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We theoretically study the topological properties of magnons and the relevant magnon thermal Hall effect
in trimerized Lieb lattice ferromagnets in the presence of next-nearest-neighbor Dzyaloshinskii-Moriya inter-
actions. By calculating the magnon band structures and their Chern numbers with the linear spin-wave theory,
we show that the system can undergo a phase transition between a magnonic topological insulator phase and
a magnonic trivial insulator phase. The main results are presented in the form of topological phase diagrams,
where the Chern numbers or magnon thermal Hall conductivity is shown as a function of the two lattice trimer-
ization parameters. We find a sharp change of the thermal Hall conductivity across the critical point of phase
transformations associated with topological nontrivial edge states. The behaviors reflect that the existence of
trimerizations breaks the C4 rotational symmetry of the Lieb lattice. Finally, we show that our theoretical
predictions could be experimentally realized in high-temperature cuprate superconductors or organic magnetic
materials.

I. INTRODUCTION

Over the past decade, the topological band theory has em-
powered us to discover new classes of topological materials
and understand salient characteristics of topological states in
condensed matter physics [1–6]. It is also used to explore
new kinds of exotic particles, e.g., Majorana fermions [7, 8],
axions [9, 10], spinons [11, 12], magnetic monopoles [13–
15], fractionally charged vortices [16], etc., which could po-
tentially be exploited in high-performance electronics, spin-
tronics and topological quantum computation [17–20].

On the other hand, the band topology has been extensively
studied in systems consisting of bosonic collective excitations,
e.g., photons [21–23], phonons [24, 25], magnetic solitons
[26, 27] and magnons [28–31]. A few recent works have re-
ported that magnons can propagate over a long distance with-
out missing spin information in magnetic insulators exhibit-
ing both low energy consumption and long coherence length,
which bears a great potential to realize next-generation low-
dissipation memory devices [32–34]. Different from elec-
trons, magnons are charge-neutral quasiparticles immune to
the Lorentz force due to the external electric field. Mean-
while, the topology of magnons cannot be investigated via
the standard Hall effect under a magnetic field-driven Lorentz
force. But a transverse thermal current and thermal Hall con-
ductivity are induced by the magnon edge current in the pres-
ence of a thermal gradient—the so-called magnon thermal
Hall effect (THE) [35]. The finite thermal Hall conductiv-
ity could be attributed to an antisymmetric interaction such as
Dzyaloshinskii-Moriya interaction (DMI) [36, 37], which in-
duces nonzero Berry curvatures acting as an effective Lorentz
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force [38–41]. More recently, intensive research of topolog-
ical magnonics has been performed on various complex lat-
tices, e.g., pyrochlore [42, 43], triangular [44], honeycomb
[45–47], kagome [48–51], and Lieb lattices [52–54].

The two-dimensional Lieb lattice, or the line-centered
square lattice as shown in Fig. 1(a), was first proposed by Lieb
in 1989 when discovering the ferromagnetism on such a lattice
due to the flat bands by the Hubbard model of the itinerant-
electron [55]. Subsequently, various interesting physical prop-
erties of the Lieb lattice have been proposed, e.g., ground-state
ferromagnetism [56, 57], topological states [58, 59], super-
conductivity and superfluidity [60–62]. However, most pre-
vious works focus on the theoretical models, since the ex-
perimental realization of the Lieb lattice in condensed matter
physics has not yet been achieved. Recently, the Lieb lattice
has been realized in several artificial systems, such as photon-
ics [63, 64], ultracold atoms in optical lattices [65, 66], and
surface patterning techniques [67, 68].

In this paper, we study the magnon band topology and the
magnon thermal Hall effect in a trimerized Lieb lattice ferro-
magnet with the next-nearest-neighbor (NNN) DMI as illus-
trated in Fig. 1(a). The unit cell in the green dashed diamond
is formed by three spin sublattices A, B, and C represented by
red, blue and green circles, respectively. We show the topolog-
ical phase diagrams characterized by the Chern numbers and
magnon thermal Hall conductivity on the trimerization param-
eter plane. We find a topological phase transition between a
magnonic topological insulator (mTI) and a magnonic trivial
insulator. The phase transition is accompanied by the change
of nontrivial edge states and can be experimentally detected
by the sharp change of the thermal Hall conductivity. Finally,
the candidate materials for an experimental realization are dis-
cussed.

