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Abstract 

Recently, automotive manufacturers have prioritized cruise control systems and controllers, recognizing them as 
essential components requiring precise and adaptable designs to keep up with technological advancements. The motion 
of vehicles is inherently complex and variable, leading to significant non-linearity within the cruise control system 
(CCS). Due to this non-linearity, conventional PID controllers often perform sub optimally under varying conditions. 
This study introduces a fractionalized-order PID (FrOPID) controller, which incorporates an additional parameter to 
enhance the performance of conventional PID controllers. A comparative analysis is conducted between classical PID 
controllers and FrOPID controllers optimized using three metaheuristic algorithms: Harris Hawks Optimization (HHO), 
Genetic Algorithm (GA), and Particle Swarm Optimization (PSO). The evaluation is carried out using a linearized model 
of the vehicle cruise control system (VCCS). The results demonstrate that fractionalized-order PID controllers 
significantly outperform conventional PID controllers, particularly in terms of rise time and settling time. Among the 
proposed designs, the integration of HHO and FrOPID proves to be the most effective in achieving a balance between 
responsiveness and stability, exhibiting exceptional robustness and adaptability to variations in vehicle mass and 
environmental conditions. This highlights the effectiveness of fractionalized-order controllers in managing the dynamic 
behavior of vehicles.  

Keywords: Vehicle cruise control system (VCCS), Fractionalized order PID controller, Optimization methods, PID 
controller, Robustness analysis. 

 
 
1 Introduction 

Minimizing fuel usage and pollutant emissions, 
particularly carbon dioxide and other harmful substances, 
presents a significant challenge for the transportation 
industry, especially within the automotive sector. This 
industry faces issues related to both oil  

shortages and environmental concerns [1]. In response, 
car manufacturers and policymakers are exploring various 
solutions, including advanced engine technologies, smart 
vehicles, and alternative energy sources [2]. One such 
innovation is cruise control systems, which have proven 

effective in optimizing fuel efficiency, reducing driver 
fatigue, lowering accident risks, and improving traffic 
flow [3][4]. 

Control engineering focuses on designing 
systems to regulate the behavior of processes and 
devices, with the Proportional-Integral-Derivative 
(PID) controller being one of the most widely used 
tools in this field. The simplicity, reliability, 
efficiency, and robustness of PID controllers 
contribute to their broad application in industries 
worldwide. Despite being developed in the 1890s, 
PID controllers remain prevalent, with nearly ninety 
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percent of process industries employing them as their 
primary control mechanism [5][6][7][8]. 

2 Literature Review 

Recent research has demonstrated the advantages of 
Fractional-Order PID (FOPID) controllers over 
traditional PID controllers in various applications. Shafiee 
et al. [9] showed that optimized FOPID controllers offer 
enhanced performance, which was further supported by 
studies from Idir et al. [10], Mishra et al. [11], and others 
[12–17]. These studies highlight the flexibility and 
improved control of systems with nonlinear dynamics or 
time-varying parameters achieved through FOPID 
controllers. 

In the automotive sector, the primary objective of 
cruise control systems is to offer drivers a more 
comfortable driving experience while improving fuel 
efficiency and ensuring compliance with speed limits and 
regulations. Research has focused on maintaining 
constant vehicle speed with optimal ease of control, while 
balancing safety, fuel efficiency, and comfort. Several 
control techniques, such as traditional PID [18], PID with 
reference models [19], PIDA [20], FOPID [21], and 
ANFIS-based control [22], have been proposed for cruise 
control systems. Among these, PID remains a popular 
choice due to its simplicity. 

Metaheuristic algorithms play a vital role in 
optimizing PID controllers for vehicle cruise control 
systems, particularly for handling complex nonlinearities. 
Particle Swarm Optimization (PSO) has been widely 
applied in this context, with Abdulnabi (2017) 
demonstrating its effectiveness in enhancing system 
stability and dynamic response [23]. Harris Hawks 
Optimization (HHO), inspired by the cooperative hunting 
strategies of Harris hawks, has also shown strong 
optimization capabilities for PID and Fractional Order 
PID controllers, as illustrated by Izci and Ekinci (2021) 
[24]. Similarly, the Genetic Algorithm (GA), inspired by 
natural evolution, has been successfully used for PID 
controller optimization in cruise control systems [25]. 

Other emerging algorithms include the Red Panda 
Optimization (RPO) [26], Ant Lion Optimizer (ALO) 
[27], and Gorilla Troops Optimization (GTO) [28], all of 
which have demonstrated their potential in optimizing 
PID controllers for improved system performance. 

This paper proposes the design of PID and 
Fractionalized PID (FrOPID) controllers for vehicle 
cruise control, optimized using HHO, GA, and PSO 

algorithms. The objective is to enhance the system's 
overall performance and efficiency, with simulation 
results demonstrating that FrOPID controllers outperform 
traditional PID controllers, particularly when combined 
with HHO in terms of both rise time and settling time, 
especially under varying vehicle mass conditions and tire 
friction. 

The paper is organized as follows: Section 2 introduce 
the literature review. Section 3 details the mathematical 
modeling of vehicle cruise control systems. Section 4 
presents the controller designs. Section 5 describes the 
various metaheuristic optimization methods. Section 6 
introduces the proposed fractionalized PID controller 
design, optimized using the Integral Time Absolute Error 
(ITAE) criterion. In Section 7, comprehensive computer 
simulations demonstrate the superiority of the proposed 
algorithm through rigorous comparisons with previous 
studies. Finally, conclusions are drawn in Section 8. 

3 Vehicle Cruise Control System (VCCS) 

The cruise control systems face challenges in 
maintaining driver-set speed due to inclines and wind 
resistance, which can be disrupted by gravitational forces 
and wind resistance, as illustrated in a schematic diagram 
given in figure 1. 

 

Figure 1. VCCS Model.  

A vehicle cruise control system (VCCS) regulates the 
velocity of the vehicle by employing a predetermined 
speed as a reference (𝑣!"#). Consequently, the vehicle's 
velocity (𝑣) is sustained by adjusting the engine throttle 
input (𝑢). 

