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AN ANALOGUE OF AN IDENTITY OF JACOBI

HENG HUAT CHAN, SONG HENG CHAN, AND PATRICK SOLÉ

Abstract. In 2002, H.H. Chan, K.S. Chua and P. Solé found that for each
positive integer d, there are theta series Ad, Bd and Cd of weight one that

satisfy the Pythagoras-like relation A2
d = B2

d + C2
d . In this article, we show

that there are two collections of theta series Ab,d, Bb,d and Cb,d of weight one

which satisfy A2
b,d = B2

b,d + C2
b,d, where b and d are certain integers.

1. Introduction

One of the most famous identity of Jacobi states that
(1.1)( ∞∑

m,n=−∞
qm

2+n2

)2

=

( ∞∑
m,n=−∞

(−1)m+nqm
2+n2

)2

+

( ∞∑
m,n=−∞

q(m+1/2)2+(n+1/2)2

)2

.

One can view (1.1) as a solution to

(1.2) A2 = B2 + C2

where A,B and C are theta series of weight 1. This identity is instrumental in the
parametrization of Gauss’ AGM by modular forms [8, 2].

In [6], Chan, Chua and Solé, motivated by the study of codes and lattices, found
that for any positive integer d,

( ∞∑
m,n=−∞

q2(m
2+mn+dn2)

)2

=

( ∞∑
m,n=−∞

(−1)m+nqm
2+mn+dn2

)2

(1.3)

+

( ∞∑
m,n=−∞

q2((m+1/2)2+(m+1/2)n+dn2)

)2

.

Identity (1.3) provides an infinite number of solutions in theta functions of weight
1 to (1.2). For more information on this generalized Jacobi identity, we refer the
reader to [5, 7].
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Recently, while studying theta series associated with binary quadratic forms of
discriminant −15, we discovered the identity

( ∞∑
m,n=−∞

q2m
2+mn+2n2

)2

=

( ∞∑
m,n=−∞

(−1)m+nq2m
2+mn+2n2

)2

(1.4)

+

(
2

∞∑
m,n=−∞

q2(2(m+1/2)2+(m+1/2)n+2n2)

)2

.

In this article, we will establish an analogue of (1.3) for which (1.4) is a special
case.

Theorem 1. Let d be any positive integer and let 1 ≤ b ≤ d− 1. Then( ∞∑
m,n=−∞

qdm
2+bmn+dn2

)2

=

( ∞∑
m,n=−∞

(−1)m+nqdm
2+bmn+dn2

)2

(1.5)

+

(
2

∞∑
m,n=−∞

q2(d(m+1/2)2+b(m+1/2)n+dn2)

)2

.

We note that when d = 2 and b = 1, we recover (1.4) from (1.5). The proof of
(1.5) will be given in Section 2.

Our discovery of (1.5) provides a motivation for deriving the following two-
variable version of (1.3):

( ∞∑
m,n=−∞

q2(bm
2+bmn+dn2)

)2

=

( ∞∑
m,n=−∞

(−1)m+nqbm
2+bmn+dn2

)2

(1.6)

+

( ∞∑
m,n=−∞

q2(b(m+1/2)2+b(m+1/2)n+dn2)

)2

.

Observe that when b = 1, (1.6) implies (1.3). We will give a proof of (1.6) in Section
3.

2. Proof of (1.5)

The Jacobi one-variable theta functions are defined by

ϑ2(q) =

∞∑
j=−∞

q(j+1/2)2 ,

ϑ3(q) =

∞∑
j=−∞

qj
2

and

ϑ4(q) =

∞∑
j=−∞

(−1)jqj
2

.

We first express the theta functions in (1.5) in terms of ϑj(q), j = 2, 3, 4.
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Lemma 2. For |q| < 1,

Ab,d =

∞∑
m,n=−∞

qdm
2+bmn+dn2

= ϑ3(q
2d+b)ϑ3(q

2d−b) + ϑ2(q
2d+b)ϑ2(q

2d−b),

(2.7)

Bb,d =

∞∑
m,n=−∞

(−1)m+nqdm
2+bmn+dn2

= ϑ3(q
2d+b)ϑ3(q

2d−b)− ϑ2(q
2d+b)ϑ2(q

2d−b)

(2.8)

and

Cb,d = 2

∞∑
m,n=−∞

q2(d(m+1/2)2+b(m+1/2)n+dn2) = ϑ2(q
d+b/2)ϑ2(q

d−b/2).

(2.9)

Proof. We observe that

dm2 + bmn+ dn2 =
(
m n

)( d b/2
b/2 d

)(
m
n

)
.

Next, since (
d b/2
b/2 d

)
=

(
1 1
1 −1

)(
d+ b/2 0

0 d− b/2

)(
1 1
1 −1

)
,

we find that

dm2 + bmn+ dn2 =
2d+ b

4
(m+ n)2 +

2d− b

4
(m− n)2.

