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Rayleigh-Taylor instability of thin films of granular suspensions:
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The instability of a thin film because of its own weight, commonly named the Rayleigh-Taylor instability,
is investigated with density-matched suspensions under various confinement of the particles phase. For small
confinement, the instability pattern and the dynamics is accurately described by the prediction obtained with
the continuous model using the bulk suspension viscosity. The layer then develops a hexagonal pattern of
bumps and the instability propagates as a front usually starting from the outer boundary of the layer. Increasing
the confinement i.e. increasing particle size or decreasing the thickness of the fluid layer yields a completley
different behaviour of the layer of suspension. The front propagation is not observed, and only a few domes
grow and then move across the thin film.

The Rayleigh-Taylor instability (RTI) occurs in accelerated
two-phase fluid systems with adverse density gradients, i.e.
systems where the denser phase lies on top of the lighter
one[1–3]. This instability is observed in many natural sys-
tems, e.g. during the collapse of the core of massive stars
[4]. It is also believed to play a role in geophysical processes
such as diapirism and mantle dynamics [5]. Industrial appli-
cations such as coating and inertial confinement fusion may
also display the instability, to their benefit to obtain patterned
surfaces [6] or disadvantage, destroying the symmetry of the
fusion fuel target implosion [7]. Dry and immersed granular
materials also display a similar instability [8, 9].

In general, the RTI is hard to prevent. Rotation of the up-
per liquid [10], horizontal oscillations of the system [11, 12],
a tangential flow in the liquid film[13–17], or the presence of
a thermocapillary stress at the interface [18] can help miti-
gate the instability. Prevention of the instability has also been
reported for a liquid/liquid interface in a vertically confined
system with a suspension of buoyant particles on top [19].

In particular, in the situation of a viscous thin film, a hexag-
onal pattern of domes is shown to be the fastest growing mode
in the linear regime of the instability growth [20].

In a gravity field, these configurations are unstable to any
perturbation of their interface in the absence of stabilizing
forces [21]. For two immiscible viscous fluids, the compe-
tition of stabilizing capillarity and viscosity with gravity leads
to the selection of a pattern with wavelength pattern selection
and specific dynamics depending on the situation [22, 23].

For a thin liquid film of thickeness h0, a normal mode anal-
ysis shows that this situation is unstable. The instability is
characterized by a mode of fastest growth with wavelength λ ∗

and growth rate τ∗ given by [24]
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√
2ℓc, τ

∗ = 12
η

γ

ℓ4
c

h3
0
, (1)

where g is the gravity acceleration, η , γ and ρ are the vis-
cosity, surface tension with the air and density of the liq-
uid, respectively. We also introduce the capillary length,
ℓc = (γ/ρg)1/2.

Real thin films are bounded either by a wall or a contact

line.Y a t’il un lien logique entre ces deux phrases? Preciser
que c’est une selection de pattern rajouter ta REF Matthieu
The study of their RTI of a thin viscous film shows a more
complex picture [20, 25, 26]. The disturbance may grow into
different patterns depending both on the edge conditions and
non-linear couplings between unstable modes. For example,
rolls are observed in the first stage of the instability before
being superseded by a faster growing hexagonal pattern of
domes as the instability progresses [20]. Also, the instability
propagates across the film forming a front. While the wave-
length of the rolls is close to λ ∗, the distance separating two
domes is larger due to geometrical arguments. Indeed, the
domes grow on the rolls, each row being interspersed in the
middle of its two neighbors. As a result, the distance between
two domes is L∗ = 2λ ∗/

√
3.