The linearized model that establishes the relationship 
between the output velocity (𝑉) and the control input (𝑈) 
can be derived as follows [9]: 

𝐺(𝑠) =
Δ𝑉(𝑠)
Δ𝑈(𝑠) =

𝐶!𝑒"#$
𝑀𝑇

-𝑠 + 2𝐶%𝑣𝑀 1-𝑠 + 1
𝑇1
																																				(1)	

where 𝐶$ and 𝐶% denote the actuator constant and 
aerodynamic drag coefficient, respectively, whereas τ and 



 

 
3 

T are the driver’s reaction and observation times, 
respectively. The vehicle mass is represented by 𝑀. The 
block diagram of an VCCS and the model parameters used 
for this study can be found in [9]. 

Table 1 lists the factors and numbers for the 
automobile cruise system simulated in this paper [9,10]: 

 

Table 1. VCCS parameters. 
Parameter Value 

𝐶! 743 
𝐶% 1.19 N/(m/s)& 

𝑀 1500	𝐾𝑔 
𝜏 0.2	𝑠 

𝑇 1	𝑠 
𝐹'(%) 3500	𝑁 
𝐹'(*+ −3500	𝑁 
𝑔 9.81	 𝑚/𝑠& 

 

Given the operating point 𝑣 = 30	𝑘𝑚/ℎ and referring 
to Table 1, we can determine the the plant transfer 
function 𝐺(𝑠). 

𝐺(𝑠) =
𝛥𝑉(𝑠)
𝛥𝑈(𝑠) =

2.4767
(𝑠 + 0.0476)(𝑠 + 1)(𝑠 + 5)																						(2) 

4  Controllers Design 

4.1 Proportional Integral Derivative (PID) 
controller 

Traditional PID controllers are widely utilized in 
process industries due to their straightforward design, 
robustness, and easily comprehensible regulatory 
processes. Despite the fluctuating dynamic behavior of 
process plants, conventional PID controllers can deliver 
excellent control performance.  

The transfer function of classical PID controller is 
represented by equation (3). 

𝐺,(𝑠) = 𝐾- +𝐾*𝑠"! +𝐾'𝑠																																																										(3)	

Where	𝐾&, 𝐾' and 𝐾(, are the proportional, integral, 
and derivative gains, respectively. 

Then, 

𝐺./0.1(𝑠) = 𝐾-(1 +
!
2!$
+ 𝑇'𝑠)																																																		(4) 

Where 

𝑇' : is the integral time constant  

𝑇(: is the derivative time constant. 

4.2 Fractionalized Order PID Controller 

The transfer function of a traditional PID controller is 
represented by the following equation:  

𝐺,(𝑠) = 𝐾- -1 +
!
2!$
+ 𝑇'𝑠1                                                  (5)  

The enhancement of fractionalization in the control 
system element alters the PID control rule, resulting in the 
fractionalization of the integral operator 
1 𝑠⁄ 		[15],[17],[29]: 

1
𝑠 =

1
𝑠3 ⋅

1
𝑠!"3 																																																																																		(6) 

The fractionalization of the classical PID controller to 
be developed is represented by [15],[30]: 

𝐺,(𝑠) = 𝐾- J1 +
1
𝑇*𝑠

+ 𝑇'𝑠K =
1
𝑠 L
𝐾-𝑇*𝑇'𝑠& +𝐾-𝑇*𝑠 + 𝐾-

𝑇*
M 

		=
1

𝑠3𝑠!"3 L
𝐾-𝑇'𝑠& +𝐾-𝑇*𝑠 + 𝐾-

𝑇*
M																													(7) 

Where, 0 < 𝛼 < 1. 

5 Metaheuristic Optimization Algorithms 

This section provides a concise summary of the 
heuristic methods proposed for classical PID and 
fractionalized order PID: 

5.1 Harris Hawks Optimization (HHO) Algorithm 

The Harris Hawks Optimization algorithm is inspired 
by the hunting behavior of Harris hawks. These hawks 
exhibit cooperative and surprise-based tactics to capture 
prey, mimicking various dynamic chasing strategies. The 
HHO algorithm uses these strategies to find an optimal 
solution to a problem. Below the different steps of the 
HHO algorithm: 

Step 1: Initialization  
Objective: Define the objective function 𝑓(𝑥) to be 
minimized (or maximized).  

Initialize population: Generate an initial population of 𝑁 
hawks randomly within the defined search space. Each 
hawk represents a candidate solution and is denoted as 𝑥', 
where 𝑖	 = 	1, 2, . . . , 𝑁.  

Set parameters: Define the maximum number of iterations 
(MaxIter) and other relevant parameters like the number 
of hawks and search space bounds. 
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Step 2: Evaluate Fitness  
Evaluate the fitness of each hawk based on the objective 
function 𝑓(𝑥). The best fitness among all hawks 
represents the current best position of the prey, denoted as 
𝑋rabbit . 

Step 3: Hunting Strategies Based on Energy 𝐸  
Escape energy of prey 𝐸: The energy of the prey decreases 
as iterations progress, defined as: 
𝐸 = 2𝐸4 -1 −

5
2
1                                                              (8) 

where 𝐸) is a random number between −1 and 1, t is the 
current iteration, and 𝑇 is the maximum number of 
iterations. The value of 𝐸 decides the type of hunting 
strategy. 

Step 4: Update Hawks’ Positions  
The hawks perform different movements based on the 
energy 𝐸. There are two main cases: 
Case 1: |𝐸| 	>= 	1 (Exploration phase) 
When the prey is energetic and still escaping, the hawks 
explore the search space using random movements. In this 
phase, the hawks' positions are updated as: 

 
𝑋(𝑡 + 1) =

U
𝑋rand (𝑡) − 𝑟!|𝑋rand (𝑡) − 2𝑟&𝑋(𝑡)| 𝑞 ≥ 0.5
𝑋rabit (𝑡) − 𝑋((𝑡) − 𝑟6Y𝐿7 + 𝑟8(𝑈7 − 𝐿7)[ 𝑞 < 0.5				

 				(9) 

where 𝑋(𝑡 + 1) represents the Hawks' position in the 
subsequent iteration, 𝑋rabbit (𝑡) indicates the rabbit's 
position, 𝑋(𝑡) denotes the vector indicating the current 
position of the hawks, (𝑟$, 𝑟*, 𝑟+, 𝑟,) denote random 
numbers within the range of(0,1), and (𝐿- , 𝑈-) represent 
the variables of lower and upper bounds. 