The rest of this paper is organized as follows. In Sec. II
we present details of our theoretical model and derive the
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Figure 1. (a) Schematics for the trimerized Lieb lattice ferromagnet.
The black solid lines and the red dashed line represent the nearest-
neighboring ferromagnetic exchange interactions and next-nearest-
neighbor DMI, respectively. The unit cell is shown as a dotted green
square. a represents the lattice constant. (b) The first Brillouin zone
of the reciprocal lattice.

magnonic tight-binding Hamiltonian. Detailed numerical re-
sults are presented in Sec. III, including the topological phase
diagram, magnon band structures, magnonic edge states, ther-
mal Hall conductivity, and material consideration. Finally, we
end the paper with a Conclusion in Sec. IV.

II. MODEL AND METHODS

We consider a collinear ferromagnet with localized spins
on a two-dimensional Lieb lattice as schematically shown in
Fig. 1(a), whose spin Hamiltonian is given by

H =−
∑
⟨ij⟩

JijSi · Sj −K
∑
i

S2
iz

+
∑
⟨ij⟩

Dijϵij ẑ · (Si × Sj) ,
(1)

where Si is the vector of spin operators at site i. The first
term describes nearest-neighboring (NN) ferromagnetic ex-
change interactions (Jij > 0) between sites AB and AC. The
second term represents an easy-axis anisotropy (K > 0) with
the z-axis identified as the easy axis. The last term is the out-
of-plane NNN DMI between sites BC, where Dij is the DMI
strength. ϵij corresponds to the magnetic flux, which depends
on the lattice geometry and follows the Moriya rules [37] with
+1/ − 1 for clockwise/anticlockwise case. Other high-order
terms are neglected in this paper, such as the dipole-dipole
interaction [69, 70]. A trimerized Lieb lattice is determined
by two trimerization parameters δ1 in A-B bonds along the x
direction and δ2 in A-C bonds along the y direction, which
describe the response of the couplings to the displacements
of sublattices. Here, we expand the ferromagnetic coupling
and DMI following the same methodology in Refs. [71, 72].
Specifically, Jij and Dij are modulated around its equilib-
rium value J and D with different coefficients as indicated in

(a) (b)

(c)

Figure 2. (a) Topological phase diagram of the trimerized Lieb lat-
tice for D = 0.1. Each topological phase is characterized by sets of
Chern numbers (C1, C2, C3). (b) The critical value of phase transi-
tion δc as a function of the DMI strength D. (c) The magnon band
structure with different trimerization δ1 = δ2 = δ when D = 0.1.
δ = 0.191 is the critical value of phase transition.

Fig. 1(a),

Ji = (1 + δi) J,

J ′
i = (1− δi) J,

D1 =
√
(1 + δ1)2 + (1 + δ2)2D,

D2 =
√
(1− δ1)2 + (1 + δ2)2D,

D3 =
√
(1− δ1)2 + (1− δ2)2D,

D4 =
√
(1 + δ1)2 + (1− δ2)2D.

(2)

J1 (J2) indicates intracell NN ferromagnetic exchange inter-
action between sublattice A and sublattice B (C) inside a unit
cell, as shown in Fig. 1(a). J ′

1 (J ′
2) indicates intercell NN

ferromagnetic exchange interaction between sublattice A and
sublattice B (C) between two NN unit cells. However, the
ideal Lieb lattice has been studied by setting both δ1 and δ2
equal to zero. In this case, isotropic NN ferromagnetic ex-
change interactions and NNN DMI are given by Jij = J and
Dij = D, respectively. Note that the simultaneous changes of
ferromagnetic interaction and DMI will preserve the collinear
ferromagnetic ground state, since the DMI is well below the
threshold value for a phase transition of magnetic configura-
tion.