Here, we show that seeding solid particles in a thin film
is another way to control its destabilization by the Rayleigh-
Taylor mechanism. Using concentrated suspensions of ather-
mal particles, we observe that the dynamics of the instability,
i.e. the growth of domes on the film, depends on the ratio of
the diameter of the particles, d, to the film thickness, h0. When
d/h0 << 1, the profile is the one expected for a simple fluid
of the same viscosity as the suspension. When d/h0 >> 1,
the pattern is on average still close to that of the pure-fluid
case but shows disorder. The liquid domes move along the
film before dripping. During motion, they may coalesce. We
characterize the motion of the domes, and show that it is re-
lated to a similar phenomenon observed and predicted on very
thin films. For quantitative discussions on dome motion and
growth rate, we use surface profilometry to reconstruct the
height profile of the film during the growth of the instability.
We also propose a mechanism to explain the observed dynam-
ics.

METTRE EN AVANT QU’ON EST 3D
The dome patterns observed for a 750-µm thick layer of

pure fluid and suspensions made with different particle sizes
are displayed in Fig. 1 (a). The patterns in the top right and
left quadrants, corresponding to a pure fluid film and a sus-
pension film made of 60-µm particles, display a high dome
number and a regular hexagonal organization of the domes. In
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FIG. 1. (a) Dome pattern i.e. dripping locations, for fluid layers
of 750 µm made of pure fluid (top right) of granular suspensions of
different particle sizes. The suspending fluid is the Triton mixture
and and particles are made of PMMA. (b) Position of the first peak
of g(r), normalized by the linear prediction of the fastest growing
wavelength Ł∗ = 4π

√
2ℓc/

√
3 for suspensions made with the Triton

mixture and PMMA particles and those made with the PEG copoly-
mer and PS particles. Color corresponds to particle size and symbol
shape correspond to the initial thickness of the fluid layer.

contrast, much scarcer and less regular patterns are observed
for larger particles in the bottom left and right quadrants, for
particle sizes of 265 µm and 235 µm, respectively. The pattern
selection is thus not affected by the addition of small non-
confined particles but breaks down when the film thickness
is only a few particle diameters. For the largest particles, we
collected drops as they fall and confirmed that their volume
fraction is the same as that of the suspension.

From the radial distribution function G(r) of the dome dis-
tances, we inferred the mean distance between nearest neigh-
bors L. For a given suspending fluid, we found L to be insen-

sitive to the addition of particle, and also insensitive to their
size. For the pure fluid, secondary and tertiary peaks, coming
from the high spatial ordering of the lattice, can be observed
at larger distances, but these peaks are less pronounced upon
the addition of particles. The position of the largest peaks at
r = L, for different suspensions made with different particle
sizes, suspending fluids, and initial thicknesses, is plotted in
Fig. 1 (b). In order to remove variations due to fluid proper-
ties, this mean distance between domes is normalized by the
one expected for the hexagonal pattern, L∗ = 4π

√
2ℓc/

√
3.

For all the fluids, pure liquids and suspensions, the normalized
radial distance associated with the maximum of G(r), falls on
the line L/L∗ = 1. This agreement with the prediction can be
expected. Indeed, as the wavelength of the instability, setting
eventually the distance between domes, does not depend on
the film thickness, h0, nor on the liquid viscosity, η , it should
not be affected by the addition of the particles. However, for
the largest particle, the instability pattern is very different, and
the wavelength selection is thus non-trivial.

