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Euler Discriminant of Complements of Hyperplanes

Claudia Fevola and Saiei-Jaeyeong Matsubara-Heo

Abstract

The Euler discriminant of a family of very affine varieties is defined as the locus
where the Euler characteristic drops. In this work, we study the Euler discriminant
of families of complements of hyperplanes. We prove that the Euler discriminant is a
hypersurface in the space of coefficients, and provide its defining equation in two cases:
(1) when the coefficients are generic, and (2) when they are constrained to a proper
subspace. In the generic case, we show that the multiplicities of the components can
be recovered combinatorially. This analysis also recovers the singularities of an Euler
integral. In the appendix, we discuss a relation to cosmological correlators.

1 Introduction

The study of Euler integrals has a long tradition dating back to works by Aomoto and
Gelfand, among others. For an extensive overview, we refer the readers to [3, 4] and references
therein. In this work, we are mainly interested in families of Euler integrals of the form

IΓ(z) =

∫
Γ

hk+1(α; z)s1 · · · hn(α; z)sn αν1
1 · · · ανk

k

dα1

α1

∧ · · · ∧ dαk

αk

, (1.1)

where α = (α1, . . . , αk) are coordinates on (C∗)k and hj(α; z) = z0j + z1jα1 + . . . + zkjαk for
j = k + 1, . . . , n are linear forms in the variables α and coefficients zij ∈ C. The exponents
sj, νi take on complex values, making the integrand multivalued. Twisted de Rham (co)-
homology provides a rigorous framework for defining Euler integrals. More precisely, the
integration contour Γ is a twisted k-cycle on the complement of hyperplanes

Xz = (C∗)k \ ({hk+1(α; z) = 0} ∪ · · · ∪ {hn(α; z) = 0}) , (1.2)

for fixed coefficients zij ∈ C in each linear form. The term twisted essentially means that
Γ also records the choice of which branch of the integrand to integrate. We refer to [31,
Section 3] for an introduction to twisted cycles and co-cycles. When the coefficients are
generic, the signed Euler characteristic (−1)k ·χ(Xz) of the hyperplanes complement counts
the local solutions of an A-hypergeometric system and determines the dimension of the top-
dimensional twisted de Rham cohomology group. For a discussion of these equalities in a
broader framework, we refer to [1, Theorem 1.1]. Furthermore, for Xz as in (1.2), the signed
Euler characteristic also coincides with the beta invariant of Xz, and with the number of
bounded regions if the arrangement is real. The latter is known as Varchenko’s conjecture
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[39], proved by Orlik–Terao [34]. The value of (−1)k · χ(Xz) for arrangements in general
position was computed in [4] via an explicit computation of a twisted cohomology basis of
logarithmic forms.

In [15, 16], it is proposed to explore the variation of the Euler characteristic to determine
the singularities of Feynman integrals, expressed in the form of Euler integrals with coeffi-
cients varying in a subspace of the space of physical parameters. This approach led to the
re-discovery of the Euler discriminant, which was originally introduced by Esterov [14] in the
context of studying singular solutions to polynomial systems. Here, we present a version of
this definition adapted to our framework, with the general definition provided in Section 2.1.
Let z denote the matrix of size (k + 1) × (n − k) whose columns are the coefficients of the
hyperplanes hj(α; z). We denote Z ⊂ C(k+1)(n−k) the subspace where these coefficients vary.
The Euler discriminant ∇χ(Z) is the locus of points z ∈ Z for which the Euler characteristic
(−1)k · χ(Xz) is smaller than its generic value. When Z is the entire coefficients space, the
Euler discriminant coincides with the zero locus of the principal A-determinant. This is a
polynomial in the variables zij from the theory of A-hypergeometric systems [19]. We refer to
Section 2.2 for its definition. In this article, we investigate the Euler discriminant associated
to the complement of hyperplanes Xz for two distinct choices of coefficients spaces:

(1). Z is C(k+1)×(n−k)∩{zij = 0 for some i = 0, . . . , k, j = k+1, . . . , n}: in this case, the Eu-
ler discriminant coincides with the vanishing locus of a principal A-determinant. The-
orem 3.9 describes the defining polynomial, expressed as a product of A-discriminants
corresponding to various faces of a polytope. Importantly, we address the combinatorial
problem of detecting the faces of the polytope that do not contribute to a discriminant.
We characterize them using a condition on an associated bipartite graph.

(2). Z is a general subvariety of C(k+1)×(n−k): in applications, coefficients are often con-
strained to a subspace of the full coefficients space. This setup is more general than
the previous case in the sense that the principal A-determinant is not defined for
general subvarieties. Using the Orlik-Solomon algebra associated to the family Xz,
Theorem 4.1 describes the defining polynomial of the Euler discriminant once again
through a determinantal formula.

As for Theorem 3.9, we note that [17, Proposition 4.4] determines the normal fan of the
principal A-determinant, whereas Theorem 3.9 further provides an explicit description of
its Newton polytope. In both cases (1) and (2) the matroid associated to the hyperplane
arrangement is connected to the Euler discriminant. A clear consequence of Theorems 3.9
and 4.1 is that the Euler discriminant corresponds to locus where the matroid changes. This
result aligns with [9, Theorem 1.3], where, motivated by the study of maximum likelihood
(ML) degree in algebraic statistics, it was shown that the signed Euler characteristic is a
matroid invariant. The paper also studies the resulting matroid stratification in several
small-dimensional cases. An interesting problem would be to relate this stratification to the
Euler stratification, defined in [41].

A key question raised in [16] concerns the relationship between the Euler discriminant
and the singular locus of the D-module annihilating the Feynman integral. This question
is particularly relevant in scattering amplitudes, where studying the differential equations
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that annihilate Feynman integrals has been a deeply explored method to be able to evaluate
these integrals. In Section 5, we formalize this question in the case of Euler integrals by
defining an appropriate D-module. Theorem 5.3 showes that the singular locus of such a
D-module and the Euler discriminant coincide in their codimension one part. Furthermore,
these loci are purely one-codimensional in the case of complements of hyperplanes, yielding
the expected equality in this case, as stated in Theorem 5.4.

Notably, examples of Euler integrals have appeared in theoretical cosmology [6, 8], where
their integrands often takes the form of products of linear forms as in 1.1. The Appendix
to this work offers a self-contained introduction to cosmological integrals as mathematical
objects. We will use these integrals as concrete examples of Euler integrals of linear forms
with coefficients parametrized by physical parameters and compute their Euler discriminant.
Outline. The structure of the paper is as follows. In Section 2.1, we introduce the general
notions of Euler discriminants and the principal A-determinant for Euler integrals. We
explore their relationship with the Cayley configuration (Theorem 2.2). Section 3 focuses
on the principal A-determinant for the choice of Z as in (1). We recall the definition of
edge polytope and associated bipartite graph, which are central to proving Theorem 3.9. An
implementation to compute the principal A-determinant from Theorem 3.9 is available at

https://mathrepo.mis.mpg.de/EulerDiscriminantHyperplanes (1.3)

Subsection 3.4 presents a method for computing the multiplicities of the components. Sec-
tion 4 examines the Euler discriminant for coefficients as in (2). In Section 5, we relate
the Euler discriminant to the singular locus of a D-module, proving in Theorem 5.1 that
these loci coincide in codimension one. Finally, the Appendix provides an introduction to
cosmological integrals, illustrating their connection to Euler integrals of linear forms. This
includes computational examples of Euler discriminants for cosmological integrals.

2 Euler discriminant and principal A-determinant

2.1 Euler discriminant

Let f0, . . . , fℓ be Laurent polynomials, where each fi is given as

fi(α; z) =
∑
u∈Ai

zu,iα
u,

with variables α ∈ (C∗)n and fixed monomial support represented by a set Ai ⊂ Zn. The
coefficients zi = (zu,i)u∈Ai

take values in CAi := C|Ai|, and we assume that
⋃ℓ

i=0Ai spans the
ambient lattice Zn. Once coefficients zi ∈ CAi are fixed, the Laurent polynomials fi(α; z)
define a hypersurface in the algebraic torus (C∗)n:

VA,z = V(C∗)n

( ℓ∏
i=0

fi( · ; z)

)
=

{
α ∈ (C∗)n |

ℓ∏
i=0

fi(α; z) = 0

}
(2.1)
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Here, f( · ; z) stands for the Laurent polynomial f(α; z) viewed as a regular function on
α ∈ (C∗)n. Consider Z ⊂ CA, a smooth subvariety of the full parameter space CA :=
CA0 × · · · × CAℓ . For each z ∈ Z, we set

Xz := (C∗)n \ VA,z. (2.2)

We denote χz the signed Euler characteristic (−1)n · χ (Xz), and χ∗ the maximal value
max{χz | z ∈ Z}. The Euler discriminant ∇χ(Z) is the locus

∇χ(Z) := {z ∈ Z | χz < χ∗}. (2.3)

If follows from [16, Theorem 3.1] that ∇χ(Z) is a closed subvariety of Z.

Remark 2.1. Esterov first defined the Euler discriminant in [14], and it was later applied
to Feynman integrals in [16]. Esterov’s definition, in particular, also takes into account the
multiplicities of each component: the Euler discriminant in [14, Definition 3.1] is the divisor
given by the formal sum of the closure of the codimension-one strata Pi in Z where the Euler
characteristic χz for z ∈ Pi is equal to a fixed value χi. The multiplicity of each component
is defined as the drop in Euler characteristic χ∗ − χi. This definition is motivated by the
notion of multiplicity, which was established for the generic setting where the subvariety Z
is the entire parameter space, c.f. Theorem 2.5. ⋄

The Cayley configuration of {Ai}0≤i≤ℓ is represented by the columns of the (n + ℓ) ×∑ℓ
i=0 |Ai| matrix given by

0 · · · 0 1 · · · 1 0 · · · 0
...

... · · · ...
0 · · · 0 0 · · · 0 1 · · · 1

A0 A1 Aℓ

 . (2.4)

The Cayley configuration also has a natural interpretation as the monomial support of a
multivariate Laurent polynomial in the variables β = (β1, . . . , βℓ) and α as above, given by

f(α, β) := f0 +
ℓ∑

i=1

βifi(α). (2.5)

The following result relates the Euler characteristic of the variety defined by the Laurent
polynomials f0, . . . , fℓ and the one given by f .

Theorem 2.2. Let f0, . . . , fℓ ∈ C[α±1
1 , . . . , α±1

n ] and set T := SpecC[β±1
1 , . . . , β±1

ℓ ]. Then

χ
(
V(C∗)n(f1 · · · fn)

)
= (−1)ℓ · χ

(
V(C∗)n×T (f)

)
.