We now turn to a linear spin-wave theory to obtain the
tight-binding magnon Hamiltonian in the momentum space.
Using the Holstein-Primakoff transformations [73], we ex-
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Figure 3. (a-c) The dispersions of the lower magnon band for δ1 = δ2 = δ = 0, 0.1 and 0.25, respectively. (d-f) Corresponding Berry
curvatures of the lower magnon band. The dotted red lines denote the edges of the first Brillouin zone.

press the spin operators in Eq. (1) in terms of magnon
creation operator b̂†i and annihilation operator b̂i: S+

i =√
2S − b†bibi, S+

i = b†i
√
2S − b†bi and Sz

i = S − b†i bi,
where we introduce the magnon ladder operators S±

i =
Sx
i ± iSy

i . In the low temperature limit, the square roots can
be expanded in powers of 1/

√
S when considering 2S ≫

⟨ni⟩ =
〈
b†i bi

〉
. After a Fourier transformation, Eq. (1)

becomes H = −S
∑

k Ψ
†
kH (k)Ψk, where the magnonic

tight-binding Hamiltonian H is a 3 × 3 matrix in the basis
Ψ†

k =
(
b†A, b

†
B , b

†
C

)
given by

H =

−m0 γ1 γ2
γ∗1 −m0 iµ
γ∗2 −iµ∗ −m0

 , (3)

where m0 = 4J +
∑4

n=1Dn + 2K, γi = Jie
−ik·αi +

J ′
ie

ik·αi , and µ = −D1e
−ik·β2 − D3e

ik·β2 + D2e
−ik·β1 +

D4e
ik·β1 . Here α1 = (1/2, 0) a, α2 = (0, 1/2) a and

β1 = (1/2, 1/2) a, β2 = (−1/2, 1/2) a are the linking vec-
tors connecting NN and NNN sites, respectively.

In comparison with electronic systems, the absence of
Fermi surface in bosonic systems will lead to the ill-defined
magnonic Chern number. However, the magnonic Chern
number for the nth magnonic bulk band can still be defined as
the integration of its Berry curvature Ωz

nk over the Brillouin

zone (BZ) [Fig. 1(b)] in a similar way,

Cn =
1

2π

∫
BZ

dk2Ωz
nk. (4)

and the Berry curvature of magnons Ωz
nk is defined as

Ωz
nk = −2

∑
m ̸=n

Im
⟨ψnk |∂kx

H|ψmk⟩
〈
ψmk

∣∣∂ky
H
∣∣ψnk

〉
(εnk − εmk)

2 ,

(5)
where ψnk and εnk are the eigenvectors and eigenvalues of
H (k) for the nth band, respectively. The magnon thermal
Hall conductivity is also related to the Berry curvature and
can be calculated using the following formula [74]

κxy = −k
2
BT

ℏ

3∑
n=1

∫
BZ

d2k

(2π)
2 c2

[
ρB (εnk)

]
Ωz

nk, (6)

where ρB (εnk) =
(
eεnk/kBT − 1

)−1
is the Bose-Einstein

distribution. The weighting function is given by c2 =
(1 + x) ln2 1+x

x − ln2 x − 2Li2 (−x), with Li2 (x) being the
polylogarithm function.

To calculate the Chern numbers and thermal Hall conduc-
tivity of magnons numerically [cf. Eqs. (4) and (6)], we calcu-
late the Berry curvature [cf. Eq. (5)] following the algorithm
of Fukui et al. [75] with 1000×1000 points over the BZ. In
addition, for the sake of simplicity, the tight-binding magnon
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Figure 4. Magnon band structure with coupled magnonic edge states
in a quasi-one-dimensional Lieb ribbon with different trimerization
δ1 = δ2 = δ: (a) δ = 0. (b) δ = 0.1. (c) δ = 0.25. The black lines
represent the magnon bulk bands. The blue/red lines are the edge
states for the upper/lower edges.