As mentioned above, the addition of particles should not
modify the surface tension compared to the case of pure fluid,
but it should increase the dissipation and therefore the effec-
tive viscosity of the fluid by a factor ηr = 5 for φ = 30%,
where ηr is often referred to as the relative viscosity of the
suspension [27]. This increase in viscosity does not affect
the wavelength of the linear regime, but it should increase the
characteristic time of the growth of the instability. The latter
can be quantified for transparent suspension as the pattern dis-
tortion can be inverted into height to extract growth rates for
each dome, fitting dome height by exponential functions. The
fitting was performed above 0.5 mm to avoid noise in detec-
tion, and below 2 mm that is considered as the typical height
above which the Schlieren analysis becomes non-valid [28].
Additionally, a criterion on a minimal dome height of 1 mm
ensures to track domes that drip over the course of the experi-
ment. The distribution of growth rates for a film made of pure
fluid and suspensions of small and large particles are gathered
in Fig. 2. A map of the spatial distribution of the growth rate
is also displayed. The grey dots correspond to domes out of
which no growth rate could be extracted, due to insufficient
height reached by the dome. For pure fluid, the average of
the growth rates is τ = 80 s, in the same order of magnitude
as that of the prediction from the linear theory, τ = 21 s. The
discrepancy could stem from analysis out of the linear regime,
where growth rate accelerates, but the agreement remains sat-
isfactory. Upon the addition of small particles, the growth rate
distribution widens and shifts toward larger growth rates. The
average growth rate, τ = 365 s is almost 5 times higher than
that of the pure fluid, suggesting that the linear theory is still
valid for this suspension, as the growth rate is expected to be
proportional to the fluid viscosity. For the largest particles,
the conclusion is less clear, particularly due to the significant
number of domes for which an exponential fit is impossible.
The average growth rate would be slightly higher than in the
case of small particles, τ = 391 s but this conclusion lacks
statistics due to the smaller number of domes This difference
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FIG. 2. Dome growth rate distribution (bars) and dripping locations
(hexagons) for (a) the mixture of Triton and for suspensions made of
9b) 60-µm PMMA particles and (c) 210-µm PMMA particles. Grey
dots correspond to domes for which the height doesn’t reach 1 mm.

can be in part explained by a different growth mechanism of

the instability, with moving domes, as explained in the follow-
ing.

As seen in Fig.1 and Fig.2, the dripping positions of the
domes for the pure fluid and the suspension with small par-
ticles are well-ordered, forming a quasi-hexagonal lattice. In
contrast, the suspension containing large particles exhibits a
less organized pattern. This reduced order is due to the in-
creased mobility of domes in the suspension with large par-
ticles. By linking the dome positions into trajectories using
the Python module trackpy, we can extract dome trajecto-
ries to evaluate the stability of the pattern, as displayed for
various particle sizes in Fig. 3. For both the pure fluid and
suspensions with small particles, domes remain stable during
a single growth phase, as well as across successive genera-
tions of domes, which are highlighted by brighter colors (up
to four generations at the same location for the pure fluid).
However, for films containing large particles, this stability no
longer holds. Dome positions tend to drift during individual
trajectories and across subsequent generations of domes. This
motion is predominantly directed from the edges towards the
center of the film. Importantly, this behavior is not caused by
plate tilting, as it is absent in the pure fluid and suspensions
with small particles. Furthermore, there is no consistent trend
in dome directionality between different experiments.

To quantify dome displacement, the mean square displace-
ment |∆r| over ∆t = 50 s for each trajectory has been com-
puted and converted into a mean dome speed vm = |∆r|/∆t.
Density histograms of the mean dome speeds are shown for
an experiment with pure fluid and with a suspension made
of large particles in the main graph of Fig. 3b. This analy-
sis confirms the earlier observation regarding dome mobility:
the mean square displacement or equivalently the mean dome
speed of the pure fluid is significantly smaller compared to
that of a suspension made of large particles. The excess den-
sity of domes at high speed compared to the case of the pure
fluid, M (i.e., the area between the two smooth curves) is plot-
ted as a function of particle size in the inset of Fig. 3b. This
increase in mobility, relative to the pure fluid, grows almost
linearly with particle size.

The behavior of a free interface coupled the mechanics of
complex fluid is a tedious problem. In the canonical case of
granular suspensions, dip coating [29–32], pinch-off [33, 34]
and wetting [35, 36] have revealed that systems behave as reg-
ular fluid as long as confinement of the particulate phase re-
mains mild. In this paper, we reach the same conclusion with
two distinct regimes, depending on the ratio d/h0. For small
ratios, the confinement on the particles is mild and the suspen-
sion behaves like a regular fluid with effective properties to ac-
count for the addition of particles. In particular, the increase
in dissipation, resulting in a larger viscosity, shows up in the
growth rate of the domes. The increase in growth rate is the
same as that of viscosity (by a factor ηr = 5). The wavelength
of the instability is not modified as the addition of particles
to the fluid does not change the capillary length. The con-
clusions are different when the confinement of the particles
increases; that is, as d/h0 → 1. In particular, the hexagonal
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(a) (b)