Case 2: |𝐸| 	< 	1 (Exploitation phase) 

The final phase of the HHO algorithm consists of four 
distinct strategies, each contingent upon the energy level 
of the prey and the likelihood of its escape. When 
considering 𝑟	 < 	0.5 as indicative of the prey's successful 
escape chance and 𝑟	 ⩾ 	0.5 as representing an 
unsuccessful escape attempt: - In cases where	𝑟	 ⩾ 	0.5 
and |𝐸| 	≥ 	0.5, a soft besiege strategy will be executed, 
characterized by Equations (10) and (11). 

𝑋(𝑡 + 1) = Δ𝑋(𝑡) − 𝐸|𝐽𝑋rabbit (𝑡) − 𝑋(𝑡)|,																											(10)
																								Δ𝑋(𝑡) = 𝑋rabbit (𝑡) − 𝑋(𝑡),																																	(11)

	 

where ΔX(t) represents the disparity between rabbit's 
location and current location at iteration 𝑡, while 𝐽	denotes 
the magnitude of the rabbit's random jump. 

• For 𝑟 ⩾ 0.5 and |𝐸 ≤ 0.5|, A severe besiege will 
be undertaken, as stated by Eq.(12). 

𝑋(𝑡 + 1)𝑋rabbit − 𝐸|Δ𝑋(𝑡)|																																												(12) 
For 𝑟 < 0.5 and |𝐸| ≥ 0.5, A mild besiege with gradual 
quick drive will be executed, as stated by Eqs.(13) and 
(14). 

𝑌! = 𝑋rabbit − 𝐸|𝐽𝑋rabbit − 𝑋(𝑡)|,																																														(13)
𝑍! = 𝑌! + 𝑆 × 𝐿𝐹(𝐷),																																																																	(14)

 

where 𝐷 is the dimension of the problem, 𝑆 is a 1𝑥𝐷 
random vector, and LF is the levy flight function. 

Therefore, Eq. (15) fulfills the position update. 

𝑋(𝑡 + 1) = U
𝑌!,  if 𝐹(𝑌!) < 𝐹Y𝑋(𝑡)[
𝑍!,  if 𝐹(𝑍!) < 𝐹Y𝑋(𝑡)[

																														(15) 

• If both 𝑟 and |𝐸| have values lower than a certain 
threshold, a hard besiege with increasing quick drive will 
be used, as described by Equations (16)-(18). 

𝑋(𝑡 + 1) = U
𝑌&,  if 𝐹(𝑌&) < 𝐹Y𝑋(𝑡)[
𝑍&,  if 𝐹(𝑍&) < 𝐹Y𝑋(𝑡)[

																															(16) 

𝑌* and 𝑍* are obtained using (17) and (18), respectively. 

𝑌& = 𝑋rabbit − 𝐸|𝐽𝑋rabbit − 𝑋(𝑡)|,																																												(17)
															𝑍& = 𝑌& + 𝑆 × 𝐿𝐹(𝐷).																																																(18)

 

Step 5: Evaluate New Solutions  
Evaluate the fitness of each hawk after updating their 
positions. If a hawk’s new position provides a better 
solution, update the current best position. 𝑋rabbit . 

Step 6: Check Stopping Criterion  
If the maximum number of iterations MaxIter is reached 
or the desired solution is found, stop the algorithm. 

Step 7: Return the Best Solution  
Return the position 𝑋rabbit  as the optimal solution found 
by the algorithm. 

For illustration, the overall flowchart of the HHO 
algorithm is presented in Figure. 2. 
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Figure 2. Flowchart of the HHO algorithm 

 

5.2 Genetic Algorithm (GA) 

The Genetic Algorithm is a bio-inspired optimization 
technique based on the principles of natural selection and 
genetics. It aims to find the optimal solution to a problem 
by evolving a population of candidate solutions over 
several generations. Below is a detailed explanation of 
each step: 

Step 1: Initialization 

• Objective: Define the objective function 𝑓(𝑥) to be 
optimized. 

• Generate the initial population: Create an initial 
population of 𝑁 individuals (candidate solutions), each 

represented by a chromosome (a set of encoded 
parameters). The chromosome can be a binary string, 
real numbers, or any other representation suitable for 
the problem. 

• Set parameters: Define the population size (𝑁), 
number of generations (𝑀𝑎𝑥𝐺𝑒𝑛), crossover 
probability (𝑝.), mutation probability (𝑝/), and other 
relevant parameters. 

Step 2: Evaluate Fitness 

• Evaluate the fitness of each individual in the 
population using the objective function 𝑓(𝑥). 

• The fitness value indicates how good each candidate 
solution is. 

Step 3: Selection 

• Select parent individuals from the current population 
based on their fitness. This process is usually 
stochastic, with better solutions having a higher chance 
of being selected. 

Step 4: Crossover (Recombination) 

• Perform crossover between selected parent 
individuals to generate new offspring (children). 

Step 5: Mutation 

• Apply mutation to offspring with a probability 𝑝/. 
Mutation introduces random changes to individual 
genes in the chromosome to maintain genetic diversity 
and prevent premature convergence. 

Step 6: Evaluate New Population 

• Calculate the fitness of the new offspring population. 

• Combine the offspring with the current population if 
needed, depending on the chosen GA strategy. 

Step 7: Replacement 

• Select individuals for the next generation based on 
fitness. 

Step 8: Check Stopping Criterion 

• If the maximum number of generations (𝑀𝑎𝑥𝐺𝑒𝑛) is 
reached or if the improvement in fitness is below a 
certain threshold, stop the algorithm. 

Step 9: Return the Best Solution 

Return the best individual from the final population as 
the optimal solution. 

!
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5.3 Particle Swarm Optimization (PSO) 
Algorithm 

The Particle Swarm Optimization (PSO) algorithm is 
a widely utilized optimization method derived from the 
social behaviors shown by birds in flocks or fish in 
schools. It identifies the ideal answer by progressively 
enhancing a population of possible solutions referred to as 
particles. These particles explore the search space by 
updating their positions and velocities according to their 
own experiences and those of their neighbors. 