Proof. By an induction on ℓ, the proof is reduced to the case that ℓ = 1. Hence, let ℓ = 1
and denote T := (C∗)n × T . We consider the fiber bundle

π : T \ (VT (f0 + β1f1) ∪ VT (f0f1)) → (C∗)n \ V(C∗)n(f0f1)
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defined by π(α, β1) = α. Any fiber π−1(α) is a complex plane with two points removed. By
the multiplicative property of Euler characteristic, we obtain

χ((C∗)n \ V(C∗)n(f0f1)) = −χ (T \ (VT (f0 + β1f1) ∪ VT (f0f1))) . (2.6)

The excision property of the Euler characteristic implies the following equalities:

χ (T \ VT (f0 + β1f1)) =χ (T \ (VT (f0 + β1f1) ∪ VT (f0f1)))

+ χ (VT (f0f1) \ VT (f0 + β1f1)) ; (2.7)

and

χ (VT (f0f1) \ VT (f0 + β1f1)) =χ (VT (f0) \ VT (f1))

+ χ (VT (f1) \ VT (f0)) = 0. (2.8)

Here, the last equality follows from the equality VT (f1) \VT (f0) = V(C∗)n(f1) \V(C∗)n(f0)×T
and χ(T ) = 0. In view of equations (2.6),(2.7) and (2.8), the theorem for ℓ = 1 follows.

In general, for a morphism of algebraic varieties π : F → Z, we define the Euler discrim-
inant ∇π

χ(Z) by the formula (2.3) where we replace χz by |χ(π−1(z))|. Using this notation,
we can state the following corollary.

Corollary 2.3. Let Z be a complex algebraic variety, and f0, . . . , fℓ : (C∗)n × Z → C
regular functions. Consider the projections π0 : (C∗)n × Z \ V (f0 · · · fℓ) → Z and π :
(C∗)n+ℓ × Z \ V (f0 + β1f1 + · · · + βℓfℓ) → Z. Then, one has the equality ∇π0

χ (Z) = ∇π
χ(Z).

2.2 Principal A-determinant

We begin by recalling a definition of principal A-determinant [19, Chapter 10]. We follow the
notation of Section 2.1, except that we restrict to the case of a unique Laurent polynomial
f = f0 with monomial support A = A0 ⊂ Zn such that the first entry of any u ∈ A is 1. The
A-discriminant variety ∇A is defined as the closure of the image of the incidence variety{

(α, z) ∈ (C∗)n × CA | ∂f
∂αi

(α; z) = 0, i = 1, . . . , n

}
through the natural projection CA×(C∗)n → CA. The A-discriminant variety is a proper
homogeneous subvariety of CA. When ∇A is a hypersurface, we say A is non-defective, and
the reduced defining polynomial of ∇A is called the A-discriminant, denoted by ∆A. If ∇A

is not a hypersurface, we set ∆A = 1.
Let Conv(A) be the polytope obtained as the convex hull of the columns of A in

Rn = R⊗Z Zn. For a face Q of Conv(A), we denote

fQ(α; z) :=
∑

u∈A∩Q

zuα
u, (2.9)

where A ∩Q denotes the elements u of A such that u ∈ Q.

5



Next, we recall the notion of multiplicity necessary to define the principal A-determinant.
Let S ⊂ Zn be an abelian semigroup admissible in the sense of [19, Chapter 5, Definition 3.4].
We write Ξ(S) for its group completion and ΞR for Ξ(S) ⊗Z R. Let K(S) (resp. K+(S))
denote the convex hull of S (resp. S \ {0}) in ΞR. The subdiagram volume u(S) is the
normalized volume of the closure of the set K(S) \K+(S), denoted K−(S), with respect to
the volume form induced by Ξ(S), see [19, Chapter 3, §3.D]:

u(S) := volΞ(S)(K−(S)). (2.10)

For the trivial semigroup S = {0}, we set u(S) := 1. We write S(A) for the subsemigroup of
Zn generated by A and 0. In our setup, a face Q of Conv(A) is identified with S(Q) which
is the subsemigroup of S(A) generated by A ∩Q and 0.

Given a face Q of Conv(A), we define the number i(Q,A) as the index

i(Q,A) := [Zn ∩ LinR(Q) : LinZ(A ∩Q)]. (2.11)

Here, for a subset B ⊂ Zn, LinR(B) (resp. LinZ(B)) denotes the vector subspace spanned
by B in Rn = R ⊗Z Zn (resp. Zn). We define a semigroup S(A)/Q as the subsemigroup
of Zn/Zn ∩ LinR(Q) generated by A and 0. The principal A-determinant is defined as the
product over all faces Q < Conv(A):

EA :=
∏

Q<Conv(A)
Q:non-defective

∆
mQ

A∩Q, (2.12)

where the multiplicity mQ is given by mQ = i(Q,A) · u(S(A)/Q).

Proposition 2.4. The degree of the principal A-determinant equals n · volZ(Conv(A)).

Proof. Let us recall the definition of the principal A-determinant of f as the A-resultant RA

([19, Chapter 8, §2]):

EA = RA

(
f, α1

∂f

∂α1

, . . . , αn
∂f

∂αn

)
∈ C[zu ; u ∈ A]. (2.13)

The equivalence with (2.12) is proved in [19, Chapter 10, Theorem 1.2]. For a non-zero com-
plex number a, the principal A-determinant EA is multiplied by an·volZ(Conv(A)) by replacing
f by a · f ([19, Corollary 2.2, Chapter 8]). This proves the proposition.

The multiplicity mQ can be interpreted in terms of the difference of Euler characteristics
of very affine varieties [14, Theorem 2.36]. Although the following theorem is essentially
known in the literature, we present a proof that uses Kashiwara’s local index theorem [25].

Theorem 2.5. For Q a non-defective face of Conv(A), the multiplicity mQ is given by

χz∗ − χzQ ,

where z∗ ∈ CA \{EA = 0} and zQ ∈ {z ∈ CA | ∆A∩Q(z) = 0} are generic points.
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Proof. Firstly, note that the characteristic cycle for the GKZ system MA(c) with generic
parameter c is given by

m0T
∗
CA CA +

∑
Q<Conv(A)

mQT
∗
∇A∩Q

CA,

where T ∗ denotes the conormal bundle of ∇A∩Q. This result is stated in [30, 6.3] and its
proof can be read off from the proof of [18, Theorem 4.6]. In view of Kashiwara’s local index
formula [25] (see also [11, Theorem 4.3.25]), it follows that χzQ = m0 −mQ. This concludes
the proof since m0 = χz∗ .

Let vol(A) denote the lattice volume of the polytope Conv(A). The proof of the following
theorem is available in [2, Theorem 13], establishing a connection between the vanishing locus
of the principal A-determinant and the decrease in the Euler characteristic of Xz.

Theorem 2.6. The sigend Euler characteristic (−1)n · χ(Xz) is equal to vol(A) if and only
if z ∈ CA \ VCA(EA). Furthermore, when EA(z) = 0, we have (−1)n · χ(Xz) < vol(A).

Note that, when the subvariety Z as in (2.3) is the entire parameter space, we have
∇χ(CA) = VCA(EA). The following sections will concentrate on the case where the very
affine variety Xz is the complement of hyperplanes. We will present formulas for the Euler
discriminant and the principal A-determinant.

3 Principal A-determinant of a sparse arrangement

3.1 Sparse hyperplane arrangements

Any hyperplane arrangement in Pk = ProjC[α0, . . . , αk] with n+ 1 hyperplanes is specified
by a point in the Grassmannian Gr(k+ 1, n+ 1) which is realized as a quotient of the space
of (k+1)× (n+1) matrices of rank k+1 by the left multiplication by GL(k+1,C). Namely,
a point z ∈ GL(k + 1,C) represented by a (k + 1) × (n + 1) matrix (zij)i=0,...,k

j=0,...,n
defines a

collection of linear forms {hj(α; z) := z0jα0 + · · · + zkjαk}nj=0, whose vanishing locus defines
a hyperplane arrangement

Az :=
n⋃

j=0

Hj, (3.1)

where Hj := {α ∈ Pk | hj(α; z) = 0}. Note that Hj can be the whole projective space Pk

which we do not exclude. In this paper, we work on an open affine chart U of Gr(k+1, n+1)
where the matrix consisting of the first k + 1 columns of the matrix is invertible. By
GL(k + 1,C) action, any point in U is given by a (k + 1) × (n+ 1) matrix

[ Ek+1 | z ] where z =

 z0k+1 · · · z0n
...

. . .
...

zkk+1 · · · zkn

 , (3.2)
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and Ek+1 stands for the unit matrix of size k + 1. We identify U with the Euclidean space
C(k+1)(n−k). Consistently with Section 2.1, for any matrix z ∈ C(k+1)×(n−k), we set

Xz := Pk \ Az. (3.3)

We are interested in the study of its Euler discriminant ∇χ(Z). By [35, Theorem 3.3.7],
the signed Euler characteristic of Xz is given by a combinatorial invariant called the beta
invariant. The beta invariant is also equal to the number of bounded regions when the
hyperplane arrangement is real ([35, Theorem 3.3.9]). Therefore, the Euler discriminant in
such a case describes the locus for which some of the bounded chambers shrink.

When Z = C(k+1)(n−k), the Euler discriminant coincides with the vanishing locus of a
principal A-determinant which was described in [19, Chapter 9, §1]:

EA(z) =
∏

I,J :|I|=|J |

det(zI,J), (3.4)

where the product runs over all subsets I, and J , of the set of rows, respectively columns,
of the matrix z from (3.2).

We will focus on the case of a general subvariety Z in Section 4. In this section, we
explore the case when Z is an intersection of coordinate hyperplanes. Also in this scenario,
the Euler discriminant is given by the vanishing locus of a principal A-determinant.

Given a subspace Z as above, we define a bipartite graph G with vertex set V (G) =
{0, 1, . . . , n} and edge set E(G) = {ij | zij ̸= 0}. In what follows, we write zG for a point
z ∈ Z to stress that the non-zero entries are specified by the edge set of the graph G. In
the context of graph theory, zG is called the Edmonds matrix of G [38, 12.8.3]. We assume
that any vertex of G is an endpoint of an edge. For a subset T of the vertex set V (G), the
symbol GT denotes the subgraph of G induced by T . More precisely, GT denotes a subgraph
obtained by deleting all the vertices in V (G)\T and the edges connected to them. The graph
neighborhood N(G;T ) is the set of vertices in V (G) which are connected to an element of T
by an edge of G. Let us set V1 := {0, 1, . . . , k} (the left vertex set) and V2 := {k + 1, . . . , n}
(the right vertex set).

