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ABSTRACT

Research and the scientific activity are widely seen as an area where the current trends in Al, namely the
development of deep learning models (including large language models), are having an increasing impact.
Indeed, the ability of such models to extrapolate from data, seemingly finding unknown patterns relating
implicit features of the objects under study to their properties can, at the very least, help accelerate and
scale up those studies as demonstrated in fields such as molecular biology and chemistry. Knowledge graphs,
on the other hand, have more traditionally been used to organize information around the scientific activity,
keeping track of existing knowledge, of conducted experiments, of interactions within the research community,
etc. However, for machine learning models to be truly used as a tool for scientific advancement, we have to
find ways for the knowledge implicitly gained by these models from their training to be integrated with the
explicitly represented knowledge captured through knowledge graphs. Based on our experience in ongoing
projects in the domain of material science, in this position paper, we discuss the role that knowledge graphs
can play in new methodologies for scientific discovery. These methodologies are based on the creation of
large and opaque neural models. We therefore focus on the research challenges we need to address to support
aligning such neural models to knowledge graphs for them to become a knowledge-level interface to those

neural models.

1. Introduction

Let us start with a quote from the very beginning of Isaac Asimov’s
“True Love” short story [1]:

My name is Joe. That is what my colleague, Milton Davidson, calls
me. He is a programmer and I am a computer program. I am part of
the Multivac-complex and am connected with other parts all over
the world. I know everything. Almost everything. I am Milton’s
private program. His Joe. He understands more about programming
than anyone in the world, and I am his experimental model. He has
made me speak better than any other computer can. “It is just a
matter of matching sounds to symbols, Joe”, he told me. “That’s the
way it works in the human brain even though we still don’t know
what symbols there are in the brain. I know the symbols in yours,
and I can match them to words, one-to-one”. So I talk. I don’t think
I talk as well as I think, but Milton says I talk very well.

There are many things that are interesting in this short description
of a system capable of speech according to this work of fiction written
in 1977. The most obvious one, which is not directly relevant to the
topic of this article but is still worth noticing, is that the most prominent
Artificial Intelligence (AI) systems today (2024) are developed in the
opposite direction. When the protagonist declares “I don’t think I talk as
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well as I think”, what could be more accurately said of current systems
based on large language models (chatGPT, Claude, Gemeni, Meta-Al,
etc.) is that they do not think as well as they talk.

To get closer to the topic of this article, another point on which the
story differs from our current reality is that symbols in large neural
networks are not more identifiable than those in the human brain. In
other novels and short stories by Isaac Asimov relating to the Mulivac,
a key benefit of such systems is that they have accelerated scientific
discoveries, being able to process large amounts of data, rich informa-
tion, and to integrate existing knowledge to come up with answers to
complex questions. Current Al systems based on deep learning and large
language models are expected to realize something similar. In many
areas of all the fundamental sciences, neural networks of various sizes
and complexities are being built to analyze phenomena ranging in scale
from full eco-systems to the level of particles. Hence, we might want to
ask the question: Would we need to understand symbols in large neural
networks in order for them to be truly useful in advancing scientific
discovery?

The reflections in this article are based on our ongoing experience
in one such domain: material science. The task of discovering new
materials can be summarized as trying to find, among the very large
number of materials that could potentially exist, ones that are likely to
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have the desired property and are therefore worth trying to synthesize.
In this case, as in many others, an increasingly popular approach
is to build machine learning models to predict the values of these
macroscopic properties (for example, thermal conductivity, which is
the one on which we focus) based on other properties that are easier to
obtain or the atomic structure of the material (see, for example, [2,3]).

In such a context, the first step of our method is to build a predictive
model. For example, in [4], we describe how we used a transfer
learning approach based on a graph neural network originally trained
on a large dataset to predict the formation energy of materials. Fine-
tuning this model using smaller datasets of materials labeled with their
thermal conductivity, we obtained a model that achieved promising
results in the notoriously difficult task of predicting thermal conduc-
tivity. The direct goal of creating this model is to be able to use it to
scan a large number of materials and to quickly identify those likely
to have a low thermal conductivity, as candidates to be synthesized,
since alternative approaches to estimating (with an acceptable level
of accuracy) this particular property of a material takes thousands of
CPU-hours, carrying out ab initio computations.

However, although having a predictive model is useful, it remains
unsatisfactory: If valid, the model must have found something in the
data that allows to at least approximate the relation between, in our
case, the atomic structure of a material and its thermal conductivity.
In addition, once the model is trained, this approximation is done in a
few milliseconds, where the alternatives could potentially take weeks
of heavily theory-backed computations. Is what it found a shortcut or a
valid rule? How does it relate to existing knowledge on the physics of
materials? If what is found is valid, previously unknown, and consistent
with existing knowledge, could it be that the model found in the data a
pattern indicative of a mechanism or phenomena that physics had not
yet discovered?