Below is a detailed sequential analysis of the PSO 
algorithm: 

Step 1: Initialization 

Objective: Define the objective function 𝑓(𝑥) to be 
minimized (or maximized). Randomly initialize the 
position and velocity of each particle within the search 
space. Each particle 𝑖 has a position 𝑥' 	and velocity 𝑣'. Set 
parameters such as the number of particles 𝑁, maximum 
iterations (MaxIter), inertia weight (𝑤), cognitive 
coefficient (𝑐$), and social coefficient (𝑐*). 

Step 2: Evaluate Fitness 

Evaluate the fitness of each particle using the objective 
function 𝑓(𝑥). Identify the personal best position (𝑝𝑏𝑒𝑠𝑡') 
for each particle and the global best position (𝑔𝑏𝑒𝑠𝑡') 
among all particles. 

Step 3: Update Velocities 

Update the velocity of each particle using the equation: 
𝑣'01$ = 𝑤'𝑣'0 + 𝑐$𝑟$X𝑝𝑏𝑒𝑠𝑡' − 𝑥'0Y + 𝑐*𝑟*X𝑔𝑏𝑒𝑠𝑡' −
𝑥'0Y                                                                               (19) 

where 𝑟$ and 𝑟* are random values between 0 and 1. 
𝑤' is the inertia weight that controls the influence of the 
previous velocity. While 𝑐$	 and 𝑐* are cognitive and 
social coefficient respectively. 

Step 4: Update Positions 

Update the position of each particle using the equation: 
 𝑥'01$ = 𝑥'0 + 𝑣'01$                                                     (20) 

Step 5: Evaluate New Fitness 

- Evaluate the fitness of each particle at its updated 
position.  

- If a particle’s new position yields a better fitness, 
update its personal best (𝑝𝑏𝑒𝑠𝑡').  

- Update the global best (𝑔𝑏𝑒𝑠𝑡) if necessary. 

Step 6: Check Stopping Criterion 

Stop the algorithm if the maximum number of 
iterations is reached or the change in fitness values is 
below a predefined threshold. 

Step 7: Return the Best Solution 

Return the global best position (𝑔𝑏𝑒𝑠𝑡) as the optimal 
solution. 

6. Proposed Design Procedure and FrOPID 
Controlled VCCS  

Figure 3 describes a vehicle cruise control system 
using a PID and FrOPID feedback loop. In this system, 
𝐺(𝑠) and 𝐺2!3456(𝑠) represent the plant and controller 
models, respectively. 

 

Figure 3. Proposed HHO/GA/PSO based FrOPID Controller.  

The models apply the ITAE objective function to 
enhance key performance indicators. The controller 
manages the output Ω (speed), based on the input Ω!"# 
(reference speed), ensuring that the system remains stable 
and performs as desired, even in the presence of external 
disturbances 𝐷(𝑠). 

The design of a traditional PID controller is 
represented by equation 4 as described in section 4.1, 
where:  

𝐺0.1(𝑠) = 𝐾- -1 +
!
2!9
+ 𝑇'𝑠1																																																		(21)		

The enhancement of classical PID controller is 
represented by equation 22 as discribed in section 3.2,  

𝐺:;/0.1(𝑠) =
1

𝑠3𝑠!"3 L
𝐾-𝑇*𝑇'𝑠& +𝐾-𝑇*𝑠 + 𝐾-

𝑇*
M													(22) 

Where, 0 < 𝛼 < 1. 

In this study, ITAE is chosen as the performance 
criterion for different optimization methods. Calculation 
of the error 𝑒(𝑡) involves determining the difference 
between the reference model and the actual model. A 
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smaller error value indicates closer approximation to the 
desired controller parameters. 

𝐽Y𝐾-, 𝐾* , 𝐾'[ = 𝐼𝑇𝐴𝐸 = e 𝑡|𝑒(𝑡)|𝑑𝑡

5"!#

4

																																		(23) 

The letter 𝐽 denotes the performance criteria, 
indicating the degree of resemblance between the 
controlled object and the reference model, while 𝑒(𝑡) 
represents the error signal. Here, 𝑒(𝑡) corresponds to the 
disparity between the reference speed and the actual speed  
(𝑣!"#(𝑡) − 	𝑣(𝑡)). The simulation time (𝑡7'/) was set to 
10 seconds for this investigation. 

7. Numerical Simulation Results and Discussion 

This section presents the simulation results of the 
proposed architecture, which is based on the linearizing 
feedback and the FPID controller. The simulation process 
was carried out using MATLAB, a powerful tool for 
modeling and simulating control systems. Table 2 lists the 
parameters of the proposed HHO, GA and PSO 
algorithms. 

The classical PID and the proposed Fractionalized 
Order PID (FrOPID) controllers for vehicle cruise control 
are optimized by three metaheuristic algorithms—Harris 
Hawks Optimization (HHO), Genetic Algorithm (GA), 
and Particle Swarm Optimization (PSO). The controller's 
performance is compared against that of a classical PID 
controller optimized by various contemporary 
methodologies. 

The unity feedback closed-loop transfer function of the 
fractionalized-order PID controller, optimized using 
HHO, GA, and PSO algorithms, incorporates an 
integrator with a fractional order 𝛼 = 0.5. This fractional 
order is approximated using the Oustaloup technique. The 
approximation parameters are: are ω8 = 0.01	rad/s, 
ω9 = 1000	rad/s and 𝑁 = 5 (filter order). 

 

 

 

 

 

Table 2. Optimization Parameters for HHO, GA, and PSO 
Algorithms 

Algorithm 

 

 

Parameter Value 

HHO Population Size 50 
 Maximum Iterations 40 

 Lower bounds [𝐾!, 𝐾" , 𝐾#] [0.01;0.0
1; 0.01]  Upper bounds [𝐾!, 𝐾" , 𝐾#] [5;5; 5] 

 Time of simulation 5s 

GA Population Size 40 

 Crossover Probability 0.8 

 Mutation Probability 0.125 

 Maximum Iterations 25 

 Lower bounds [𝐾-, 𝐾* , 𝐾'] [0.01;0.0
1; 0.01]  Upper bounds [𝐾-, 𝐾* , 𝐾'] [5;5; 5] 

 Time of simulation 5s 

PSO Population Size 50 

 Maximum Iterations 40 

 Acceleration Constants (c1, c2) 
(c1,c2à  

2 

 Lower bounds [𝐾-, 𝐾* , 𝐾'] [0.01;0.0
1; 0.01]  Upper bounds [𝐾-, 𝐾* , 𝐾'] [5;5; 5] 

 

The parameters and corresponding values for these 
approaches are detailed in Table 3. 