FIG. 3. Dome trajectories. Je propose de merger les deux figures car elles parlent de la même idée. Aussi, ça permet de mettre ton diagramme
de fonctionnement en figure 4, qui me semble une très bonne conclusion du papier. Dis moi ce que tu en penses. Il y a l’air d’y avoir un souci
avec les hexagones aussi, ils n’ont pas l’air régulier, c’est normal? Dans la figure b, ce serait p-ê bien d’avoir une légende indiquant la taille
des particules et la couleur des courbes.

lattice does not form, and we observe a completely different
propagation mechanism, with fewer domes invading the films
and moving to gather fluid and grow. For pure fluid and small
particles, the domes are very stable during one growth event,
but also for the next generations of domes. We rationalize this
observation by a competition between the growth of the in-
stability and resistance against film thinning, coming from the
viscous and capillary forces. When particles are in the fluid,
additional forces coming from meniscii on the particles and
forbidden rearrangements under confinement reinforce the re-
sistance against film thinning. Assuming this mechanism pre-
vents thinning below the diameter of a single particle, we build
a simple model which compares the dripping volume to the
available fluid volume per unit cell of the theoretical hexago-
nal lattice.

As the instability grows, domes become higher and may
eventually release a drop above a critical size that can be
estimated with the critical volume of a pendent drop in per-
fect wetting on the upper wall, V max

0 ∼ 6πℓ3
c [37–39]. Drip-

ping can however be delayed significantly with extremely thin
and/or extremely viscous liquid layers and/or small enough
initial perturbation [40]. For the hexagonal pattern with
domes spaced by L∗ = 2λ ∗/

√
3, the available fluid volume

per unit cell is V0 = 16π2ℓ2
ch0/

√
3 = Ah0 [20]. If only this

volume of liquid contributes to dome growth, i.e. there is
no drainage of the liquid in neighboring cells, the dripping
criterion for this growing dome is V0 ≥ V max

0 ∼ 6πℓ3
c yields

h0 ≥ 0.21ℓc = 360− 383 µm in the current experiments for
the hexagonal pattern. Introducing particles into the liquid
increases this lower bound in film thickness, assuming that
some fluid becomes unavailable for dripping because of capil-

lary forces acting on the particles and preventing the draining
of the first layer of suspension. If a layer of thickness d is im-
mobilized below the top plate, the modified dripping criterion
becomes V0 = Ah0 ≥V max

0 +Ad i.e. d ≤ h0 −3
√

3ℓc/(8π)≃
h0 − 0.21ℓc. For h0 = 750 µm, we reach d ≤ 372− 395 µm.
This order of magnitude aligns with observations of unstable
hexagonal patterns in Figures 1(a) and 3(a). To enable drip-
ping, domes must move out of their cells; otherwise, growth
is hindered, as illustrated by the numerous gray dots in the
inset of Figure 2(b). More generally, the number of domes
decreases with increasing particle size, which is again con-
sistent with the proposed mechanism. The little offset could
stem from a dripping volume that is underestimated. Indeed,
the prediction V max

0 ∼ 6πℓ3
c holds for infinite time. In exper-

iments, other phenomena with finite timescales are involved
and can disturb a growing dome if the dripping process is too
slow. We measured the dripping limit for isolated drops, as is
defined V max

0 , for a suspensions of 250-µm particles and found
indeed that the minimum volume to observe dripping is larger
than the prediction by more then 50 %