By assigning a variable to each vertex i ∈ V (G), we consider the vector space Rn+1 and
write ei for its i-th standard unit vector. Here by convention, we note that e0 = (1, 0, . . . , 0).
Consider the set

AG := {aij := ei + ej | ij ∈ E(G)}. (3.5)

Then, the convex hull of AG is called an edge polytope of G and denoted by PG.
We assume that G is a connected graph. Otherwise, G is decomposed into a disjoint union

G1 ⊔ · · · ⊔ Gℓ with each Gi connected. The associated decomposition of vertices V (G) =
V (G1) ⊔ · · · ⊔ V (Gℓ) induces a direct product decomposition Rn+1 = RV (G1) × · · · × RV (Gℓ).
In this case, the edge polytope of G is the direct product of those of G1, . . . , Gℓ:

PG = PG1 × · · · × PGℓ
. (3.6)

For a comprehensive introduction to polytopes, we refer to [42]. For a polytope P ⊂ Rn+1,
a face F ⊂ P is the set of points in the polytope P that maximizes a linear functional
ϕ : Rn+1 → R. The faces of dimension dim(P ) − 1 are called facets, where the dimension of
a face is the dimension of the affine space spanned by its points.
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Remark 3.1. It is clear that the edge polytope PG is the convex hull of the monomial
support of the polynomial arising from the Cayley configuration of the monomial supports
of the linear forms hj, see (2.5). More explicitly, consider the polynomial ring C[α] where
α = (α0, . . . , αk, αk+1, . . . , αn), then the polynomial associated to AG is

fG(α; z) :=
∑

ij∈E(G)

zijαiαj. (3.7)

When setting αk+1 = 1 we get precisely the polynomial (2.5) in the context of this section.
Corollary 2.3 then guarantees that to study the Euler discriminant of Xz we can look at the
principal A-determinant for the matrix AG. ⋄

3.2 Face structure of edge polytope of a bipartite graph

Ohsugi and Hibi [33] gave an explicit description of the facet structure of the edge polytope
PG associated to a bipartite graph G, and also investigated its dimension. The following
result resumes the facet structure of PG, as stated in [33, Theorem 1.7]:

Theorem 3.2 ([33]). Let Q be a facet of PG. Then, Q is one of the following types:

(a) Q is associated to an ordinary vertex i0, i.e., a vertex such that GV (G)\{i0} is connected.
In this case, F is given by the convex hull of a set {aij | i, j ̸= i0}.

(b) F is associated to an acceptable subset ∅ ̸= T ⊂ V1, i.e., a subset such that both
GT∪N(G;T ) and GV (G)\(T∪N(G;T )) are connected and the latter one is non-trivial in the
sense that it has at least one edge. In this case, F is given by the convex hull of a set
{aij | ij ∈ E(GT∪N(G;T )) ∪ E(GV (G)\(T∪N(G;T )))}.

Thus, any facet of PG is of the form PGI∪J
for some I ⊂ V1 and J ⊂ V2, or PGI1∪J1

×PGI2∪J2

for some I1, I2 ⊂ V1 and J1, J2 ⊂ V2. In each case, the graphs GI∪J , GI1∪J1 and GI2∪J2 are all
connected. Note that a face of the product PGI1∪J1

× PGI2∪J2
is a product of faces of PGI1∪J1

and PGI2∪J2
. In the next two results, we characterize the facet structure of an edge polytope.

In particular, the following lemma is an immediate consequence of consecutively considering
facets of a facet of PG and applying Theorem 3.2.

Lemma 3.3. For any face Q of PG, there exist disjoint subsets I1, . . . , Iℓ ⊂ V1 and
J1, . . . , Jℓ ⊂ V2 such that

1. GIi∪Ji is connected for any i = 1, . . . , ℓ

2. Q = PGI1∪J1
× · · · × PGIℓ∪Jℓ

Conversely, the next lemma shows that any pair (I, J) ∈ V1 × V2 gives rise to a face of PG.
We denote QI,J the convex hull of the set {aij | ij ∈ E(GI∪J)}.

Lemma 3.4. Let ∅ ̸= I ⊂ V1 and ∅ ̸= J ⊂ V2. Then, QI,J is a face of the polytope PG.
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Proof. We may assume that {aij | ij ∈ E(GI∪J)} is non-empty. Let ϕi : Rn+1 → R be the
i-th coordinate projection. Then, it is easily seen that the linear functional that maximize
the face QI,J is given by ϕI,J :=

∑
i∈I
ϕi +

∑
j∈J

ϕj .

Example 3.5 (n = 6, k = 2). Let G be the bipartite graph with V (G) = {0, 1, . . . , 6},
and E(G) = {03, 04, 13, 15, 16, 24, 25, 26}. This graph will serve as running example for the
results in the rest of the paper.

1

2

0
4

5

3

6

G = AG =



03 04 13 15 16 24 25 26

0 1 1 0 0 0 0 0 0
1 0 0 1 1 1 0 0 0
2 0 0 0 0 0 1 1 1
3 1 0 1 0 0 0 0 0
4 0 1 0 0 0 1 0 0
5 0 0 0 1 0 0 1 0
6 0 0 0 0 1 0 0 1


Figure 1: The bipartite graph G and the matrix whose columns give the set AG from (3.5).

The edge polytope PG ⊂ R6 is the 5-dimensional polytope obtained as the convex hull
of the columns of the matrix AG in Figure 1. We computed using Oscar.jl [36] that the
f -vector is (8, 26, 41, 31, 10) and the normalized volume vol(PG) equals 5. One can check
that a facet of such a polytope is given by PGI1∪J1

for I1 = {0, 1, 2} and J1 = {3, 4, 6}, while
one of the codimension-2 faces is PGI2∪J2

for I2 = {0, 1, 2} and J2 = {3, 4}. ⋄

3.3 Principal A-determinant of a sparse arrangement

In what follows, we will use the previous results on the face structure of an edge polytope
PG to derive an explicit formula for the corresponding principal A-determinant, namely the
one for the polynomial fG(α; z) defined in Remark 3.1.

A subset m of E(G) is called a matching if no pair of edges in m is adjacent, i.e., they
share a common vertex. We say that m is a perfect matching, if it covers the whole set V (G).
While, we say that m saturates V1 if it covers the whole V1. The following characterization
of the existence of a perfect matching is due to Hall ([32, Theorem 5.2]):

Theorem 3.6 ([32]). Suppose that |V1| ≤ |V2|. Then, the graph G has a matching which
saturates V1 if and only if, for any subset W ⊂ V1, it holds that |W | ≤ |N(G;W )|.

In view of Theorem 3.6, let us assume |V1| = |V2|. We define the following condition on G:

(∗) |V1| = 1 and G is connected, or |V1| > 1 and for any non-empty, proper subset W of
V1, the inequality |W | < |N(G;W )| holds.

Note that, there is a clear relation between the hypotesis on the matching on the graph
and the determinant of the Edmonds matrix zG. In fact, it is readily seen that G has a
perfect matching if and only if the determinant det(zG) is not identically zero. Furthermore,
condition (∗) corresponds to the irreducibility of the polynomial det(zG):

10



Proposition 3.7. Let G be a bipartite graph with |V1| = |V2|. Then, det(zG) is a non-zero ir-
reducible polynomial in the variables zij over any field if and only if G satisfies condition (∗).

Proof. Suppose that G does not satisfy (∗). When |V1| = 1, it is clear that det(zG) is zero
since G is disconnected, hence there is no edge. Suppose that |V1| ≥ 2. By our assumption,
we can find a non-empty proper subset W of V1 such that |W | = |N(G;W )|. By the definition
of graph neighborhood, the matrix zG takes the following block-triangular form:

zG =
W

V1 \W

M V2 \M

∗

∗ ∗

0
(3.8)

where M := N(G;W ). It follows that det(zG) is either reducible or zero. The argument
above shows the necessary condition.

Let us prove that the condition (∗) implies that det(zG) is non-zero and irreducible.
First of all, let e = ij ∈ E(G) and write G′ for the subgraph of G obtained by removing
the vertices on e. Let i be the vertex on e which lies on V1. For any subset W of V1 \ {i},
we have |N(G′;W )| ≥ |N(G;W )| − 1. Therefore, condition (∗) implies that the graph G′

verifies the hypothesis of Theorem 3.6. By cofactor expansion, we obtain that

det(zG) = ±ze · det(zG′) + (terms that do not contain zij). (3.9)

Since det(zG′) ̸= 0, we proved that zij appears in det(zG) for any edge e = ij of G. Now,
G having a perfect matching is equivalent to each connected component of G having a
perfect matching. If G has a connected component H that is strictly smaller than G, we
obtain |N(G;V1 ∩ V (H))| = |V1 ∩ V (H)|. This contradicts the condition (∗). Hence, G is
connected. Let det(zG) = p(z) · q(z) be a decomposition. Fixing an edge e = ij of G we
may assume that zij appears in p(z). By the definition of determinant, any element zi′j
(i′j ∈ E(G)) or zij′ (ij′ ∈ E(G)) must appear in p(z). The connectedness of G proves that
any variable zij (ij ∈ E(G)) belongs to p(z), hence q is a scalar.

Before presenting the main theorem of this section, we must first introduce the following
lemma, which is established using linear algebra.

Lemma 3.8. For a connected bipartite graph G, one has an identity

Zn+1 ∩ KerRϕ =
∑

ij∈E(G)

Z · aij, (3.10)

where ϕ := ϕ0 + · · · + ϕk − ϕk+1 − · · · − ϕn and aij as in (3.5).

Proof. By definition, the right-hand side of (3.10) is contained in the left-hand side. On the
other hand, for any 0 ≤ i ≤ k and k + 1 ≤ j ≤ n, a vector ei + ej belongs to the right-hand
side of (3.10). In fact, there is a sequence i1j1, i2j1, i2j2, . . . , iℓjℓ ∈ E(G) with i1 = i and
jℓ = j since G is connected. It follows that ei +ej = ai1j1 −ai2j1 +ai2j2 −· · ·+aiℓjℓ . Since any
element of the right-hand side of (3.10) can be written as a Z-linear combination of vectors
ei + ej, the lemma follows.
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We can finally state the main result of this section.

Theorem 3.9. Let G be a connected bipartite graph. Then, one has a formula

EAG
(z) =

∏
I,J :|I|=|J |,

GI∪J is connected and (∗)

det(zI,J)u(S(AG)/QI,J ), (3.11)

where the product runs over all non-empty subsets I ⊂ V1 and J ⊂ V2, and zI,J denotes the
submatrix of zG obtained by selecting the rows in I and the columns in J .

Proof. To simplify the notation, we write A for AG below. Let Q be a face of PG and let H
be the corresponding subgraph of G, i.e., PH = Q as in Lemma 3.3. We denote f = fG(α; z)
as in (3.7). We divide the proof into three main cases.

(i) The subgraph H has several connected components: let H1 = GI1∪J1 , . . . , Hℓ = GIℓ∪Jℓ
be its connected components (ℓ ≥ 2). The face polynomial, defined in (2.9), is given

by fQ =
∑ℓ

a=1

(∑
i∈Ia,j∈Ja zijαiαj

)
. Let us denote αIa = (αi)i∈Ia and αJa = (αi)i∈Ja

for a = 1, . . . , ℓ. Then, the vanishing locus of (A ∩ Q)-discriminant is given by the
Zariski closure of the set:

∇A∩Q =
ℓ⋂

a=1

{
z | ∃(αIa , αJa) ∈ (C∗)Ia × (C∗)Ja : αIa · zIa,Ja = zIa,Ja · αT

Ja = 0
}
.