Table 3. Proposed controller’s gain parameters and other 
controllers compared. 

Controllers 𝑲𝒑 𝑲𝒊 𝑲𝒅 𝜶 

HHO/FrOPID [Proposed] 4.1132 0.1714 4.2564 0.5 
GA/FrOPID [Proposed] 3.5907 0.1630 3.3021 0.5 

PSO/FrOPID [Proposed] 3.9578 0.1798 3.8583 0.5 

HHO/PID 4.1132 0.1714 4.2564 1 

GA/PID 3.5907 0.1630 3.3021 1 

PSO/PID 3.9578 0.1798 3.8583 1 

 

7.1 Transient and frequency stability analysis 

Figure 4 presents a comparison of step responses 
among different controllers, focusing on their 
performance over time. It includes proposed 
fractionalized-order PID (FrOPID) controllers optimized 
using three metaheuristic algorithms—Harris Hawks 
Optimization (HHO), Genetic Algorithm (GA), and 
Particle Swarm Optimization (PSO)—as well as 
traditional integer-order PID controllers optimized with 
the same algorithms. 
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Figure 4. Step response of various optimizer-based controller 

schemes for ACCS  

As can be seen from figure 4, the results show that the 
proposed FrOPID controllers consistently outperform 
their traditional counterparts. Specifically, the 
HHO/FrOPID controller, represented by a red dashed 
line, achieves a faster rise to the target value and settles 
more quickly, indicating a better response with minimal 
overshoot. This suggests a higher level of control stability 
and responsiveness. Meanwhile, the GA/FrOPID and 
PSO/FrOPID controllers also demonstrate improvements, 
though their rise and settling times are slightly longer 
compared to the HHO/FrOPID configuration. 

In contrast, the traditional PID controllers, represented 
by solid lines, exhibit slower rise times and more 
pronounced overshoots. This comparison highlights the 
effectiveness of using fractionalized-order controllers 
optimized with advanced algorithms, particularly HHO, 
to enhance system performance. Overall, the 
HHO/FrOPID combination proves to be the most efficient 
in achieving a balance between responsiveness and 
stability, showcasing the robustness and adaptability of 
fractionalized PID controllers in dynamic environments. 

Figure 5 presents a Bode plot comparison between 
proposed fractionalized-order PID (FrOPID) controllers 
and traditional PID controllers, each optimized using 
Harris Hawks Optimization (HHO), Genetic Algorithm 
(GA), and Particle Swarm Optimization (PSO). The Bode 
plot consists of two subplots: one showing the system's 
magnitude response (in dB) across a range of frequencies, 
and the other depicting the corresponding phase response 
(in degrees). 

 
Figure 5. Bod plots of various optimizer-based controller 

schemes for VCCS  

In the magnitude plot, the proposed FrOPID 
controllers maintain a higher gain at lower frequencies 
and show a smoother decline in gain as frequency 
increases. Among these, the HHO/FrOPID controller 
stands out with the most stable gain response across the 
frequency range, reflecting greater robustness to low-
frequency disturbances. In contrast, the traditional PID 
controllers exhibit a steeper decline in magnitude at 
higher frequencies, indicating relatively less effective 
performance in maintaining stability at different 
frequency ranges. 

In the phase plot, the proposed controllers demonstrate 
a more gradual and consistent phase shift across the 
frequency spectrum. The HHO/FrOPID controller, in 
particular, shows minimal phase deviations, which 
indicates better overall stability and response to dynamic 
changes in the system. Meanwhile, traditional PID 
controllers experience more abrupt drops in phase at 
certain frequencies, suggesting greater susceptibility to 
disturbances and reduced frequency stability. 

These characteristics indicate that the proposed 
fractionalized-order PID controllers provide improved 
stability margins and more consistent performance across 
a wide frequency range compared to traditional PID 
controllers. This consistency in both magnitude and phase 
responses highlights the robustness and adaptability of the 
fractionalized-order designs, especially when optimized 
with the HHO algorithm. The comparison supports the 
conclusion that fractionalized-order controllers are more 
effective in handling system dynamics and uncertainties, 
with the HHO/FrOPID configuration being particularly 
advantageous. 
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To demonstrate the enhanced efficacy of the suggested 
technique, we have provided comparative numerical data 
for the VCCS in both the transient and frequency 
domains. The results are shown in Tables 4 and 5. 

Table 4 compares the transient response metrics; rise 
time (𝑇!), settling time (𝑇7), and overshoot (𝑂𝑆%)  for 
different controller types, specifically fractionalized-
order PID controllers (FrOPID) optimized by HHO, GA, 
and PSO, and traditional PID controllers. While Table 5 
presents frequency response metrics; gain margin (𝐺/), 
phase margin (𝜑/), and bandwidth (𝐵=) across the same 
set of controllers. 

Table 4. Performance comparison of transient responses  

Controllers 𝑻𝒓(𝒔) 𝑻𝒔(𝒔) 𝑶𝑺	(%) 

HHO/FrOPID 
[Proposed] 

0.65467 0.98394 1.8203 
GA/FrOPID [Proposed] 0.80665 1.8292 2.0597 

PSO/FrOPID 
[Proposed] 

0.70573 1.5615 2.1153 

HHO/PID 0.76319 1. 1962 0.17565 

GA/PID 0.93938 1. 4559 1. 1456 

PSO/PID 0.82074 1.272 0.82093 

 

Table 5. Performance comparison of frequency responses 

Controllers 
𝑮𝒎(𝒅𝑩) 𝝋𝒎(°) 𝑩𝒘(𝑯𝒛) 

HHO/FrOPID 
[Proposed] 

Inf Inf 3.3323 
GA/FrOPID [Proposed] Inf Inf 2.6398 

PSO/FrOPID [Proposed] Inf Inf 3.0549 

HHO/PID Inf	 -180 2.8663 

GA/PID Inf -180 2.2657 

PSO/PID Inf -180 2.6264 

As can be seen from Tables 4 and 5, the fractionalized 
order PID controllers (especially HHO/FrOPID) 
outperform traditional PID controllers in both transient 
and frequency responses, demonstrating faster rise times 
and higher bandwidth. This suggests that fractionalized-
order controllers are better suited for systems requiring 
both fast response and high stability, while traditional PID 
controllers may still be preferable in applications where 
minimizing overshoot is critical. 