Therefore,
∞∑

m,n=−∞
qdm

2+bmn+dn2

=

∞∑
m,n=−∞

q(2d+b)(m+n)2/4+(2d−b)(m−n)2/4

=

∞∑
m,n=−∞
m + n even

q(2d+b)(m+n)2/4+(2d−b)(m−n)2/4 +

∞∑
m,n=−∞
m + n odd

q(2d+b)(m+n)2/4+(2d−b)(m−n)2/4

= ϑ3(q
2d+b)ϑ3(q

2d−b) + ϑ2(q
2d+b)ϑ2(q

2d−b)

and the proof of (2.7) is complete. The proof of (2.8) is similar to the proof of
(2.7).

To prove (2.9), we need the identity

(2.10)

∞∑
m=−∞

(−1)mq(m+1/2)2 = 0.

Identity (2.10) is true since
∞∑

m=−∞
(−1)mq(m+1/2)2 =

∞∑
s=−∞

(−1)sq(s−1/2)2 =

∞∑
t=−∞

(−1)t+1q(t+1/2)2 .

From (2.10), we deduce that for any integer ℓ,

(2.11)

∞∑
m=−∞

(−1)mq(m+ℓ+1/2)2 = 0.
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A consequence of (2.11) is that

(2.12)

∞∑
n=−∞

q(2n+ℓ+1/2)2 =

∞∑
n=−∞

q(2n+1+ℓ+1/2)2 .

We are now ready to prove (2.9). Write

Cb,d = 2

∞∑
m,n=−∞

q(2d+b)(m+1/2+n)2/2+(2d−b)(m+1/2−n)2/2.

Let k = m− n. Then

Cb,d = 2

∞∑
k=−∞

q(2d−b)(k+1/2)2/2
∞∑

n=−∞
q(2d+b)(2n+k+1/2)2/2

=

∞∑
k=−∞

q(2d−b)(k+1/2)2/2
∞∑

s=−∞
q(2d+b)(s+1/2)2/2 = ϑ2(q

(2d−b)/2)ϑ2(q
(2d+b)/2),

which is (2.9). The last equality follows by writing

2

∞∑
n=−∞

q(2d+b)(2n+k+1/2)2/2 =

∞∑
n=−∞

q(2d+b)(2n+k+1/2)2/2 +

∞∑
n=−∞

q(2d+b)(2n+k+1+1/2)2/2

=

∞∑
s=−∞

q(2d+b)(s+1/2)2/2,

where we have used (2.12) in the first equality.
□

Using (2.7) and (2.8), we deduce that

A2
b,d − B2

b,d = 4ϑ2(q
2d+b)ϑ2(q

2d−b)ϑ3(q
2d+b)ϑ3(q

2d−b).

Next, it is known from Jacobi’s triple product identity that

ϑ2(q) = 2q1/4
∞∏
j=1

(1− q2j)(1 + q2j)2

and

ϑ3(q) =

∞∏
j=1

(1− q2j)(1 + q2j−1)2.

Therefore,

(2.13) 2ϑ2(q
2)ϑ3(q

2) = ϑ2
2(q).

Replacing q2 by q and using (2.9), we deduce that

A2
b,d − B2

b,d = C2
b,d

and the proof of (1.5) is complete.
It is possible to derive (2.13) without using Jacobi’s triple product identity. For

more details, see [4, p. 58].
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We end this note with the observation that when d = 1 and b = 0, (1.5) is given
by
(2.14)( ∞∑

m,n=−∞
qm

2+n2

)2

=

( ∞∑
m,n=−∞

(−1)m+nqm
2+n2

)2

+

(
2

∞∑
m,n=−∞

q2((m+1/2)2+n2)

)2

.

Note that this identity reduces to

(2.15) ϑ4
3(q) = ϑ4

4(q) + 4ϑ2
2(q

2)ϑ2
3(q

2).

Note that by (2.13), we arrive at (1.1). Next, (2.15) can then be written as

(2.16) ϑ4
3(q) + ϑ4

2(q) = ϑ4
3(q)− ϑ4

2(q) + 8ϑ2
2(q

2)ϑ2
3(q

2).

Identity (2.16) appeared in [1, p. 140] and the functions

ϑ4
3(q) + ϑ4

2(q), ϑ4
3(q)− ϑ4

2(q) = ϑ4
4(q) and 2ϑ2

2(q)ϑ
2
3(q)

play important roles in Ramanujan’s theory of elliptic functions to the quartic base
(see [3, Theorem 2.6(b)] and [1, (1.10),(1.11)]).

3. Proof of (1.6)

The proof of (1.6) is similar to the proof of (1.3). First, we need a lemma.