To answer these questions, two components are required. First,
it needs to be possible to inspect, explore, and extract higher-level
structures that are representative of processes and concepts from within
the neural network, i.e., to interpret it beyond the millions of tiny
computations carried out within its neurons. Second, it should be
possible to connect those structures to existing knowledge in the field
that is formalized and represented in a way that is both computationally
and humanly processable.

As we will describe later, research is very active in the field of ma-
chine learning on the task of mechanistic interpretation, the goal of which
is to provide the first component. Concerning the second component,
it could potentially become the most impactful realization of the vision
of the Semantic Web as materialized through knowledge graphs: vast,
rich, shared, and computationally exploitable knowledge networks that
are conceptually structured, meaningful, and available globally through
the Web. Knowledge graphs encoding current knowledge in scientific
disciplines could become the foundation on which Al-led discovery is
carried out by providing the necessary conceptual framework to ground
machine learning models in shared and evolving knowledge.

2. On knowledge graphs in science

Providing a precise definition of a knowledge graph here would
not be particularly relevant, and we direct the reader to works such
as [5] for details on the specific challenges and associated technologies.
What is important regarding knowledge graphs in our context is some
of the properties they hold: they are flexible, rich representations
of knowledge in a domain, that are widely accessible, dynamic, and
conceptually defined (through ontologies).

Unsurprisingly, scientific domains, especially biomedicine, have
been among the earliest and strongest adopters of knowledge graphs
(and, by extension, ontologies). For this reason, these communities
have been at the forefront of constructing tools (such as Protégé [6]
or bioportal [7]), specific knowledge graphs (such as Bio2RDF [8]) or
ontologies (such as the Gene Ontology [9]). Those are commonly used
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in various systems, in particular, to integrate and exchange information
in a way that is interoperable and unambiguous. They also form a basis
for describing available data that can be analyzed and processed.

An idea that has been explored extensively is that knowledge graphs
can help in conducting scientific activities. In particular, there are
several works that focus on knowledge graphs to support organizing,
exploring, understanding, or extracting information from the scientific
literature [10,11]. Other approaches have looked at ways in which
knowledge graphs can help share meaningful information about ex-
periments and scientific workflows (for example, [12]) or keep track
of claims and results (for example, [13]). Through this, tools (such
as [14]) can be built that can help scientists in many of their daily
tasks around the scientific activity (such as finding collaborators or
summarizing the literature) without necessarily directly contributing to
scientific discovery.

More recently, much research has been published on the use of
knowledge graphs as input to deep learning models in a more direct
support for scientific discovery. Most of these works involve graph
neural networks (GNN, [15]) and knowledge graph embedding [16]
approaches, that can learn from rich graph structures for tasks such
as link prediction [17] or node classification [18]. Methods using
link prediction are particularly relevant in this space, since the idea,
presented naively, is to try to learn from the known relations between
entities in existing knowledge graphs (often extracted from the relevant
literature) what relations might exist between other entities. This has
been used, for example, in the context of drug discovery to find
unknown interactions between proteins, genes, and diseases [19].

To summarize, we could argue that in most of the works described
above and the many others that exist, knowledge graphs play a “ser-
vice” role: they serve the scientific activity as a way to support its
structuring, organization, and description, or as a format/a structure
for the data being exploited by machine learning models. As discussed
in [20], if we want to support scientific discovery, an important aspect
to take into account is that discoveries are fundamentally dependent on
and connected to existing knowledge of the scientific domain. When it
comes to Al-led scientific discoveries (see, for example, [21]), this is
even more critical. Any model, and any result obtained from applying
it, might be based on a hidden discovery that can only become apparent
once the model itself is aligned to existing scientific knowledge. The
opportunity becomes clear for knowledge graphs to play a role in this,
as wide, rich, and shared representations of such scientific knowledge.

3. On mechanistic interpretation

The need to make machine learning models interpretable no longer
needs to be explained in detail. Recent AI works relying increasingly
on large neural networks might be very efficient (in terms of pure
performance), but remain unscrutinizable due to their complexity and
the fact that they construct answers in a way which is distributed over
millions (and sometimes billions) of small computations. Closely related
to explainable Al the field of interpretable Al [22] aims to find ways
in which the general behavior of a model, the way it obtains results,
and the aspects of the data on which it relies can be understood. There
are many approaches to interpretability, including the “distillation” of
simpler, intrinsically interpretable surrogate models, such as decision
trees, from their output (see, for example, [23]) or employing feature-
based explainability methods globally [24]. It is worth mentioning that
such methods have already been made to rely on knowledge graphs,
providing external knowledge on which to build abstractions of features
or interpretable models (see, for example, [25,26]).