Hamiltonian Eq. (3) is normalized to JS. Meanwhile, en-
ergy, temperature and thermal Hall conductivity are expressed
in the units of JS, kBT/JS, and JS (kB/ℏ), respectively. In
the following numerical calculations, unless otherwise spec-
ified, we set K = 0.05J , whereas D, δ1 and δ2 are tunable
parameters.

III. RESULTS AND DISCUSSION

The main proposal in this work is to identify different topo-
logical phases by varying the trimerization parameters δ1 and
δ2. We first show in Fig. 2(a) a topological phase diagram on
the δ1 − δ2 plane, where the two phases are characterized by
sets of Chern numbers (C1, C2, C3) of the lower, middle and
upper magnon bulk bands, as shown in Fig. 2(c). The system
turns out to be a mTI with Chern numbers (1, 0,−1) when√
δ21 + δ22 < δc and a trivial magnonic insulator with zero

Chern numbers otherwise. The critical value of phase tran-
sition δc as a function of the DMI strength D is depicted in
Fig. 2(b).

We show in Fig. 2(c) the evolution of the magnon band
structures with varying δ when D = 0.1, where we con-
sider the case that two trimerization parameters are equivalent
(δ1 = δ2 = δ). As the unit cell of the Lieb lattice consists
of three sublattices, it gives three magnon bands after diag-
onalization of the Hamiltonian (3). The magnon bands are
plotted along the Γ−X−M−X−Γ line with high-symmetry
points in the Brillouin zone shown in Fig. 1(b). A band struc-
ture in the ideal Lieb lattice without trimerization δ = 0 has
a perfectly flat magnon band in the middle, which isolates the
lower and upper magnon bands symmetrically [52]. The lower
and upper dispersive magnon bands are almost equally local-
ized on all three sublattices A, B and C, while the flat middle
magnon band is a high-degeneracy eigenspace composed of
localized states almost fully localized on the sublattices B and

C [76, 77]. Two nontrivial band gaps opens between the three
dispersive magnon bands due to the existence of DMI act-
ing as an effective spin-orbit coupling [58]. Meanwhile, the
lower and upper magnon bands are topologically nontrivial
with Chern numbers C1 = 1 and C3 = −1, respectively, and
the middle flat band is a topologically trivial band with Chern
number C2 = 0. When the trimerization is included (δ ̸= 0),
the middle magnon band becomes out-of-flatness, meanwhile,
the top of the lower band and the bottom of the upper band
shift to the right (Y point) and left (X point) with increasing
δ, respectively. In addition, there are three different cases: (a)
When 0 ≤ δ < 0.191, the Chern numbers of the bands from
bottom to top are (1, 0,−1) and the magnonic system stays in
a mTI phase. (b) At a critical value of δ = 0.191, a topolog-
ical phase transition occurs. (c) When δ > 0.191, the lower
and upper magnon bands become topologically trivial with
Chern numbers C1 = C3 = 0, while the system reduces to a
trivial magnonic insulator. As the trimerization is increased,
the dispersive topologically nontrivial bands are pushed away
from the flat band and they flatten out progressively, which
corresponds to the decoupling of the sublattices B and C from
the neighboring sublattices A outside the unit cell as depicted
in Fig. 1(a). Furthermore, we consider the fully-trimerized
limit δ = 1 with a small DMI strength (D ≪ J), where
the intracell NN ferromagnetic exchange interactions reach a
maximum (J1 = J2 = 2J) and the intercell interactions are
turned off (J ′

1 = J ′
2 = 0). Since neighboring unit cells al-

most do not "talk" to each other in this case, the system is
reduced to an array of isolated trimers on a square lattice and
the magnon bands split into three flat bands separated by two
large trivial gaps, that the energy states are strongly localized
[78]. Thus a large trimerization degenerates the system into a
trivial magnonic insulator from a magnonic topological insu-
lator.