Table 6 effectively compares three controllers 
(HHO/FrOPID, GA/FrOPID, and PSO/FrOPID) across 
different performance criteria (rise time, settling time, and 
overshoot) for integrator orders (𝛼) ranging from 0.1 to 
0.5. 

Table 6. Comparative Transient Response Results for Different 
Controllers and Integrator Orders 𝛼) 

Criterion 𝜶 HHO/FrOPID GA/FrOPID PSO/FrOPID  

Rise time 
[s] 

0.1 0.71961 0.88694 0.77530 
0.2 0.69029 0.85087 0.74403 

0.3 0.67029 0.82609 0.72225 

0.4 0.65845 0.81144 0.70992 

0.5 0.65467  1.45590 1.14560 

Settling 
time [s] 

0.1 1.10620 1.36030 1.18530 

0.2 1.04970 1.29520           1.12750          

0.3 1.01240 1.25100 1.08880          

0.4 0.99079 1.79260          1.53930           

0.5 0.98394           1.82920 1.56150          

Overshoott 
[%] [%] 

0.1 0.76674  1.43020 1.24420 

[%] 
M% 

0.2 1.20670  1.68500 1.60290 

 0.3 1.54050  1.88570 1.87980 

 0.4 1.75130  2.01520 2.05500 

 0.5 1.82030  2.05970 2.11530 

As can be seen from table 6, the The HHO/FrOPID 
demonstrates the lowest rising time and settling time, 
signifying a more rapid reaction in comparison to the 
GA/FrOPID and PSO/FrOPID. Nonetheless, 
GA/FrOPID demonstrates elevated overshoot values, 
perhaps resulting in diminished stability. 
PSO/FrOPID achieves a compromise between rising 
time and overshoot; nonetheless, it is generally 
surpassed by HHO/FrOPID in most instances. These 
results underscore the efficacy of HHO/FrOPID for 
applications necessitating both rapidity and stability.
  
 

7.2 Robustness analysis 

7.2.1  Effect of changing vehicle mass   

In this subsection, parameter variations are introduced 
by adjusting the vehicle mass to simulate the effects of 
fuel consumption. The transfer functions are updated 
based on the new vehicle mass, and both the nominal and 
varied-mass systems are compared using step responses 
and transient response analysis. 

Figure 6 shows the comparison between nominal 
vehicle mass and varied vehicle mass for six different 
controller types, including both traditional PID and 
fractionaliazed order PID controllers optimized by HHO, 
GA, and PSO. The nominal mass system responses are 



 

 
10 

represented by dashed lines while the systems with varied 
mass are shown in solid lines.  

 

 

Figure 6. Comparison between nominal vehicle mass 
and varied vehicle mass 

Figure 6 shows that all controllers exhibit a similar 
rising pattern, with fractional-order PID controllers 
(FrOPID) achieving faster rise times compared to 
traditional PID controllers. As shown in Figure 6, the 
fractional-order versions of the controllers demonstrate 
slightly better performance, with faster rise and settling 
times than their traditional PID counterparts, indicating 
improved handling of parameter variations, such as mass 
changes. 

Table 7 presents the transient response metrics 
(RiseTime (𝑇;), SettlingTime (𝑇𝑠), Overshoot (OS)) for 
nominal versus varied vehicle mass, clearly illustrating 
the controllers' performance under both conditions. 

- For Rise Time: Fractionalized Order PID controllers 
achieve significantly faster rise times, around 175-178 
seconds, compared to traditional PID controllers, which 
exceed 2400 seconds for varied mass. The HHO/FrOPID 
controller, with a rise time of 175.46 seconds for varied 
mass, stands out as the fastest among all controllers. 

- For Settling Time: Similarly, fractional PID 
controllers settle much quicker, within the range of 313-
318 seconds, while traditional PID controllers require 
over 4000 seconds to settle. Once again, HHO/FrOPID 
exhibits the best settling time performance. 

- For Overshoot: All controllers demonstrate zero 
overshoot, indicating stable performance without 
oscillations in both nominal and varied mass scenarios. 

Table 7. Performance comparison of frequency responses 

Controllers 

 

𝑻𝒓(𝒔) 𝑻𝒔(𝒔) 𝑶𝑺	(%) 

HHO/PID 
(Nominal) 

2721.2 4843.5 0.0000 
HHO/PID 

(Varied Mass) 
2540 4520.9 0.0000 

GA/PID 
(Nominal) 

2856.7 5087 0.0000 
GA/PID 

(Varied Mass) 
2666.3 4747.8 0.0000 

PSO/PID 
(Nominal) 

2589 . 7 4611.6 0.0000 
PSO/PID 

(Varied Mass) 
2417.1 4304.1 0.0000 

HHO/FrOPID 
(Nominal) 

176.39 315.11 0.0000 
HHO/FrOPID 
(Varied Mass) 

175.46 313.47 0.0000 
GA/FrOPID 
(Nominal) 

178.57 318.22 0.0000 
GA/FrOPID 

(Varied Mass) 
177.66 316.6 0.0000 

PSO/FrOPID 
(Nominal) 

177.33 315.93 0.0000 
PSO/FrOPID 
(Varied Mass) 

176.35 314.17 0.0000 
 

In summary, fractionalized-order PID controllers 
(FrOPID) outperform traditional PID controllers in terms 
of both rise time and settling time, with HHO/FrOPID 
being the most efficient, particularly under mass 
variations. This underscores the robustness and 
adaptability of fractional PID controllers to changes in 
vehicle mass. 

7.2.2 Effect of Tire Friction 

To simulate how a vehicle cruise control system is 
affected by tire friction, a 𝑘# friction coefficient is added, 
then the transfer function would be updated by adding this 
coefficient to the damping terms. Assuming the damping 
term is 𝑠 + 𝑏, where 𝑏 is the original damping, we modify 
this to 𝑠 + 𝑏 + 𝑘#, where 𝑘# is the friction effect (𝑘# =
0.1). 