Mechanistic interpretation is a particular method for machine learn-
ing models (especially neural networks) interpretability that relies on
inspecting and analyzing the inner workings of the model itself [27].
Such approaches have become particularly interesting due to the in-
creasing deployment of large language models (LLMs) having appar-
ent emerging capabilities that cannot be easily explained from their
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training and application [28]. Both [27,28] provide a taxonomy of
approaches and techniques for achieving mechanistic interpretability,
but we can mention two that appear particularly relevant here: the
abstraction of sub-networks within the neural network and the abstrac-
tion of features as represented by activations and weights within the
network. Circuit finding is an example of the former, where modules of
neurons and connections are identified that appear to carry a particular
function within the model (see, for example, [29]). Recent works
carried out on LLMs on the topic of “monosemanticity” are an example
of the latter, where methods such as dictionary learning through sparse
autoencoders are used to disentangle the way neurons play a role in
the representation of multiple features (polysemanticity), to identify
those features and analyze how they contribute to the results (see, for
example, [30,31]).

4. On aligning knowledge graphs to mechanistic interpretations

Mechanistic interpretations help us to inspect the inner workings
of neural networks to abstract features used by those networks or
the functions they implement. Knowledge graphs provide conceptual
knowledge about the domain in which these neural networks operate.
When presented in this way, the notion that the abstracted features
and functions of mechanistic interpretations would benefit from being
aligned to knowledge in the form of concepts, relations, and entities
in knowledge graphs appears evident. In other words, relating in this
way “interpretations” that remain low level and focused on the model
itself to broader conceptual entities would achieve to place the learned
understanding of the data acquired by the neural network within the
knowledge system of the domain of interest.

This would require understanding how features and representations
within the neural network somehow correspond to identified concep-
tual entities. At the forefront of this are works in machine vision, where
correlations are found between neuron activations and the appearance
of specific elements in an image [32,33]. Much more explicit on finding
“concepts”, [34] proposes a more general approach (Testing Concept
Activation Vectors, TCAV) to identify whether visual concepts exist
(e.g., “stripes on a zebra”) within a neural network for image classi-
fication. Our own work took this idea a step further and tested how
self-organizing maps can be used to visualize and assess the presence
and influence of concepts, possibly coming from knowledge graphs,
within the activations of different layers of a neural network [35]. In
another approach, [36] relies on concept induction and a 2 million
concept hierarchy from Wikipedia to derive explanations from the
neuron activations of a CNN-based model.

In our domain of interest, this could lead to the ability to probe a
neural network for the contribution of specific aspects to the results
it obtained. We could answer questions of the form “is it important
to know that the material contains metals to calculate its thermal
conductivity?” or “is knowing that this is a high-energy material more
or less useful than knowing that it has the structure of a rocksalt?”.
We could further verify whether or not the model effectively relies on
notions that exist in more or less formalized theories in the domain, for
example that materials with low thermal conductivity would generally
be found in those with a bandgap lower than 1.5 eV. Of course, this
could also be done by statistically analyzing the input and output of
the model to find correlation with the relevant concepts in knowledge
graphs (as done, for example, in [25]). However, only by identifying
these concepts within the structures and activations of the model itself
can we actually verify that they play a role in the prediction and how
they relate in this task to other identifiable concepts.

However, those techniques so far have only allowed us to find out
how known concepts, i.e. those we are specifically looking for, appear
within neural networks. In most mechanistic interpretation approaches,
the method used generally goes in the opposite direction: structures,
groups or patterns are found that are expected to correspond to features
or functions, which are then inspected and analyzed to understand
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to what human-interpretable notion they might correspond. In other
words, they are manually named in a post hoc manner.

A key point here is that we could rely on the availability of broad
knowledge graphs, explore and search them, as a way to provide a con-
ceptual understanding of what these structures, groups, and patterns
represent. In other words, mechanistic interpretation can show how an
emerging, undefined concept is expressed and used in a neural network,
and knowledge graphs can be used to find which concept it is and how
it connects to broader knowledge in the domain.