To better understand the underlying physics of the two
topological magnonic phases, it is instructive to investigate
three representative cases: δ = 0, 0.1, and 0.25. Since the
lower band is always more populated for magnons than the
upper band at low temperatures, we will focus on the lower
band in the following discussion. In figures 3(a)-(c), we plot
the lower magnon bands for δ = 0, 0.1, and 0.25, respec-
tively. However, the upper band can be obtained directly by
a centrosymmetric reflection about the M point on the mid-
dle magnon band as shown in Fig. 2(c). We plot the distribu-
tion of Berry curvature Ωz

nk associated with the lower magnon
band for δ = 0, 0.1, and 0.25 in figures 3(d)-(f), respectively.
The Berry curvature exhibits higher densities around where
the eigenvalue reaches the peaks. We find a universal trans-
lation of magnon band [Figures 3(b)-(c)] and Berry curvature
[Figures 3(e)-(f)] due to the trimerization. Meanwhile, it is re-
markable that the introduction of trimerization breaks the C4

rotational symmetry of the Lieb lattice. It should be noted that
the Berry curvatures are positive in the carmine region (the
very bottom of the legend) in Fig. 3(f), which gives a zero
Chern number after integrating in the first Brillouin zone.

According to the nonzero Chern numbers, the universal
bulk-edge correspondence guarantees that a topological non-
trivial band is always accompanied by chiral edge states. To
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Figure 5. (a) Thermal Hall conductivity κxy as a function of δ1 and δ2 at temperature 0.5 for D = 0.1. (b) κxy as a function of δ at different
temperatures. The critical point is shown as a vertical dashed line. (c) Thermal Hall conductivity as a function of temperature for different δ.

better visualize the magnonic edge states, we solved the eigen-
value problem of a quasi-one-dimensional Lieb ribbon with
open boundary conditions. In Fig. 4, we present the evolution
of the edge-state spectrum. In an ideal Lieb lattice [Fig. 4(a)],
the middle bulk band is flat and the edge-state spectrum con-
nect the upper and lower bulk bands. The pair of edge states
have uniform slopes vg = ∂ε/∂k (i.e., group velocity) in both
band gaps, in other words, they propagate in the same direc-
tions: the edge state marked by red lines move from the top
left to the bottom right (vg < 0) and the edge state marked by
blue lines move from the bottom left to the top right (vg > 0),
respectively. Meanwhile, the edge states indicate that the
edge magnon currents at upper and down boundaries of the
nanoribbon have different motion velocities. The distinct ve-
locities arise due to the propagation directions are determined
by the directions of DMI vectors which, in turn, determine the
signs of the Berry curvatures. Simultaneously, the magnons
must transport energies from the hot side to the cold side
adhering to the second law of thermodynamics. In conclu-
sion, our observation confirms that the magnon currents tend
to flow predominantly along one of the boundaries, dynam-
ically changing with the direction of the temperature gradi-
ent. This behavior vividly reflects the chirality of the magnon
edge states [31]. At a small trimerization case (δ = 0.1) in
Fig. 4(b), only the bulk bands distort but does not affect the
existence of the edge states. Conversely, at a large trimeriza-
tion case (δ = 0.25) in Fig. 4(c), the edge states are all gapped
and trivial, as the Chern numbers of three bulk bands are zero.

Having demonstrated two distinct topological phases for
different trimerization parameters, we next turn to discuss
the topological properties of magnon THE. In Fig. 5(a), we
plot the magnon thermal Hall conductivity κxy (in unit of
JSkB/ℏ) at temperature 0.5 (in unit of kBT/JS) on the δ1−
δ2 plane, which shows the same phase boundaries as Fig. 2(a).
Overall, κxy decreases with an increasing