This new propagation mechanism of the instability is based
on the increased mobility of few domes. As the dome growth
is constrained due to the excluded volume effect of the par-
ticles, the instability promotes dome motion. Domes then
gather fluid on their trajectory, grow and eventually drip.
However, this mechanism seems overall less efficient, result-
ing in fewer dripping events, see Fig.2. The increased mobil-
ity of domes in suspensions with larger particles also leads to
the coalescence of neighboring domes, which similarly helps
overcoming the constraints imposed by the excluded volume
near the ceiling. To the best of our knowledge, this sponta-
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neous translation of a pending drop on a flat horizontal ceiling
has not been reported experimentally in the literature. How-
ever, the translation of pendant drops along a flat horizontal
ceiling has been predicted and reported in numerical simu-
lations [41]. The mechanism described in these simulations
involves an asymmetry in the film thickness, which leads to
asymmetric drainage and a preferred migration of a dome to
the region with the largest film thickness. In addition, this
translation is self-maintained, as the dome creates a shallower
trailing wake as it moves. In these simulations, the surround-
ing film is very thin, such that the volume available for drip-
ping is similarly constrained, as the drainage is very slow. The
conditions required for such translational motion to occur ap-
pear highly restrictive. Specifically, the film thickness must
be very small (by an order of magnitude thinner) compared to
the height of the dome. The translation speed is expected to
scale with the dome height hd , and the film thickness h+ in
front of the drop, following the equation:

v ≃ 0.00485(h+hd)
3/2

[
1+2.04

(
hd

h+

)1/2
]
. (2)

For a moving dome, the film in the trailing wake is ex-
tremely thin, such that h+ is then almost equivalent to the
height difference between the front and the rear. This speed
is non-dimensional, height being normalized by h0, horizontal
lengths by ℓc and time by ηℓ4

c/(γh3
0).

In our experiments, using h+ ∼ 1, hd ∼ 2, we reach v ∼
10−5 ms−1, i.e. a speed compatible whit that measured for the
domes with the highest mobility in Figure 3. We also observe
that the domes with the greatest mobility move away from the
wake they form. This behavior is consistent with the trans-
lation mechanism proposed by Lister et al. [41], with domes
migration in the opposite direction to the trailing wake. How-
ever, in the the present experiment, the ratio of dome height to
film thickness is of the order of one. This suggest that the ad-
dition of particles lowers the criterion to observe this mobility.
Again, for pure fluid or suspension of small particles, a dome
mobility around their initial growth spot is observed but does
not compromise their organization into a hexagonal pattern.
On the contrary, for largest particle, this organization is lost
from the very beginning of their frustrated growth, resulting
in the trajectories presented in Fig.3(a).

To conclude, we reported here the Rayleigh-Taylor insta-
bility of viscous thin films made of pure liquids and granular
suspensions. Through interface height reconstructions, we an-
alyzed the instability pattern and its dynamic, varying particle
size relatively to the film thickness. Our findings show that
when particles are significantly smaller than the film thick-
ness, the suspension behaves similarly to a pure fluid, both in
terms of pattern dimensions and structure, as well as the dy-
namics. In particular, in this regime, the hexagonal pattern
selection remains robust. Also, the bulk suspension viscosity
accurately predicts the typical growth time of the instability.

However, the behavior changes drastically for larger parti-
cles. A notable difference lies in the spatial organization of

the domes, which are fewer, less organized, and exhibit sig-
nificant translational motion. This motion can be attributed
to frustrated growth, through volume exclusion effects, as the
particles resist fluid drainage near the ceiling of the film. The
motion then allows the domes to accumulate more fluid, ulti-
mately leading to dripping.
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A. Sauret, Dip coating of bidisperse particulate suspensions, J.
Fluid Mech. 936 (2022).

[33] J. Château, Guazzelli, and H. Lhuissier, Pinch-off of a viscous
suspension thread, J. Fluid Mech. 852, 178 (2018).