To achieve that, techniques would have to be developed to align
mechanistic interpretations to the entities and properties in knowledge
graphs. In [37], an approach was presented where online knowledge
graphs are crawled to find combinations of properties of entities that
could best explain a subset of the entities in a larger dataset. Similarly,
in [25], a knowledge graph was used to abstract the entities repre-
senting the input of a neural network and provide interpretations on
the basis of rules connecting these properties to explanations of the
results. In both cases, the connection is based on first having aligned
the inputs of the network to entities of relevant knowledge graphs, and
then using those to create extensional descriptions of the features or
patterns identified from the behavior of the model to explore. A similar
approach could be used, provided that the initial alignment between
the input samples of the network and entities of knowledge graphs is
carried out, if achievable.

Using such an approach could represent a starting point to align-
ing patterns from mechanistic interpretations, provided that they can
be extensionally described, to concepts and properties in knowledge
graphs, provided that those exist and are already connected to the data
relevant to the model. However, these are strong constraints that might
not be easily fulfilled. As a key challenge towards a more effective
ability to align patterns from mechanistic interpretation to concepts
and properties of knowledge graphs, the availability of representations
of those concepts and properties that are directly comparable to those
representing patterns of mechanistic interpretations (e.g. activation
vectors) might be required. In this sense, emerging work around knowl-
edge graph embeddings already mentioned above, as well as neural
models of ontologies (see, for example, [38,39]) could play a key role.
Whether available knowledge graphs can be indexed so that a mapping
between a specific model’s representation of patterns and the generic
neural representation of knowledge graph entities can easily be found
remains an open question.

Now, what if it fails? What if there seems to be, according to
mechanistic interpretation, a concept or a group of interacting concepts
that is strongly involved in the prediction and that we cannot find in
knowledge graphs? In our example, are there abstract features involved
in whether a material has high or low thermal conductivity that do
not relate to any entity even in the best knowledge graphs we could
build to capture current knowledge in physics? Could that mean that
our model, through its ability to analyze large quantities of data, has
found a mechanism, a property, a phenomena of which we might not be
aware? It is a possibility, and the reason why we believe that aligning
the analysis of machine learning models from the point of view of
mechanistic interpretation to knowledge graphs could become one of
the most significant approaches to (scientific) (knowledge) discovery:
finding what the model might have relearned from what we know and
where there might be gaps in our knowledge.

5. Conclusion

This paints a picture of science where machine learning is not only
used to predict but where learning to predict is a step in a process
of knowledge extraction and discovery. Machine learning models find
patterns, and there is a chance that among these are phenomena not
yet understood or formalized.

There are naturally many challenges in achieving this in a way that
can actually integrate in the process of scientific discovery, including:
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Scale: As described in [31], some approaches to mechanistic interpre-
tation are already very time-consuming and resource-consuming
activities when performed on large models, and it is only half of
the process. What is described here also assumes that there are a
large number of large knowledge graphs that could include con-
cepts and properties aligning with the patterns found through
mechanistic interpretation. Exploring those concepts and prop-
erties, identifying the most relevant, mapping them to patterns
identified through mechanistic interpretations, ranking them,
and presenting them in their context, with their connections to
others are all tasks for which new solutions are required, if only
because of the scale at which they need to operate.

Accessibility of knowledge graphs: Related to the point above, in
some way, what we envision in this article is also assuming
that those large numbers of large knowledge graphs are easily
accessible, which is far from being the case today consider-
ing that existing knowledge graphs are naturally distributed
over the web, often not easily findable, and provided through
systems suffering from availability issues. Several indexes and
search engines for semantic web resources [40] (ontologies and
entities) have been developed in the past, but most of them
have disappeared and would need to be updated to operate in
the manner required here. In addition, as mentioned above, to
support the suggested process, knowledge graphs would have
to be indexed through representations that are suitable to be
mapped to neural patterns found by mechanistic interpretation.

Completeness and suitability of knowledge graphs: While many
knowledge graphs exist in many scientific disciplines, not all
the needs of the process described in this article are currently
covered for all domains and areas to which they could apply.
For instance, to the best of our knowledge, there is no mate-
rial knowledge graph that would currently cover the examples
mentioned in relation to our use case. In addition, even when
they exist, science-related knowledge graphs might be built for
the purpose of information exchange, accessibility, and inter-
operability and, as a result, may not be suitable to be used as
a deposit of current, up-to-date theoretical and experimental
knowledge in the corresponding discipline.

As a result of those challenges and of the inherent limitations of
machine learning models, we expect most of what is discovered through
the suggested process to be either shortcuts taken by the model (invalid
results from biased datasets) or representative of our inability to obtain
the appropriate knowledge from insufficiently available knowledge
graphs. Those failures are also important since they might help us
building better datasets, better knowledge graphs, and better models.
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