√
δ21 + δ22 . Even

though the magnon bands have zero Chern numbers and the
edge states become topologically trivial as a trivial magnonic
insulator, κxy does not vanish due to the bosonic statistics (c2
function in Eq. (6)) that nonuniformly weights the Berry cur-

vature. Furthermore, we plot κxy as a function of δ at four dif-
ferent temperatures in Fig. 5(b). It shows that κxy undergoes
a sharp decrease across the critical point of phase transforma-
tions, which is more striking at higher temperatures due to the
enhancement of magnon density. This abrupt change of κxy is
attributed to the vanishing of nontrivial edge states when the
system enters a trivial magnonic insulator phase from a mTI
phase, as the edge states provide the predominant contribution
to the thermal Hall conductivity. In addition, this saltation of
the thermal Hall conductivity can also be used to identify the
topological phase transition. We also find that this tendency,
the decrease of κxy with increasing δ, is independent of the
temperature. Finally, plots of the thermal Hall conductivity
κxy against the temperature for various trimerization parame-
ters δ are depicted in Fig. 5(c). As the temperature increases,
κxy shows a monotonically rising behavior with increasing
temperatures. Due to the low magnon current density near ab-
solute zero temperature, the thermal Hall conductivity is ex-
pected to be close to zero [74].

Thus far, we have shown a tunable topological magnon
excitation in trimerized Lieb lattice ferromagnets. How-
ever, the results presented above do not include the magnon-
magnon interactions, as we truncate the bosonic Hamilto-
nian to quadratic order within the linear spin-wave theory as
mentioned in Sec. II. Although noninteracting magnons are
considered here, it is straightforward to include the magnon-
magnon interactions based on our formulation to consider
other richer physics [79], since the magnon Hamiltonian
can be obtained within the Schwinger-boson representation
of spin operators by using self-consistent mean-field theory
[80]. Meanwhile the thermal Hall conductivities obtained
from both types of representations are approximately identi-
cal. Whereas, our results should be valid provided that the
temperature is lower than the Curie temperature.

Before concluding, we shall briefly discuss the candidate
materials for experimental realizations of our theoretical pre-
dictions. In recent years, theoretical studies on the Hubbard
models of strongly correlated quantum magnetism in the Lieb
lattice have been performed [81–84], which propose that the
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most prominent materials are weakly coupled CuO2 planes in
well-known high-temperature cuprate superconductors such
as YBa2Cu3O7, La2xSrxCuO4 or Bi2Sr2CaCu2O8 [85–88].
On the other hand, ferromagnetism in organic materials has
been a stirring research field for both fundamental interests
and practical applications [89, 90]. Based on density func-
tional theory calculation and tight-binding modeling, it has
been reported that the Lieb lattice ferromagnet could be exper-
imentally realized in the framework of covalent-organic com-
pounds [91, 92]. Recently, the realization of two-dimensional
magnets in designed structures based on superatomic lattices
of zirconium dichloride disks have been demonstrated by us-
ing first-principles calculations, including ferromagnetic col-
oring triangle, antiferromagnetic honeycomb, and ferromag-
netic kagome lattices [93]. Meanwhile the NNN DMI may
exist on the interface of a layered heterostructure composed of
these candidate materials and heavy metals [94]. In addition,
since the interactions are susceptible to the distances between
atoms, the trimerization on the Lieb lattice could be realized
from the lattice distortions induced by applying external me-
chanical strain or pressure [95–97]. However, more detailed
first-principles calculations and experiments are highly desire
to investigate the mTI in the future.

IV. CONCLUSION

In conclusion, we have investigated the magnon band topol-
ogy and thermal Hall effect in the two-dimensional Lieb lat-
tice ferromagnets with DMI. We have theoretically demon-
strated that the topological phase of the system can be tuned
by two lattice trimerization parameters, while the C4 rota-
tional symmetry of the Lieb lattice is broken. We also show
that the system can undergo a phase transition between a
magnonic topological insulator and a magnonic trivial insu-
lator with the change of nontrivial edge states. Furthermore, a
sharp change of the thermal Hall conductivity across the phase
boundaries was found, which provides a solid signature for
experimental detection of the phase transition. In this regard,
we hope that our studies could open thrilling perspectives for
experimentalists and be applied in future magnonic devices.
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