Therefore, by definition, ∇A∩Q is the union of proper varieties. It follows that the
variety ∇A∩Q has codimension higher than one. Thus, the (A ∩Q)-discriminant is 1.

(ii) The subgraph H is connected and of the form H = GI∪J with |I| < |J |:
we distinguish two sub-cases.

(ii-a) We assume there exists a matching m which saturates I: let us take a generic
point z from the (A∩Q)-discriminant variety. By definition, there exists a row vector
αI ∈ (C∗)I such that αI ·zI,J = 0, which means that the set of row vectors of zI,J is lin-
early dependent. Therefore, for any subset J1 ⊂ J with |J1| = |I|, the minor det(zI,J1)
must vanish at z. Let J1 ⊂ J be the subset consisting of j ∈ J that appear in m, then
det(zI,J1) is not a zero polynomial. On the other hand, there must exist a vertex i1 ∈ I
which is connected to j2 ∈ J \J1 since GI∪J is connected. We write j1 ∈ J1 for the ver-
tex paired with i1 in m. We define the new matching m′ := (m \ {(i1, j1)}) ∪ {(i1, j2)}
and set J2 := (J1 \ {j1}) ∪ {j2}. We obtain that det(zI,J2) is not a zero polynomial.
Summing up the argument above, the (A ∩ Q)-discriminant variety is contained in
the intersection {det(zI,J1) = 0} ∩ {det(zI,J2) = 0}. We conclude that the (A ∩ Q)-
discriminant variety has codimension higher than one.

(ii-b) We assume that there there is no matching m that saturates I: by definition of

the (A ∩ Q)-discriminant, there exists a vector αI ∈ (C∗)I such that αI · zI,J = 0.
Theorem 3.6 and the connectedness of GI∪J imply that there exists a non-empty proper
subset ∅ ̸= W ⊊ I such that |N(GI∪J ;W )| < |W |. It follows that

α(I\W ) · zI\W,J\N(GI∪J ;W ) = 0.

12



Since |I\W | < |J\N(GI∪J ;W )|, there exist subsets I ′ ⊂ I\W and J ′ ⊂ J\N(GI∪J ;W )
such that |I ′| < |J ′| and GI′∪J ′ is a connected component of G(I\W )∪(J\N(GI∪J ;W )). It
follows by construction that α(I′) · zI′,J ′ = 0. If there exists a matching m of GI′∪J ′

which saturates I ′, the same argument as (ii-a) shows that the (A∩Q)-discriminant has
codimension higher than one. If there is no such matching m, we repeat the argument
above to find smaller subsets I ′′, J ′′ such that |I ′′| < |J ′′| and GI′′∪J ′′ is connected.
Repeating this argument eventually yields the case (ii-a).

(iii) The subgraph H is connected and of the form H = GI∪J with |I| = |J |:
we distinguish two sub-cases.

(iii-a) The graph H = GI∪J does not satisfy (∗): in view of the proof of Proposition
3.7, zI,J is decomposed into a block triangular form as in (3.8). If z is a generic point
of the (A∩Q)-discriminant variety, there exists αI ∈ (C∗)|I| and αJ ∈ (C∗)|J | such that
αI · zI,J = 0 and zI,J · αT

J = 0. Let zI1,J1 be its upper-left block and let det(zI2,J2) be
its lower-right block. Then, we obtain zI1,J1 · αT

J1
= 0 and αI2 · zI2,J2 = 0. This means

that the F -discriminant variety is contained in {det(zI1,J1) = det(zI2,J2) = 0}. Thus,
the A ∩Q-discriminant is 1.

(iii-b) The graph H = GI∪J satisfies (∗): it is readily seen that the A∩Q-discriminant
variety is contained in {det(zI,J) = 0}. Let us prove the other inclusion. For any
i ∈ I and j ∈ J , condition (∗), together with Theorem 3.6, implies that GI∪J\{i,j}
has a perfect matching. This means that the (i, j)-cofactor ∆ij of the matrix zI,J is a
non-zero polynomial. It follows from Laplace expansion of matrices that {det(zI,J) =
0} \ ∪i,j{∆ij = 0} is contained in the A ∩ Q-discriminant variety. Taking the Zariski
closure, we conclude that the A ∩Q-discriminant is precisely given by det(zI,J).

Formula (3.11) follows since i(QI,J , A) = 1 by Lemma 3.8. Note that GI∪J is connected
when the condition (∗) is satisfied.

Note that, in [17, Proposition 4.4], the secondary fan, i.e., the normal fan of the principal
A-determinant, is determined as the normal fan of a polynomial f which is different from
(3.11). The polynomial f is defined as a product of the form (3.11) where the indices I, J
run over pairs that satisfy the condition of Theorem 3.6. The reduced polynomial of f is
identical to that of (3.11).

Example 3.10 (n = 6, k = 2). Let G be as in Example 3.5. Figure 2 shows the matrix
zG and the hyperplane arrangement associated to it. Using Theorem 4.1 we compute the
factors of the principal A-determinant EAG

(zG):

z303z
3
13z

3
04z

3
24z

2
15z

2
25z

2
16z

2
26(z15z26 − z16z25)

2(z03z24z15 + z13z04z25)(z03z24z16 + z13z04z26). (3.12)

This is a polynomial of degree 30 = 6 · 5, consistently with Proposition 2.4. Exponents are
computed by the method as in Example 3.12 in §3.4. Clearly, the factors of the form zij
correspond to vertices of the polytope and therefore to minors determined by subsets I = {i}
and J = {j}. The three non-linear factors correspond respectively to the subgraphs displayed
in Figure 3. Choosing vertices, for instance, in the sets I = {0, 1, 2} and J = {4, 5, 6} leads to
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zG =

z03 z05 = 0

z13

z04

z15 z16

z24 z25 z26

z06 = 0

z14 = 0

z23 = 0

1

2

0

4 53 6

h3

h4

h6

h5

α1

α2

Figure 2: The matrix zG with G as in Example 3.5 and the induced hyperplane arrangement.

1

2

5

6 1

2

4

5

30

1

2

0

4

6

3

Figure 3: Subgraphs Q12,56, Q012,345, Q012,346.

a non-connected graph and therefore to a reducible determinant of the associated Edmonds
matrix, e.g., zI,J = z04(z15z26 − z16z25). The choice I = {0, 1} and J = {5, 6} corresponds to
a non-connected diagram which induces an identically vanishing determinant. Finally, the
subgraph GI∪J with I = {0, 1} and J = {5, 6} is an example of a connected graph which
does not verify (∗), leading again to an identically zero determinant.

h3

h4

h5 = h6

h3

h4

h6

h5

h3

h4

h6

h5

Figure 4: The degeneration of the generic hyperplane arrangement in Figure 2 to coefficient
choices on the subspaces defined by the last three factors of EAG

(zG) in (3.12).

Figure 2 (right) shows the hyperplane arrangement induced by a choice of coefficients
zij in the matrix zG that do not belong to the locus {EAG

(zG)} = 0. In Figure 4 instead
we show the hyperplane arrangements associated to choices of coefficients which lie in the
vanishing locus of the principal A-determinant. ⋄

3.4 Subdiagram volume from bipartite graphs

Computing the subdiagram volume based on its definition, c.f. (2.10), is often nontrivial
and may pose computational challenges. We present a method tailored to the case where
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the matrix A arises from a bipartite graph G, exploiting the graph’s combinatorial structure.
This approach uncovers intriguing connections with non-homogeneous toric ideals.

Let G be a bipartite graph. By abuse of notation, we write AG : ZE(G) → Kerϕ ⊂ Zn+1 =
ZV (G) for the linear map which sends e(ij) to aij defined by (3.5), where e(ij) denotes the
unit vector corresponding to the edge ij ∈ E(G), and ϕ as in Lemma 3.8. The kernel of the
map AG is naturally identified with the first homology group of the graph G:

0 −→ H1(G,Z) −→ ZE(G) AG−−→ Kerϕ −→ 0. (3.13)

Indeed, a cycle C := {i1j1, i2j1, i2j2, . . . , iℓjℓ, i1jℓ} ⊂ E(G) defines an element of the kernel
of AG by taking the linear combination:

e(i1j1) − e(i2j1) + e(i2j2) − · · · + e(iℓjℓ) − e(i1jℓ). (3.14)

The homology space H1(G,Z) is furthermore generated by the independent cycles of G. Let
H be a connected subgraph of G defined by a non-defective face Q < PG. Therefore, the
subgraph H also admits a short exact sequence as in (3.13). The quotient of these short
exact sequences determines another short exact sequence:

0 −→ H1(G,H;Z) −→ ZE(G)\E(H) AG/H−−−→ Zn+1 /LinZ(Q) −→ 0. (3.15)

The image of ZE(G)\E(H)
≥0 defines the semigroup S(A)/Q. Our goal is to identify this short

exact sequence with the one representing the homology of a specific graph. To achieve
this, we denote G/H the graph obtained from G by contracting the edges in E(H). The
kernel of the map AG/H can be identified with the homology group H1(G/H;Z) via the
identification of homology groups H1(G,H;Z) ≃ H1(G/H;Z). Note that an even cycle of
G/H is represented by a set {i1j1, i2j1, i2j2, . . . , iℓjℓ, iℓ+1jℓ} ⊂ E(G) \ E(H) where i1 and
iℓ+1 are identified in the quotient G/H. Likewise, an odd cycle of G/H is represented by
{i1j1, i2j1, i2j2, . . . , iℓjℓ} ⊂ E(G) \E(H) where i1 and jℓ are identified in the quotient G/H.
Analogously to (3.14), every even cycle defines an element of KerAG/H , whereas an odd
cycle, represented as above, gives rise to a sum

e(i1j1) − e(i2j1) + e(i2j2) − · · · + e(iℓjℓ).

On the other hand, there is an identification ZV (G)\V (H) ≃ Zn+1 /LinZ(Q) which is induced
by the natural embedding ZV (G)\V (H) ↪→ Zn+1 = ZV (G).

Summing up the arguments above, the short exact sequence in (3.15) can be identified
with the canonical short exact sequence associated to the homology group of the graph G/H:

0 −→ H1(G/H;Z) −→ ZE(G/H) AG/H−−−→ ZV (G)\V (H) −→ 0. (3.16)

By construction, the matrix AG/H is obtained from AG by removing columns labeled by
E(H) and rows labeled by V (H). We have proved the following

Proposition 3.11. Let G be a bipartite graph, and let PG denote its edge polytope. Let A
be the matrix whose columns are the vertices of PG. Then for any non-defective face Q of
PG, the following holds:

u(S(A)/Q) = volZ(Conv({0} ∪ AG/H)) − volZ(Conv(AG/H)). (3.17)
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Example 3.12. Let G be as in Example 3.5. Given a set S ⊂ V (G), we denote GS the
subgraph of G which is obtained from G by selecting the vertices which appear in S and
the edges attached to such vertices. Figure 5 illustrates the quotients graphs G/H for the
choices of H in {G03, G15, G1256, G012345, G012346}. Note that any other choice of subdiagram
H corresponding to a single edge leads to one of the two topologies of graph in the first line
of Figure 5. We provide some of the matrices AG/H , which can be derived from the matrix

2

4

1

03

5

2

4

15

3

6

2

1256

0

6

0

4
012345 6 012346 5

Figure 5: Quotients graphs G/H for H = G03, G15, G1256, G012345, G012346.