Lemma 3. Let 0 < b < 4d. Then

Ab,d =

∞∑
m,n=−∞

q2(bm
2+bmn+dn2) = ϑ3(q

2b)ϑ3(q
2(4d−b)) + ϑ2(q

2b)ϑ2(q
2(4d−b)),

(3.17)

Bb,d =

∞∑
m,n=−∞

(−1)m−nqbm
2+bmn+dn2

= ϑ4(q
b)ϑ4(q

4d−b)

(3.18)

and

Cb,d =

∞∑
m,n=−∞

q2(b(m+1/2)2+b(m+1/2)n+dn2) = ϑ2(q
2b)ϑ3(q

2(4d−b)) + ϑ3(q
2b)ϑ2(q

2(4d−b)).

(3.19)

Proof. The proof of (3.17) follows by writing Ab,d as

Ab,d =

∞∑
m,n=−∞

q2b(m+n/2)2+n2(4d−b)/2.

Splitting the sum into two sums with one summing over even integers n = 2ℓ and
the other summing over odd integers n = 2ℓ+ 1, we find that

Ab,d =

∞∑
m,ℓ=−∞

q2b(m+ℓ)2+2ℓ2(4d−b) +

∞∑
m,ℓ=−∞

q2b(m+ℓ+1/2)2+2(ℓ+1/2)2(4d−b)

= ϑ3(q
2b)ϑ3(q

2(4d−b)) + ϑ2(q
2b)ϑ2(q

2(4d−b))
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and this completes the proof of (3.17). Next, write Bb,d as

Bb,d =

∞∑
m,n=−∞

(−1)m−nqb(m+n/2)2+n2(4d−b)/4.

Splitting the sum into two sums with one summing over even integers n = 2ℓ and
the other summing over odd integers n = 2ℓ+ 1 and using (2.11), we find that

Bb,d =

∞∑
m,ℓ=−∞

(−1)mq2b(m+ℓ)2+2ℓ2(4d−b) +

∞∑
m,ℓ=−∞

q2b(m+ℓ+1/2)2+2(ℓ+1/2)2(4d−b)

=

∞∑
m,ℓ=−∞

(−1)ℓq(4d−b)ℓ2
∞∑

m=−∞
(−1)m+ℓqb(m+ℓ)2

= ϑ4(q
4d−b)ϑ4(q

b)

and (3.18) follows. Finally, to prove (3.19), write

Cb,d =

∞∑
m,n=−∞

q2b(m+1/2+n/2)2+2n2(4d−b)/4.

Splitting the sum into two sums with one summing over even integers n = 2ℓ and
the other summing over odd integers n = 2ℓ+ 1, we deduce that

Cb,d =

∞∑
m,ℓ=−∞

q2b(m+ℓ+1/2)2+2(2ℓ)2(4d−b)/4 +

∞∑
m,ℓ=−∞

q2b(m+ℓ+1)2+2(2ℓ+1)2(4d−b)/4

= ϑ2(q
2b)ϑ3(q

8d−2b) + ϑ3(q
2b)ϑ2(q

8d−2b)

and the proof of (3.19) is complete. □

To complete the proof of (1.6), we note that

Ab,d − Cb,d =
(
ϑ3(q

2b)− ϑ2(q
2b)
) (

ϑ3(q
8d−2b)− ϑ2(q

8d−2b)
)

and

Ab,d + Cb,d =
(
ϑ3(q

2b) + ϑ2(q
2b)
) (

ϑ3(q
8d−2b) + ϑ2(q

8d−2b)
)
.

But it is immediate that

ϑ3(q
4)− ϑ2(q

4) = ϑ4(q)

and

ϑ3(q
4) + ϑ2(q

4) = ϑ3(q).

Therefore,

(ϑ3(q
4)− ϑ2(q

4))(ϑ3(q
4) + ϑ2(q

4)) = ϑ4(q)ϑ3(q) = ϑ2
4(q

2),

where the last equality follows from [2, p. 34]. Therefore,

A2
b,d − C2

b,d =
(
ϑ3(q

2b)− ϑ2(q
2b)
) (

ϑ3(q
8d−2b)− ϑ2(q

8d−2b)
)

×
(
ϑ3(q

2b) + ϑ2(q
2b)
) (

ϑ3(q
8d−2b) + ϑ2(q

8d−2b)
)

= ϑ2
4(q

b)ϑ2
4(q

4d−b) = B2
b,d

and the proof of (1.6) is complete.
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4. Concluding remarks

We have found infinitely many solutions to X2 + Y 2 = Z2 where X,Y and Z
are theta series of weight 1. The Borweins’ identity states that

( ∞∑
m,n=−∞

qm
2+mn+n2

)3

=

( ∞∑
m,n=−∞

ωm−nqm
2+mn+n2

)3

(4.20)

+

( ∞∑
m,n=−∞

q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2

)3

where ω = e2πi/3. This is the only example of a solution to X3 + Y 3 = Z3 with
X, Y and Z being theta series of weight 1. Are there infinitely many solutions to
X3 + Y 3 = Z3 where X,Y and Z are theta series of weight 1 besides (4.20)? This
appears to be an interesting question.
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