[34] J. Château and H. Lhuissier, Breakup of a particulate suspen-
sion jet, Phys. Rev. Fluids 4, 012001 (2019).
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End Matter

Materials

Transparent suspensions are made of PMMA spheres
(Spheromers CA, Microbeads, or Altuglas, Arkema) im-
mersed in a mixture of Triton X-100 (73 wt%), zinc chlo-
ride (16 wt%), and water (11 wt%) matching the density and
optical index of PMMA. Additional opaque suspensions are
made of spherical polystyrene beads (Dynoseeds TS, Mi-
crobeads, Norway) suspended in a density-matched New-
tonian PEG copolymer [Poly(ethylene glycol-ran-propylene
glycol) monobutyl ether] (Sigma). The dynamic viscosity
of the two suspending fluid are η f =(3.3 ± 0.1)Pas and
(2.4 ± 0.1)Pas at 22 ◦C, and their surface tension γ f ≃ 32
and 35 mNm−1, respectively. On a une idée des viscosités
des suspensions? On les a mesurés quelque part? The sur-
face tension of the suspensions is that of the suspending fluid,
as confirmed by pendant drop experiments. PMMA parti-
cle diameters are (60±6) µm, (220± 10) µm, (265± 15) µm
and (325 ± 10) µm and polystyrene particle diameters are
(80± 6) µm, (140± 10) µm and (250± 15) µm. The suspen-
sion mixture is made by weighting a mass of suspending fluid,
adding the amount of solid needed to reach the desired parti-
cle volume fraction φ = 30%. Regular, slow machine mix-
ing ensures homogenization and removal of air bubbles. The
particles are found to be completely wet by the fluid and to
experience no aggregation.

Film Preparation

Thin films are prepared on a glass plate on which a plastic
frame of thickness h0 = 500 or 750 µm is glued. The plate
is placed on a scale, and the desired mass of fluid is slowly
poured homogeneously in the frame and left to rest for several
hours before an experiment. Once turned over, the fluid does
not wet the plastic sufficiently to spread on it. The instabil-
ity always starts from the edges and propagates to the center.
For this reason, the frame is cut with a hexagonal shape (side
length 9 cm), to generate directly the most unstable lattice of
domes.

Surface Profilometry

The total apparatus is a 1-meter high structure holding a
LED panel placed above the glass plate, which is itself above a
mirror, inclined at 45◦ to image from below. As drops drip on
the mirror, the field of view shrinks during an experiment. The
acquisition is made with a monochrome Basler camera (refer-
ence acA12440 - 35 um, 5 MP) mounted with a distortionless
macro lens (reference VS-LLD30). The typical resolution is
130 µm/pixel and the distance between the camera and the liq-
uid film is H = 1.1 m. A checkerboard in which each square
has a side length 1 mm is printed on a paper sheet and taped
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on the other side of the glass plate and can be used for visual-
ization and in particular for Synthetic Schlieren Imaging. The
latter technique can be used with transparent suspensions, as
the checkerboard pattern can be seen through and appears dis-
torted by the deformed interface. Such pictures can be quickly
inverted through Fourier demodulation, enabling non-invasive
surface profilometry of the free interface [? ].

Thin-film analysis of the RTI

A simple yet informative treatment of the RTI considers a
thin layer of viscous liquid of initial thickness h0 that hangs
from a rigid ceiling into another fluid. The system is assumed

infinite in all other directions. The dynamic viscosity η and
density ρ of the liquid are assumed to be much larger than that
of the ambient fluid. The surface tension of the liquid with air
is γ . Under the lubrication approximation, the spatiotemporal
evolution of the film thickness h follows [? ],

∂h
∂ t

+∇ ·
[

h3

3η
∇(ρgh+ γ∆h)

]
= 0, (3)

with ∇ and ∆ the in-plane gradient and Laplacian operators,
respectively, g, the acceleration of gravity with g > 0, such
that the vertical direction is directed downwards and normal to
the solid surface located at z = 0. Assuming that h = h0 +δh
with δh(x,y, t)<< h0 the interface displacement, Eq. 3 can be
linearized.
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