A in Figure 1 by deleting specific rows and edges, as described above:

AG/G1256 =


03 04 13 24

0 1 1 0 0
3 1 0 1 0
4 0 1 0 1

, AG/G012345 =
[ 16 26

6 1 1
]
, AG/G012346 =

[ 15 25

5 1 1
]
.

The matrices AG/H for H = G03, G15 are obtained in the same manner. ⋄

In addition to the description given above, the subdiagram volume has also an interpreta-
tion as the multiplicity at the point 0 of a toric variety, see [19, Theorem 3.14]. We conclude
this subsection by exploiting this perspective in our case of interest.

Consider YG/H to be be the affine toric variety associated to the linear map AG/H . In
general, YG/H is not homogeneous. We write IG/H ⊂ C[zij; ij ∈ E(G)\E(H)] for its defining
toric ideal. The following lemma is a direct consequence of the fact that H1(G/H;Z), as
defined in (3.16), is generated by cycles of G/H. A practical consequence of this lemma
is that IG/H is obtained from the toric ideal IG ⊂ C[zij; ij ∈ E(G)], associated to G, by
substituting zij = 1 for ij ∈ E(Q).

Lemma 3.13. Given a cycle C of G/H, we set fC to be{
zi1j1 · · · ziℓjℓ − zi2j1 · · · ziℓjℓ−1

ziℓ+1jℓ (C = {i1j1, i2j1, i2j2, . . . , iℓjℓ, iℓ+1jℓ} ⊂ E(G) \ E(Q) : even)

zi1j1 · · · ziℓjℓ − zi2j1 · · · ziℓjℓ−1
(C = {i1j1, i2j1, i2j2, . . . , iℓjℓ} ⊂ E(G) \ E(Q) : odd).

Then, the set {fC | C : cycle of G} generates the ideal IG/H .
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Therefore, the generators obtained in the lemma can be used to compute the the sub-
diagram volume u(S(A)/Q) as the local multiplicity mult0(YG/H). Let RG/H := C[zij; ij ∈
E(G) \E(H)]/IG/H and write m ⊂ RG/H for the maximal ideal corresponding to the origin.
Then, mult0(YG/H) can be read off from the leading coefficient of the Hilbert polynomial
of the associated graded ring grm(RG/H) with respect to the m-adic filtration of RG/H . To
compute the associated graded ring, a standard technique of Gröbner basis can be adapted.
For these claims, see, e.g., [12, §12.1 and Proposition 15.28].

Example 3.14. Let G be as in Example 3.5. For the subgraphs H = G03, G15, the Hilbert
polynomials of grm(RG/H) are given by

1

8
t4 +

11

12
t3 +

19

8
t2 +

31

12
t+ 1,

1

12
t4 +

2

3
t3 +

23

12
t2 +

7

3
t+ 1.

The local multiplicity mult0(YG/H) is thus given by 1
8
× 4! = 3, and 1

12
× 4! = 2, respectively.

On the other hand, for subgraphs H = G1256, G012345, G012346, the Hilbert polynomials are
given by t2 + 2t+ 1, t+ 1, and t+ 1.

For the subgraph H = G03, the toric ideal IG/H is generated by the following elements
corresponding to three cycles in G/H:

z16 z25 − z15 z26, z04 z13 z26 − z16 z24, z04 z13 z25 − z15 z24.

The lowest homogeneous parts of these polynomials z16 z25 − z15 z26, z16 z24, z15 z24 generates
an ideal I ′ ⊂ C[z04, z13, z15, z16, z24, z25, z26]. Using the algorithm [12, Proposition 15.28], we
find that grm(RG/H) ≃ C[z04, z13, z15, z16, z24, z25, z26]/I

′. In several examples, we confirmed
that the lowest homogeneous parts of binomials in Lemma (3.13) generate an ideal I ′ such
that grm(RG/H) ≃ C[zij; ij ∈ E(G) \ E(H)]/I ′, which seems to hold in general. In (1.3), we
provide the code in Macaulay2 [20] to perform such a computation. ⋄

4 Determinants and Euler discriminants

In this section, we focus on the case when Z is a subvariety of C(k+1)(n−k). Namely, we
consider a matrix z of size (k + 1) × (n− k), as in (3.2), except that here z varies in Z. Let
us set S := {(I, J) ∈ {0, . . . , k} × {k + 1, . . . , n} : |I| = |J |, det(zI,J) ̸= 0}. We define the
reduced discriminant of Z as

E red
χ (z) :=

∏
(I,J)∈S

det(zI,J). (4.1)

To emphasize the choice of Z, we may write E red
χ (Z) for E red

χ (z). Analogously to Section 3,
for each z ∈ Z, the column vectors in (3.2) define a hyperplane arrangement Az in Pk(C) =
ProjC[α0, . . . , αk], and its complement Xz, see (3.1) and (3.3), respectively.

Theorem 4.1. Suppose that χz > 0 for some z ∈ Z. Then, the following identity is satisfied:

∇χ(Z) = {z ∈ Z | E red
χ (z) = 0}. (4.2)
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Proof. By abuse of notation, We write Az for the dehomogenized hyperplane arrangement
that (3.2) determines by choosing {α0 = 0} as the hyperplane at infinity. Suppose that
z1, z2 ∈ Z \ (R.H.S.). Then, the intersection posets are equivalent: L(Az1) = L(Az2). This
is because the matroids corresponding to the points z1 and z2 have the same basis set.
Therefore, χz = χ∗ for any z /∈ (R.H.S.) since the complement of the (R.H.S.) has non-
empty intersection with the locus where the Euler characteristics takes its maximum. This
proves the inclusion (L.H.S.) ⊂ (R.H.S.).

Let us show the other inclusion. We write Mz for the matroid of arrangements defined
by the matrix (3.2). As long as E red

χ (z) ̸= 0, the matroid Mz does not depend on the
choice of z. We denote this matroid by M∗. Let z ∈ Z such that E red

χ (z) = 0. We denote
Az = A(Mz) the Orlik-Solomon algebra of Mz. To describe this algebra, we introduce the
following notation. For an ordered subset T = {t1, . . . tp} ⊂ {1, . . . , n}, we define

eT := et1 · · · etp and ∂eT :=

p∑
k=1

(−1)k−1et1 · · · êtk · · · etp ,

where êtk means that the element etk is omitted. The Orlik-Solomon algebra Az is then given
as the quotient of the exterior algebra ∧•C{1,...,n} by the ideal I(Az) generated by the set{

eT |
⋂
t∈T

Ht = ∅

}
∪

{
∂eT |

⋂
t∈T

Ht ̸= ∅ and T is dependent

}
.

The i-th graded part of Az is denoted by Ai
z. Since any independent subset of Mz is that of

M∗, there is a natural surjection
A(M∗) → Az (4.3)

which respects the grading. We consider generic parameters λ1, . . . , λn ∈ C and set

ωλ := λ1e1 + · · · + λnen,

where ei is the element of the Orlik-Solomon algebra (either A(M∗) or Az) which corresponds
to i-th hyperplane. The surjection (4.3) induces a surjection

Hk(M∗) := Ak(M∗)/ωλA
k−1(M∗)

φ→ Ak
z/ωλA

k−1
z =: Hk(Mz). (4.4)

By the results of [13] (see also [37]), we have dimCH
k(M∗) = χ∗ and dimCH

k(Mz) = χz.
It remains to prove that the (4.4) has a non-trivial kernel. Let us consider a set

Ĩ = {i0, i1, . . . , ik} ⊂ {0, 1, . . . , n} of cardinality k + 1 with i0 < · · · < ik. We set

ωĨ :=

{
ei1 · · · eik i0 = 0

(ei1 − ei0) · · · (eik − ei0) i0 ̸= 0.

Since E red
χ (z) = 0, there exists a pair (I, J) ∈ {0, . . . , k}× {k+ 1, . . . , n} such that |I| = |J |

and det(zI,J) = 0 at z. We set Ĩ := ({0, . . . , k} \ I)∪ J . Then, ωĨ ∈ Hk(M∗) is in the kernel
of the morphism (4.4). Indeed, if i0 = 0, then {i1, . . . , ik} is a dependent subset of Mz and

φ(ωĨ) = ei1···ik = ei1∂(ei1···ik) ∈ I(Az).
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If i0 ̸= 0, this means that ∩k
j=0Hij ̸= ∅ and

φ(ωĨ) = ei1···ik − ei0i2···ik + · · · = ∂ei0···ik ∈ I(Az).

Hence, it is enough to show that ωĨ is a non-zero element of Hk(M∗). Given z∗ ∈ Z generic,
we write O∗ for the structure ring of the affine variety Ck \L(Az∗). By abuse of notation we
write hj for the dehomogenization of hj(α; z) introduced in §3.1 with α0 = 1. We consider
the ideal I ⊂ O∗ generated by a1, . . . , ak where ai is the coefficient of dαi of a one-form

λ1d log(h1) + · · · + λnd log(hn) (4.5)

on Ck \L(Az∗). Then, there is an isomorphism Hk(M∗) ≃ O∗/I. Indeed, given an element
ei1 · · · eik ∈ Ak(M∗), we assign the coefficient of dα1∧ · · ·∧dαk in d log(hi1)∧ · · ·∧d log(hik).
Let V be the zero set of the one form (4.5). Note that the cardinality of V is χ∗ > 0 by
[23, Theorem 1]. Through this correspondence, ωĨ corresponds to ± det(z∗I,J)dα1∧···∧dαk

hi1
···hik

when

i0 = 0 or to ± det(z∗I,J)dα1∧···∧dαk

hi0
···hik

when i0 ̸= 0, where z∗ ∈ Z is a generic point. Furthermore,

there is an isomorphism O∗/I ∋ [f(x)] 7→ (f(a))a∈V ∈ CV . Clearly, ωĨ corresponds to a

non-zero vector in CV .

Note that the hypothesis that χz > 0 is fundamental. Central arrangements, for instance,
provide examples with χz = 0 for all z ∈ Z and non-trivial polynomial E red

χ (z). A simple
example is given for k = 2, n = 1, and z = [0 z11 0]T . Let

E red
χ (z) =

∏
∆

∆(z),

be the irreducible decomposition of E red
χ (z). On a generic point z ∈ VZ(∆), the number χz

is independent of z. We set m∆ := χ∗ − χz. It is convenient to set

Eχ(z) :=
∏
∆

∆(z)m∆

to keep track of the drop of Euler characteristics.