Figure 7 compares the performance of various 
controllers in the presence of tire friction, showing how 
quickly they reach steady-state after a disturbance.  



 

 
11 

 
Figure 7. Response to tire friction 

The proposed fractional PID controllers, like 
HHO/FrOPID and PSO/FrOPID, respond faster than 
traditional PID controllers, with HHO/FrPID having the 
shortest rise time and PSO/FrOPID showing the quickest 
settling time. All controllers avoid overshoot, ensuring 
stability.  

Table 8 presents the transient response metrics under 
tire friction, highlighting the performance differences 
between various controllers in terms of rise time, settling 
time, and overshoot. 

Table 8. Performance comparison of transient responses  
Controllers 𝑻𝒓(𝒔) 𝑻𝒔(𝒔) 𝑶𝑺	(%) 

HHO/FrOPID [Proposed] 0.72735 14.877 0.0000 
GA/FrOPID [Proposed] 0.93062 16.448 0.0000 
PSO/FrOPID [Proposed] 0.79483 14.348 0.0000 

HHO/PID 0.9381 25.863 0.0000 
GA/PID 1.2189 26.076 0.0000 

PSO/PID 1.0218 23.78 0.0000 

As can be seen from table 8,  

- For Rise Time: The time it takes for the system to go 
from 0% to 90% of the final value. The proposed 
HHO/FrOPID controller has the fastest rise time at 0.727 
seconds, while the traditional PID controllers have longer 
rise times, with GA/PID controller being the slowest at 
1.219 seconds. 

- For Settling Time: The time it takes for the system 
to stabilize within a small range around the final value. 
The proposed PSO/FrOPID controller shows the shortest 
settling time of 14.348 seconds, with the traditional 
controllers settling much later, with GA/PID controller 
taking 26.076 seconds. 

- For Overshoot: None of the controllers exhibit any 
overshoot, meaning the system does not exceed the 
desired value, indicating a well-damped response across 
all controllers. 

In summary, Overall, the fractional PID controllers, 
especially those optimized by HHO and PSO, provide 
superior dynamic response and quicker stabilization in 
systems with tire friction compared to traditional PID 
controllers. 

8. Conclusion 

This paper demonstrates the superiority of 
fractionalized-order PID (FrOPID) controllers over 
traditional PID controllers in handling the complex 
dynamics of vehicle cruise control systems. By 
introducing an additional tuning parameter, the FrOPID 
controller significantly enhances adaptability and 
performance, particularly under diverse operational 
conditions. Through a comparative analysis employing 
three metaheuristic optimization algorithms—Harris 
Hawks Optimization (HHO), Genetic Algorithm (GA), 
and Particle Swarm Optimization (PSO)—the study 
identifies the HHO-optimized FrOPID as the most 
effective approach, achieving an ideal balance between 
responsiveness and stability. These findings underscore 
the promise of fractionalized-order controller as robust 
solutions for modern cruise control applications, capable 
of effectively managing non-linearity and variability 
within automotive systems.  

Future studies will concentrate on experimentally 
validating the proposed FrOPID approach in real-world 
vehicle systems to confirm its practical effectiveness. 
Furthermore, investigating hybrid optimization 
methodologies to refine the tuning process may boost 
performance and reliability. Implementing this 
methodology in other intricate dynamic systems, such as 
robotics or industrial automation, would illustrate the 
adaptability of FrOPID controllers across other fields. 
Moreover, adding predictive models based on machine 
learning to controller design is also a great way to make 
control techniques that are smart and adaptable, which 
means that FrOPID can be used in more situations that are 
dynamic and unpredictable. 

 

 

Competing Interest Statement 



 

 
12 

The authors declare no known competing financial 
interests or personal relationships that could have 
influenced the work reported in this paper. 

Data Availability Statement  

No data or additional materials were utilized for the 
research described in the article. 

References  

[1] Z. Nie and H. Farzaneh, “Adaptive cruise control for eco-
driving based on model predictive control algorithm,” 
Applied Sciences, vol. 10, no. 15, pp. 5271, 2020. 

[2] Chen,S.Xiong,Q.Chen,Y.Zhang,J.Yuetal.,“Eco-
Driving:Ascientometric and bibliometric analysis,” IEEE 
Transactions on Intelligent Transportation Systems, vol. 
23, no. 12, pp. 22716–22736, 2022. 

[3] D. Izci and S. Ekinci, “A novel hybrid ASO-NM algorithm 
and its application to automobile cruise control system,” in 
2nd Int. Conf. on Artificial Intelligence: Advances and 
Applications, Singapore, pp. 333–343, 2022. 

[4] K.Osman,M.F.RahmatandM.A.Ahmad,“Modelling and 
controller design for a cruise control system,” in 2009 5th 
Int. Colloquium on Signal Processing & its Applications, 
Kuala Lumpur, Malaysia, pp. 254–258, 2009. 

[5] Ang, K. H., Chong, G., & Li, Y. (2005). PID control system 
analysis, design, and technology. IEEE Transactions on 
Control Systems Technology, 13(4), 559-576. 

[6] Silva, G. J., Datta, A., & Bhattacharyya, S. P. (2021). PID 
Controllers: History, theory, tuning, and application to 
modern process control. Springer Nature. 

[7] Shah, P., & Patel, R. (2019). Comparative analysis of PID 
controller tuning methods for industrial processes. 
International Journal of Industrial Electronics and 
Electrical Engineering, 7(2), 51-57. 

[8] Bansal, H.O., Sharma, R., Shreeraman, P., 2012. PID 
controller tuning techniques: a re-view. J. Control Eng. 
Technol.2, 168–176. 

[9] Shafiee, M., Sajadinia, M., Zamani, A. A., & Jafari, M. 
(2024). Enhancing the transient stability of interconnected 
power systems by designing an adaptive fuzzy-based 
fractional order PID controller. Energy Reports, 11, 394-
411. 

[10] Idir, A., Canale, L., Bensafia, Y., & Khettab, K. (2022). 
Design and robust performance analysis of low-order 
approximation of fractional PID controller based on an 
IABC algorithm for an automatic voltage regulator 
system. Energies, 15(23), 8973. 

