aim to develop a recursion over the time intervals [tk+1, tk]. To
this end, using the triangle inequality, we get∥∥∥X∞

tk+1
−X⋆

tk+1

∥∥∥
L2

=

∥∥∥∥X∞
tk
−X⋆

tk
+

∫ tk+1

tk

{
−
(
X∞

tk
−X⋆

tk

)
+ 2
(
∇ log p̃T−tk

(
X∞

tk

)
− s̃θ⋆

(
T − tk, X⋆

tk

) )}
dt

∥∥∥∥2
L2

≤
∥∥∥∥X∞

tk
−X⋆

tk

+

∫ tk+1

tk

{
−
(
X∞

tk
−X⋆

tk

)
+ 2
(
∇ log p̃T−tk

(
X∞

tk

)
−∇ log p̃T−tk

(
X⋆

tk

) )}
dt

∥∥∥∥
L2

+ 4

∥∥∥∥∫ tk+1

tk

(
∇ log p̃T−tk

(
X⋆

tk

)
− s̃θ⋆

(
T − tk, X⋆

tk

) )
dt

∥∥∥∥
L2

= B1,k +B2,k .

(37)
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Following the same reasoning of the previous sections, we have that

B1,k ≤ δk
∥∥X∞

tk
−X⋆

tk

∥∥
L2

,

with δk defined as in (34). Moreover, using Assumption H2, we have that B2,k ≤ 4hϵ.
Developing the recursion as in the previous sections and recalling that X∞

0 = X⋆
0 , we get

∥X∞
T −X⋆

T ∥
2
L2
≤ 4hε

N−1∑
k=0

N−1∏
ℓ=k

δℓ

≤ 4ε

(
T (α,M, 0) +

1

2LU + 5

)
e(2LU+5)η(α,M,(2LU+5)2h/2) .

E Technical lemmata

Lemma E.1. Assume that H1(iii) holds. Then, for t ≥ 0,

sup
0≤t≤T

∥∥∥←−X t

∥∥∥
L2

≤ sup
0≤t≤T

(
e−2(T−t)

∫
Rd

|x|2πdata(dx) +
(
1− e−2(T−t)

)
d

)1/2

≤ B <∞ ,

for B defined as in (31).

Proof. Recall the following equality in law

−→
X t = e−tX0 +

√
(1− e−2t)G . (38)

with X0 ∼ πdata, G ∼ N (0, I), and X0 and G taken to be independent. Therefore, since X0 and

G are independent and
←−
X t has the same law of

−→
XT−t, we obtain

E
[∥∥∥←−X t

∥∥∥2] = E
[∥∥∥−→XT−t

∥∥∥2] ≤ e−2(T−t)E
[
∥X0∥2

]
+
(
1− e−2(T−t)

)
E
[
∥G∥2

]
= e−2(T−t)

∫
Rd

|x|2πdata(dx) +
(
1− e−2(T−t)

)
d ,

which concludes the proof.

Lemma E.2. Suppose that Assumption H1 holds. Consider the regular discretization {tk , 0 ≤
k ≤ N} of [0, T ] of constant step size h. Assume that h > 0 satisfies (30). Then, we have that

h ≤ 2(2Ct + 1)

(2LU + 5)2
∧ 1 , for t ∈

[
0, T − η(α,M, (2LU + 5)2h/2)

]
, (39)

with η(α,M, ρ) as in (29). Moreover, for all 0 ≤ k ≤ N − 1 such that tk ≤ T − η(α,M, (2LU +
5)2h/2),

0 < 1 + h2
(
2Ltk + 1

)2 − 2h
(
2Ctk + 1

)
≤ 1 .

Proof. Firstly, note that if h satisfies (30), then ρh := (2LU + 5)2h/2 is such that ρh ∈ [0, 1).
Recalling the definitions (28), (29) of T (α,M, ρ) and η(α,M, ρ), we have that 2Ct + 1 ≥ ρh, up
to time t ≤ T − η(α,M, ρh). Otherwise said, we have

h ≤ 2(2Ct + 1)

(2LU + 5)2
∧ 1 , for t ∈

[
0, T − η(α,M, (2LU + 5)2h/2)

]
.

Let ϵ1 be

ϵ1 := 1 + h2
(
2Ltk + 1

)2 − 2h
(
2Ctk + 1

)
. (40)
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Completing the square, we obtain

ϵ1 =
(
1− h

(
2Ltk + 1

))2
+ 2h

(
2Ltk + 1

)
− 2h

(
2Ctk + 1

)
=
(
1− h

(
2Ltk + 1

))2
+ 4h

(
Ltk − Ctk

)
.

The first term if the r.h.s. of the previous equality is a square, therefore always positive. The
second term is always strictly positive, as Lt ≥ Ct for any t.

Secondly, we see that

ϵ1 = 1 + h2
(
2Ltk + 1

)2 − 2h
(
2Ctk + 1

)
≤ 1 + h

(
h
(
2Ltk + 1

)2 − 2
(
2Ctk + 1

))
≤ 1 + h

(
h
(
2L+ 1

)2 − 2
(
2Ctk + 1

))
.

From (39), we have that ϵ1 ≤ 1, for tk ≤ T − η(α,M, (2LU + 5)2h/2). This concludes the
proof.
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