Example 4.2. Consider the hyperplane arrangement introduced in Example 3.5. We com-
pute the Euler discriminant for two choices of subspaces Z1, Z2 ⊂ C12. In particular, let Z1

be parametrized by the matrix

C1 =

w1 + w2 1 0 0
1 0 1 w2 + w3

0 w1 − w3 w1 + w2 + w3 1

 , (4.6)

and Z2 = Z1 ∩ {w1 + w2 + w3 = 0}. Then, since Z1 intersects transversally the subspace
defined by the matrix zG in Example 3.5, we have

Eχ(Z1) = (w1 + w2)
3(w1 − w3)

3(w2 + w3)
2(w1 + w2 + w3)

2

(w1w2 + w1w3 + w2
2 + 2w2w3 + w2

3 − 1)2

(w2
1 + w1w2 − w1w3 + w1 − w2w3 + w2 + w3)

(w2
1w2 + w2

1w3 + w1w
2
2 − w1w

2
3 − w2

2w3 − w2w
2
3 + 1).
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Note that the multiplicities of the components remain unchanged from those in (3.12), con-
sistently with [14, Theorem 3.3]. To compute these exponents using [14, Theorem 3.3], we
employed the function EulerDiscriminantQ from the julia package PLD.jl, [16]. This
function returns the value χzQ for each component defined by {∆A∩Q(z) = 0} of the prin-
cipal A-determinant. For the subspace Z2, some of the minors in (3.12) identically vanish
when plugging in the parametrization. In fact the value of the generic Euler characteristic
drops to χ∗(Z2) = 3, and

Eχ(Z2) = (w1 + w2)
2(w1 − w3)

2(w2 + w3)
2

(w2
1w2 + w2

1w3 + w1w
2
2 − w1w

2
3 − w2

2w3 − w2w
2
3 + 1).

Note that, in this case, the exponents are not preserved in contrast to those in (3.12). ⋄

5 Euler discriminant and singular locus

In this section, we discuss a relation between Euler discriminants and singular locus of a
D-module which an Euler integral underlies. Note that fi below do not have to be linear
polynomials. We use a standard notation of D-modules as in [22]. In this section, we assume
Z is a smooth algebraic subvariety of C(k+1)(n−k).

5.1 D-modules and Euler discriminant

We first prove some general propositions on D-modules and then relate it to Gauss-Manin
connection.

Let DZ be the sheaf of differential operators on Z. Given a coherent DZ-module M ,
its characteristic variety Ch(M) is canonically defined as a closed conic subvariety of the
cotangent bundle T ∗Z. We write ϖ : T ∗Z → Z for the natural projection. The singular
locus Sing(M) of M is defined by

Sing(M) = ϖ (Ch(M) \ T ∗
ZZ) ,

where T ∗ZZ is the zero section of T ∗Z. For a given point z ∈ Z, we write ιz : {z} ↪→ Z for
the canonical embedding. For a holonomic DZ-module M , we set

χz(M) :=
∞∑
i=0

(−1)i dimC ExtiDZ
(M,Oz),

where Oz is the ring of convergent series at z. We write χ∗(M) for the holonomic rank of
M . Note that χ∗(M) is χz(M) for generic z. Thanks to the formula (5.6), the notations
χz(M) and χ∗(M) are compatible with χz and χ∗. This observation motivates the following
definition

∇χ(Z,M) := {z ∈ Z | χz(M) < χ∗(M)}.

Note that ∇χ(Z,M) may not be a closed subvariety of Z for general M . A simple counter
example is given by local cohomology. Nonetheless, we can prove the following theorem.
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Theorem 5.1. Let M be a holonomic DZ-module and let Sing1(M) be the union of the
codimension 1 components of the singular locus of M . Then, one has the inclusion

Sing1(M) ⊂ ∇χ(Z,M). (5.1)

Proof. Let z be a smooth point of Sing1(M). The multiplicity of the characteristic cycle
at z is at least one. By Kashiwara’s index formula, it follows that χz(M) < χ∗(M), which
implies z ∈ ∇χ(Z,M). The inclusion (5.1) follows by taking the Zariski closure.

5.2 Gauss-Manin connection

In this section, we will use the notation and concepts introduced in Section 2.1. Let (s, ν) =
(s0, . . . , sℓ, ν1, . . . , νn) ∈ Cℓ+1+n be complex parameters. The total space of variables and
coefficients X := {(α, z) ∈ (C∗)n × Z |

∏ℓ
i=0 fi(α; z) ̸= 0} is fibered over Z via the natural

projection π : X → Z. For any integer k, the space of relative differential k-forms Ωk
X/Z(X)

is given by

Ωk
X/Z(X) :=

∑
1≤i1<···<ik≤n

O(X)dαi1 ∧ · · · ∧ dαik .

We set

ω := dα log
(
f(α; z)−sαν

)
= −

ℓ∑
i=0

si
dαfi(α; z)

fi(α; z)
+

n∑
i=1

νi
dαi

αi

∈ Ω1
X/Z(X).

The 1-form ω naturally defines the differential

∇ω := dα + ω∧ : Ωp
X/Z(X) → Ωp+1

X/Z(X).

The cohomology space

Hn(X/Z, ω) :=
Ωn

X/Z(X)

Im
(
∇ω : Ωn−1

X/Z(X) → Ωn
X/Z(X)

)
is naturally equipped with a structure of left DZ-module: for a vector field ∂z on Z we set

∇GM
∂z [ξ(z)] :=

[
∂ξ

∂z
(z) −

ℓ∑
i=0

si
1

fi(α; z)

∂fi
∂z

(α; z)ξ(z)

]
, [ξ(z)] ∈ Hn(X/Z, ω).

We call the DZ-module Hn (X/Z, ω) the (n-th) Gauss-Manin connection.
Now we consider the case when M is given by the Gauss-Manin connection. In the

language of D-modules, it is the so-called (0-th) direct image functor:

Hn(X/Z, ω) ≃ H0

∫
π

OXf(α; z)−sαν =: M. (5.2)
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Here, OXf(α; z)−sαν denotes the DX-module associated to an integrable connection ∇ :
OX → Ω1

X given by

∇g := dg −
ℓ∑

i=0

sig
dfi
fi

+
n∑

j=1

νjg
dαj

αj

(g ∈ OX),

where d denotes the exterior derivative on X. An integral of the form∫
Γ

f(α; z)−sανω(α; z) (5.3)

for some cycle Γ and ω(α; z) ∈ Ωn
X/Z(X) is a solution to the DZ-module Hn(X/Z, ω). The

integral in (5.3) is called Euler integral, see [1] and [31].

Lemma 5.2. For generic (s, ν), one has the vanishing theorem Ljι∗zM = 0 for all j ̸= 0.

Proof. By the base change formula and the isomorphism in (5.2), it is enough to prove

Hn+j(Xz, ω) = 0 for all j ̸= 0. (5.4)

We first construct the sequence of subvarieties Z = Zn ⊃ Zn−1 ⊃ · · · ⊃ Z0 such that
dimC Zi ≤ i, Zi \ Zi−1 is smooth and there exists a smooth variety Xi such that there exists
an inclusion i : π−1(Zi \ Zi−1) → Xi, which gives a commutative diagram

π−1(Zi \ Zi−1)
π //

��

Zi \ Zi−1

Xi

66
(5.5)

Here, Xi is equipped with a simple normal crossing divisor Di =
∑

j Dij such that any finite

intersection of Dij is transversal to a fiber of π and Xi\Di = π−1(Zi\Zi−1). Such a sequence
can be constructed as in [10, 6.15]. Indeed, one can construct Zn−1 and Xn with the desired
property. Then, we take the smooth locus of Zn−1 and proceed inductively. Moreover, the
construction of [10, 6.15] combined with the argument of [23, 2.3] proves that there is a
linear form ℓij(s, ν) ̸= 0 so that exp{2π

√
−1 · ℓij(s, ν)} is the local monodromy around Dij

of the local system that f(α; z)−sαν defines on a fiber Xz. The identity (5.4) follows from
the same argument as [1, Appendix]. The genericity assumption for the parameters is that
ℓij(s, ν) /∈ Z.

It follows from Lemma 5.2 that ∇χ(Z) = ∇χ(Z,M). Indeed, one has

RHomDZ
(M,Oz) = RHomDZ

(M, Ôz) = RHomDZ
(Lι∗zM,C),

where the first equality is a consequence of regular holonomicity of M and the comparison
theorem [22, Proposition 7.3.1]. Thus, it follows that

χz(M) =
∞∑
i=0

(−1)i dimC ExtiDZ
(M,Oz) = dimC(ι∗zM,C) = dimCH

n(Xz, ω) = χz. (5.6)
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Theorem 5.3. For generic (s, ν), we have ∇1
χ(Z) = Sing1(M).

Proof. From Theorem 5.1, we have ∇1
χ(Z) ⊃ Sing1(M). The general theory of D-module

shows that a D-module is an integrable connection outside its singular locus. This means
that the Euler characteristics does not change on the nonsingular locus. This proves the
inclusion ∇χ(Z) ⊂ Sing(M).

5.3 Arrangement case

Now let us assume that the homogeneous degrees of polynomials fi all equal to one.

Theorem 5.4. For generic (s, ν), one has an identity

Sing(M) = ∇χ(Z). (5.7)

Proof. Since ∇χ(Z) is purely one codimensional, it is enough to prove the inclusion
Sing(M) ⊂ ∇χ(Z) in view of Theorem 5.3. Let us define an open subvariety U ⊂ Z by
U = Z \∇χ(Z). We prove the inclusion Ch(M |U) ⊂ T ∗

UU where M |U is the restriction of M
onto U . We construct a relative compactification of π−1(U) with respect to the projection
π : π−1(U) → U . We consider the process of iterated blowing-ups ([35, Theorem 4.2.4],[40,

§10.8]). The result is a blowing-up π̃−1(U) of π−1(U) equipped with a normal crossing divisor

D. The associated morphism π̃−1(U) → U is transversal with respect to the stratification
that D defines. The result now follows from a standard lemma on the direct image. The
following lemma follows from, e.g., [26, Theorem 4.27].

Lemma 5.5. Let Y, Z be smooth varieties and f : Y → Z be a proper morphism. Assume
that a normally crossing divisor D = ∪N

j=1Dj of Y is given and f is transversal to the
stratification that D defines. Let N be a DY -module. For a subset J of {1, . . . , n}, we set
DJ := ∩j∈JDj. If

Char(N) ⊂ ∪J⊂{1,...,N}T
∗
DJ
Y,

then
∫
f
N is an integrable connection. Here, T ∗

DJ
Y denotes the conormal bundle of DJ .