[11] Mishra, A. K., Mishra, P., & Mathur, H. D. (2022). 
Enhancing the performance of a deregulated nonlinear 
integrated power system utilizing a redox flow battery with 
a self-tuning fractional-order fuzzy controller. ISA 
transactions, 121, 284-305. 

[12] Idir, A., Canale, L., Tadjer, S. A., & Chekired, F. (2022, 
June). High order approximation of fractional PID 

controller based on grey wolf optimization for DC motor. 
In 2022 IEEE International Conference on Environment 
and Electrical Engineering and 2022 IEEE Industrial and 
Commercial Power Systems Europe (EEEIC/I&CPS 
Europe) (pp. 1-6). IEEE. 

[13] Abualigah, L., Ekinci, S., Izci, D., & Zitar, R. A. (2023). 
Modified Elite Opposition-Based Artificial Hummingbird 
Algorithm for Designing FOPID Controlled Cruise Control 
System. Intelligent Automation & Soft Computing, 38(2). 

[14] Bensafia, Y., Idir, A., Khettab, K., Akhtar, M. S., & Zahra, 
S. (2022). Novel robust control using a fractional adaptive 
PID regulator for an unstable system. Indonesian Journal 
of Electrical Engineering and Informatics (IJEEI), 10(4), 
849-857. 

[15] Idir, A., Bensafia, Y., Khettab, K., & Canale, L. (2023). 
Performance improvement of aircraft pitch angle control 
using a new reduced order fractionalized PID 
controller. Asian Journal of Control, 25(4), 2588-2603. 

[16] Idir, A., Bensafia, Y., & Canale, L. (2024). Influence of 
approximation methods on the design of the novel low-
order fractionalized PID controller for aircraft 
system. Journal of the Brazilian Society of Mechanical 
Sciences and Engineering, 46(2), 1-16. 

[17] Idir, A., Akroum, H., Tadjer, S. A., & Canale, L. (2023, 
June). A comparative study of integer order PID, 
fractionalized order PID and fractional order PID 
controllers on a class of stable system. In 2023 IEEE 
International Conference on Environment and Electrical 
Engineering and 2023 IEEE Industrial and Commercial 
Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1-6). 
IEEE. 

[18] M.K.Rout,D.Sain, S. K. Swain and S. K. Mishra, “PID 
controller design for cruise control system using genetic 
algorithm,” in 2016 Int. Conf. on Electrical, Electronics, 
and Optimization Techniques (ICEEOT), Chennai, India, 
pp. 4170–4174, 2016. 

[19] D. Izci, S. Ekinci, M. Kayri and E. Eker, “A novel 
improved arithmetic optimization algorithm for optimal 
design of PID controlled and Bode’s ideal transfer function 
based automobile cruise control system,” Evolving 
Systems, vol. 13, no. 3, pp. 453–468, 2022. 

[20] Hlangnamthip, S., Thammarat, C., Sinsukudomchai, C., & 
Puangdownreong, D. (2024, January). Optimal Tuning of 
PIDA Controller for Vehicle Cruise Control System by 
Modified Bat Algorithm. In 2024 Joint International 
Conference on Digital Arts, Media and Technology with 
ECTI Northern Section Conference on Electrical, 
Electronics, Computer and Telecommunications 
Engineering (ECTI DAMT & NCON) (pp. 108-111). IEEE. 

[21] R. Pradhan and B. B. Pati, “Optimal FOPID controller for 
an automobile cruise control system,”in 2018 Int. Conf. on 
Recent Innovations in Electrical, Electronics & 
Communication Engineering (ICRIEECE), Bhubaneswar, 
India, pp. 1436–1440, 2018. 



 

 
13 

[22] Gunasekaran, P., Sivasubramanian, R., Periyasamy, K., 
Muthusamy, S., Mishra, O. P., Ramamoorthi, P., & Geetha, 
M. (2024). Adaptive cruise control system with fractional 
order ANFIS PD+ I controller: optimization and 
validation. Journal of the Brazilian Society of Mechanical 
Sciences and Engineering, 46(4), 184. 

[23] Abdulnabi, A. R. (2017). PID controller design for cruise 
control system using particle swarm optimization. Iraqi 
Journal for computers and Informatics (IJCI), 43(2), 30–35. 

[24] Izci, D., & Ekinci, S. (2021, June). An efficient FOPID 
controller design for vehicle cruise control system using 
HHO algorithm. In 2021 3rd International Congress on 
Human-Computer Interaction, Optimization and Robotic 
Applications (HORA) (pp. 1-5). IEEE.  

[25] Morovatdel, M., & Taraghi Osguei, A. (2024). Designing a 
PID Controller for a Cruise Control System using Genetic 
Algorithm. Computational Sciences and Engineering. 

 
[26] Saravanan, G., Pazhanimuthu, C., Lalitha, B., 

Senthilkumar, M., & Kannan, E. (2024, June). Red Panda 
Optimization Algorithm-Based PID Controller Design for 
Automobile Cruise Control System. In 2024 International 
Conference on Smart Systems for Electrical, Electronics, 
Communication and Computer Engineering 
(ICSSEECC) (pp. 33-37). IEEE. 

[27] Pradhan, R., Majhi, S. K., Pradhan, J. K., & Pati, B. B. 
(2017). Performance evaluation of PID controller for an 
automobile cruise control system using ant lion 
optimizer. Engineering Journal, 21(5), 347-361. 

[28] Oleiwi, B. K., & Abood, L. H. (2024). Enhanced PD 
Controller for Speed Control of Electric Vehicle Based on 
Gorilla Troops Algorithm. Journal Européen des Systèmes 
Automatisés, 57(4). 

[29] Bensafia, Y., Khettab, K., & Idir, A. (2022). A novel 
fractionalized PID controller using the sub-optimal 
approximation of FOTF. Algerian Journal of Signals and 
Systems, 7(1), 21-26. 

[30] Benaouicha, K., Idir, A., Akroum, H., & Bensafia, Y. 
(2024). Fractionalized order PID controller design for three 
tanks liquid level control. Studies in Engineering and Exact 
Sciences, 5(2), e8915-e8915.  