A Cosmological integrals in a nutshell

Theoretical cosmology aims at understanding the origin, evolution, and large-scale structure
of the universe. An essential part of cosmology is knowing how matter and energy are dis-
tributed throughout the universe at any given time. A remarkable example of this is the
Cosmic Microwave Background (CMB). Cosmological correlators are the statistical quan-
tities that model such distributions. There are different ways of calculating cosmological
correlators; the one we are interested in is the wavefunction formalism. It consists of two
main steps: computing the wavefunction and then using it to calculate the correlators. In
perturbation theory, it is sufficient to compute a finite set of wavefunction coefficients that
characterize the wavefunction completely up to the perturbative order one is interested in.
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This appendix gives a self-contained introduction to the wavefunction coefficients in
flat space, aiming at explaining how they lead to physically meaningful examples of Euler
integrals of products of linear forms [4].

Let GL,n denote the set of connected graph with n external edges and L loops. Then, in
perturbation theory, the n-th wavefunction coefficient can be expanded in an infinite sum
over all possible Feynman diagrams G ∈ GL,n given by

Ψn =
∑
L≥0

G∈GL,n

ψG, (A.1)

where the ψG are integrals that become some expression of the physical parameters after the
integration. In cosmology, when drawing Feynman diagrams, the n external edges connect
the vertices in V to a horizontal line representing the boundary. See [7, Section 1] for some
illustrations of Feynman diagrams for n = 2, 3, 4, 5. The method to associate an integral
to each diagram is given by the Feynman rules. For an explicit definition of these rules
we refer to [6, Section 2.2]. For physicists, it is important to note that we work with
conformally coupled scalar fields. This enables the mathematical approach to capture the
essential behavior of the system while remaining computationally feasible.

Under these assumptions, it is convenient to draw a simplified version of the Feynman
diagrams where we only keep internal vertices and edges and truncate the n edges connecting
to the boundary. In the following, let G = (V,E) be a connected undirected graph, where V
is the set of n vertices of G and E is its finite collection of edges. We write V (G) and E(G)
when we want to emphasize that V and E are, respectively, the vertex and edge set of G.

To the vertices and edges of G, we associate complex parameters representing energies,
X = (Xi)vi∈V and Y = (Yij)ij∈E. Figure 6 illustrates some of the graphs we will use in our
examples. In physics, the (X, Y )-variables are real and positive, but for practical applications
it is useful to think of them in larger domains.

X1 X1
X1

X1

X2 X2
X2X2X3

X3

Y12

Y14

Y12

Y12
X4

Y23

Y ′
12

Y34

Y24

Figure 6: Two-site chain, three-site chain, four-site star, and one-loop bubble.

The first ingredient towards introducing Euler integrals arising in cosmology are the
integrands of the terms in the expansion (A.1). By abusing notation, we will still refer
to these as wavefunction coefficients in flat space and denote them ψG. However, in what
follows, the ψG will be rational functions of the parameters (X, Y ). The next subsections
provide a concise review of two alternative methods to derive the flat space wavefunction
coefficients: the recursion formula and the cosmological polytope [7, 24, 28].

Recursion Formula The recursion formula, introduced in [7], represents the wavefunc-
tion coefficient ψG associated with a graph G as a combination of wavefunction coefficients
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of subgraphs obtained by sequentially deleting individual edges from G. The core idea is to
reduce to computing only wavefunction coefficients of graphs that consist of a single vertex
and no edges. In this case, in fact, if X is the vertex’s energy variable, the wavefunction
coefficient is 1/X, as explained in [7, Equation (2.12)]. Then, the recursion formula is

ψG(X, Y ) =
1∑

k∈V (G)Xk

·
∑

ij∈E(G)

(
ψHi

· ψHj

)
, (A.2)

where Hi, Hj are the subgraphs containing the vertex vi, (resp. vj), obtained from G by
deleting the edge e = ij. Furthermore, the variable Xi (resp. Xj) attached to vi in Hi (resp.
vj in Hj) becomes Xi +Yij (resp. Xj +Yij). The derivation of this formula is explicitly given
in [7, Section 2.3].

Example A.1. Let G be the two-site chain illustrated in Figure 6. We have n = 2, and
the energies associated to vertices and edges are (X1, X2, Y12). We denote ψ2 the associated
wavefunction coefficient. The recursion formula is resolved in one step:

ψ2 =
1

X1 +X2

(
ψ
(
X1+Y12

)
· ψ

(
X2+Y12

))
=

1

(X1 +X2)(X1 + Y12)(X2 + Y12)

⋄

Example A.2. In this example, we show an application of the recursion formula (A.2)
to compute the flat space wave function ψ3 associated with the three-site chain showed in
Figure 6. Let 1/X := 1

X1+X2+X3
, then we have

ψ3 =
1

X

(
ψ
(
X1+Y12

)
· ψ

(
X2+Y12 X3

Y23
)

+ ψ
(
X1 X2+Y23

Y12
)
· ψ

(
X3+Y23

))
=

1

X

(
1

X1 + Y12
· ψ

(
X2+Y12 X3

Y23
)

+ ψ
(
X1 X2+Y23

Y12
)
· 1

X3 + Y23

)
=

1

X

(
1

(X1 + Y12)(X2 +X3 + Y12)
· ψ

(
X2+Y12+Y23

)
ψ
(
X3+Y23

)
+

1

X1 +X2 + Y23
· ψ

(
X1+Y12

)
ψ
(
X2+Y12+Y23

)
· 1

X3 + Y23

)
=

1

X

(
1

(X1 + Y12)(X2 +X3 + Y12)(X2 + Y12 + Y23)(X3 + Y23)

+
1

(X1 +X2 + Y23)(X1 + Y12)(X2 + Y12 + Y23)(X3 + Y23)

)
.

By finding a common denominator, we obtain the following rational function:

X1 +X3 + 2X2 + Y12 + Y23
(X1 +X2 +X3)(X1 + Y12)(X2 + Y12 + Y23)(X3 + Y23)(X1 +X2 + Y23)(X2 +X3 + Y12)

The use of different colors for the linear forms in the denominator will enhance the clarity
of Example A.7 in the next section. ⋄
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Cosmological Polytope An alternative way to introduce the wavefunction coefficients
is via the canonical form of a positive geometry [5]. For the definition of positive geometry
and its canonical form we refer to [29, Definition 1]. The cosmological polytope PG of a
graph G as above plays the role of a positive geometry which is built ad hoc to have as
canonical form the differential form

ΩPG
= ψG(X, Y )dX ∧ dY,

where dX = dX1 ∧ . . . dXn and dY = ∧ij∈EdYij. For the general definition of this polytope
as the convex hull of its vertices we refer to [28]. The facets of the cosmological polytope were
characterized by Arkani-Hamed, Benincasa, and Postnikov in [7]. Such a characterization
is resumed in [28, Theorem 2.1], where a complete description of the higher codimensional
faces is also given.

The cosmological polytope PG associated with the graph G = (V,E) lives in the space
R|E|+|V |−1, with standard basis vectors X = (X1, . . . , Xn) and Y = (Yij)ij∈E. The facets of
PG are in bijection with the connected subgraphs H = (V (H), E(H)), where a subgraph is
another graph formed from a subset of the vertices and edges of G where all endpoints of
the edges of H are in the vertex set of H. In particular, the facet FH is the intersection of
PG with the hyperplane∑

v∈V (H)

Xv +
∑
e= ij,

i∈V (H), j ̸∈V (H)

Yij +
∑

e= ij ̸∈E(H),
i∈VH , j∈V (H)

2Yij = 0. (A.3)

The facet FG associated with the full graph G and determined by the hyperplane defined by∑n
i=1Xi = 0 is called the scattering facet. One can immediately check that the hyperplanes

appearing in the denominator of the rational function from Example A.2 are precisely the
ones obtained by computing (A.3) for each subgraph of the three-site chain. It is an open
problem to prove that the flat space wavefunction coefficient of a cosmological graph G, or
more in general a graph, is a rational function with poles on the facet hyperplanes of the
cosmological polytope. However, a challenge that arises when computing the canonical form
of the cosmological polytope is the computation of the adjoint hypersurface. This is the
polynomial that encodes the zeros of the flat space wave function. For more details about
the adjoint of a polytope see [27]. This challenge motivates the study of triangulations of
the cosmological polytope [24].

Example A.3. The cosmological polytope of the two-site chain is a triangle in R3 with
coordinates [X1, X2, Y ] cut out by the hyperplanes {X1 + X2, X1 + Y12, X2 + Y12}. The
adjoint hypersurface in this case is 1. ⋄

The f -vector of the cosmological polytope can be computed via the recursive formulas
in Theorem 4.5 and Corollary 4.6 in [28]. In this way, one can compute the number of
hyperplanes contributing in the arrangement that we will discuss in the next section.

Cosmological Integrals

Euler integrals of linear arise in the study of cosmological integrals. Closely analogous to
Feynman integrals in particle physics, these objects were introduced in [6] for trees, and later
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their definition was also extended to graphs with cycles in [21, 8]. Starting from the flat
space wavefunction coefficients ψG, introduced in the previous section, we shift the variables
Xi associated to the vertices by new complex variables αi for i = 1, . . . , n which will be
the integration variables. Furthermore, an additional factor αε = αε

1 · · ·αε
n, where ε ∈ C,

together with the product of the edge variables are added to the integrand. The choice of
ε parametrizes the cosmology in which the process takes place. This procedure gives the
following integral

IG(X, Y, ε) =

∫
Γ

2n−1 ·
∏
ij∈E

Yij · αε · ψG(X1 + α1, . . . , Xn + αn, Y ) dα, (A.4)

where dα = dα1 ∧ · · · ∧ dαn, and Γ is a twisted cycle on the complement of hyperplanes
arrangement in (C∗)n defined by the linear forms appearing in the denominators of the
function ψG(X + α, Y ), with X + α = (X1 + α1, . . . , Xn + αn). In the context of cosmology,
Γ is the positive orthant. More explicitly, given

ψG(X + α, Y ) =
P (X + α, Y )

L1(X + α, Y ) · · ·Lr(X + α, Y )
,

where P,Li ∈ C[X, Y ] are respectively the adjoint hypersurface and the facets of the cos-
mological polytope, as defined in the previous section, the twisted cycle Γ lives in the top-
dimensional twisted de Rham homology group defined on the complement of hyperplanes

H(X,Y )
G = (C∗)n \ V(C∗)n(L1(X + α, Y ) · · ·Lr(X + α, Y ))

= {α ∈ (C∗)n | L1(X + α, Y ) ̸= 0, i = 1, . . . , r}, (A.5)

for a generic choice of parameters (X, Y ) ∈ C|V |+|E|. For the more deteailed physics motiva-
tion behind the definition of (A.4) we refer to [6, Section 2.4].

Example A.4. For n = 2, the function ψ2(X1, X2, Y12) gives the integral

I2(X1, X2, Y12, ε) =

∫
Γ

2Y12 · αε
1α

ε
2

(X1 +X2 + α1 + α2)(X1 + Y12 + α1)(X2 + Y12 + α2)
dα1 ∧ dα2.

The associated hyperplane arrangement is represented in [6, Figure 1]. ⋄

By construction, the integrals described in (A.4) are Euler integrals of product of linear
forms. Therefore, we can use the machinery of Sections 3 and 4 to investigate their singular
locus. Given a graph G, we denote zG, or zn if the number of vertices determines G, the
matrix in (3.2) associated to the hyperplanes in (A.5). Then, zG is a matrix of size (n+1)×r,
and we denote BG the associated bipartite graph introduced in Section 3.

Lemma A.5. Given a connected undirected graph G, then the bipartite graph BG is also
connected.

Proof. Consistently with Section 3, we denote V1 and V2, respectively the left and right
vertex set of the bipartite graph BG. The set V1 contains n + 1 vertices representing the
homogeneous coordinates α0, . . . , αn, while the set V2 has size r with each vertex representing
an hyperplane Li. We distinguish the following two cases:
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• For any pair of vertices vi, vj ∈ V1, a path between them is given by two edges connect-
ing each vi to the vertex representing the hyperplane L1 = X1+ · · ·+Xn+α1+ · · ·+αn

given by shifting the scattering facet;

• For any pair of vertices vi, vj ∈ V2, a path between them is given by the edges corre-
sponding to the non-zero coefficient of the variable α0 of the hyperplanes Li, Lj.

Therefore, given any pair of vertices vi, vj ∈ V1 ∪ V2 there exists a path among them.

Example A.6. This example illustrates in details the computation of the principal A-
determinant of the sparse arrangement induced by the integral of the two-site chain (Figure
6, left) from Example A.4 and its Euler discriminant. In the notation of Section 3, we have
k = 2 and n = 5. The matrix z2, the bipartite graph BG, and the matrix A, whose columns
give the vertices of the edge polytope PG are illustrated in Figure 7.

z2 =

z03 z04 z05
z13 z14 0
z23 0 z25


α0

α2

α1

L1

L2

L3

A =


1 1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
1 0 0 1 0 1 0
0 1 0 0 1 0 0
0 0 1 0 0 0 1


Figure 7: The matrix z2, the bipartite graph BG, and the matrix A for the two-site chain. The
colors for the edges of BG matches the non-zero coefficients in the corresponding hyperplanes
L1, L2, L3 in the integral from Example A.4.

The polytope PG ⊂ R6 is 4-dimensional, it has f-vector (7, 17, 18, 8, 1), and normalized
volume 4. Theorem 3.9 provides a closed formula to compute the principal A-determinant
of the sparse arrangement:

EA(z2) = z03z
2
04z

2
05z

2
13z

2
14z

2
23z

2
25(z03z14−z04z13)(z03z25−z05z23)(z03z14z25−z05z14z23−z04z13z25).

The expected degree (see Proposition (2.4)) is deg(EA(z2)) = (dim(PG) + 1) · vol(PG) =
(4 + 1) · 4 = 20. The multiplicities of each factor are computed using the methods from
Section 3.4. Let us point out that each factor of EA(z2) indeed corresponds to a singularity
of the Euler integral

IΓ(z2, s, ν) =

∫
Γ

(z03 + z13α1 + z23α2)
−s1(z04 + z14α1)

−s2(z05 + z25α2)
−s3αν1

1 α
ν2
2

dα1

α1

∧ dα2

α2

.

For instance, let us pick the factor z03 of EA(z2). For simplicity, we assume that the zij
are all real and generic and Re(s1) < 1,Re(ν1) > −1,Re(ν2) > −1. Let ∆(z2) be the
bounded chamber specified by three lines {α1 = 0}, {α2 = 0} and {L1 = 0}. By a change of
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coordinates given by βi = −zi3/z03αi (i = 1, 2), we obtain that∫
∆(z2)

L−s1
1 L−s2

2 L−s3
3 αν1

1 α
ν2
2

dα1

α1

∧ dα2

α2

=

zν1+ν2−s1
03 (−z13)−ν1(−z23)−ν2

∫
∆

(1 − β1 − β2)
−s1f(β; z2)β

ν1
1 β

ν2
2

dβ1
β1

∧ dβ2
β2

,

where ∆ = {(β1, β2) ∈ R2 | β1, β2, 1− β1 − β2 > 0} and f(β; z2) is a holomorphic function in
β1, β2 with holomorphic parameters z2 coming from a power series expansion of L−s2

2 L−s3
3 . By

expanding f(β; z2) as
∑

m1,m2≥0 cm1,m2(z2)β
m1
1 βm2

2 , the integral is expanded into a function

zν1+ν2−s1
03 (−z13)−ν1(−z23)−ν2

∑
m1,m2≥0

cm1,m2(z2)
Γ(1 − s1)Γ(1 + ν1 +m1)Γ(1 + ν2 +m2)

Γ(3 − s1 + ν1 +m1 + ν2 +m2)
.

This function is clearly singular for generic values of s1, s2, s3, ν1, ν2 when z03 → 0.
To compute the singular locus of the physical integral we need to further restrict to the

subspace where the coefficients in z2 are parametrized by the variables X, Y which represent
energies. Therefore, the matrix z2 becomes

z2(X, Y ) =

X1 +X2 X1 + Y12 X2 + Y12
1 1 0
1 0 1

 .
Using Theorem 4.1 we can determine the defining equation of the Euler discriminant:

Eχ(X, Y ) = (X1 +X2)(X1 + Y12)
2(X2 + Y12)

2(X2 − Y12)(X1 − Y12)Y12

When describing the singularities of the differential equations annihilating the integral from
Example A.4, the singularity Y12 = 0 is discarded, see [6, Section 3]. This is due to the
normalization factor Y12 appearing in the numerator of the integral. ⋄

Example A.7. This example illustrates the principal A-determinant and the Euler discrim-
inant for the three-site chain. The matrix z3 and the bipartite graph are shown in Figure 8.

z3 =


z04 z05 z06 z07 z08 z09
z14 z15 0 0 z18 0
z24 0 z26 0 z28 z29
z34 0 0 z37 0 z39



α0

α3

α2

α1

L1

L2

L3

L4

L5

L6

Figure 8: The coefficients matrix and the bipartite graph for the three-site chain. The colors
refer those of the hyperplanes in Example A.2 after introducing the α-variables.
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Using Theorem 3.9 and the method presented in Section 3.4, we have that EA(z3) equals

z04z
11
05z

9
06z

11
07z

3
08z

3
09z

8
14z

11
15z

8
18z

4
24z

9
26z

6
28z

6
29z

8
34z

11
37z

8
39(z04z15 − z05z14)(z04z18 − z08z14)

(z04z26 − z06z24)(z04z28 − z08z24)(z04z29 − z09z24)(z04z37 − z07z34)(z04z39 − z09z34)

(z08z29 − z09z28)(z14z28 − z18z24)
2(z24z39 − z29z34)

2(z05z18 − z08z15)
3(z06z28 − z08z26)

3

(z06z29 − z09z26)
3(z07z39 − z09z37)

3(z05z18z26 + z06z15z28 − z08z15z26)
3

(z06z29z37 + z07z26z39 − z09z26z37)
3(z04z15z26 − z05z14z26 − z06z15z24)

(z04z26z37 − z06z24z37 − z07z26z34)(z04z15z29 − z05z14z29 − z09z15z24)

(z04z15z37 − z05z14z37 − z07z15z34)(z04z15z39 − z05z14z39 − z09z15z34)

(z04z18z37 − z07z18z34 − z08z14z37)(z04z18z39 − z08z14z39 − z09z18z34)

(z04z28z37 − z07z28z34 − z08z24z37)(z07z28z39 + z08z29z37 − z09z28z37)

(z05z18z29 − z08z15z29 + z09z15z28)(z14z28z39 − z18z24z39 + z18z29z34)

(z04z26z39 − z06z24z39 + z06z29z34 − z09z26z34)(z04z18z29 − z08z14z29 + z09z14z28 − z09z18z24)

(z04z18z26 + z06z14z28 − z06z18z24 − z08z14z26)(z04z15z28 − z05z14z28 + z05z18z24 − z08z15z24)

(z04z28z39 − z08z24z39 + z08z29z34 − z09z28z34)(z04z29z37 + z07z24z39 − z07z29z34 − z09z24z37)

(z05z18z29z37 − z07z15z28z39 − z08z15z29z37 + z09z15z28z37)

(z04z15z26z37 − z05z14z26z37 − z06z15z24z37 − z07z15z26z34)

(z04z15z26z39 − z05z14z26z39 − z06z15z24z39 + z06z15z29z34 − z09z15z26z34)

(z04z15z28z37 − z05z14z28z37 + z05z18z24z37 − z07z15z28z34 − z08z15z24z37)

(z04z15z29z37 − z05z14z29z37 + z07z15z24z39 − z07z15z29z34 − z09z15z24z37)

(z04z18z26z37 + z06z14z28z37 − z06z18z24z37 − z07z18z26z34 − z08z14z26z37)

(z04z18z26z39 + z06z14z28z39 − z06z18z24z39 + z06z18z29z34 − z08z14z26z39 − z09z18z26z34)

(z04z15z28z39 − z05z14z28z39 + z05z18z24z39 − z05z18z29z34 − z08z15z24z39 + z08z15z29z34−
z09z15z28z34)(z04z18z29z37 − z07z14z28z39 + z07z18z24z39 − z07z18z29z34 − z08z14z29z37+

z09z14z28z37 − z09z18z24z37).

The degree is deg(EA(z3)) = (dim(PG) + 1) · vol(PG) = (8 + 1) · 30 = 270. The factors in
cerulean are the ones that do not identically vanish when restricting to the subspace arising
in physics. The restriction of the coefficients to the physical parameter produces the matrix
X1 +X2 +X3 X1 + Y12 X2 + Y12 + Y23 X3 + Y23 X1 +X2 + Y23 X2 +X3 + Y12

1 1 0 0 1 0
1 0 1 0 1 1
1 0 0 1 0 1

 ,
whose non-vanishing maximal minors give the factors of the Euler discriminant:

Eχ(X, Y ) = (X1 +X2 +X3)(X1 + Y12)
10(X2 + Y12 + Y23)

9(X3 + Y23)
10(X1 +X2 + Y23)

3

(X2 +X3 + Y12)
3(X2 +X3 − Y12)(X3 − Y23)

6(X1 +X3 − Y12 − Y23)(X1 − Y12)
6

(X1 +X2 − Y23)(X1 −X3 − Y12 + Y23)(X2 − Y12 + Y23)
3(X2 + Y12 − Y23)

3Y 6
12Y

6
23

(X3 − 2Y12 − Y23)(X1 − Y12 − 2Y23)(X2 − Y12 − Y23)(X1 − Y12 + 2Y23)

(X3 + 2Y12 − Y23)(Y12 − Y23)(Y12 + Y23),
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which has degree 77. The exponents here are computed using the built-in function
EulerDiscriminantQ from the julia package PLD.jl as explained in Example 4.2.

⋄
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