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Abstract

Variations in languages across geographic re-
gions or cultures are crucial to address to avoid
biases in NLP systems designed for culturally
sensitive tasks, such as hate speech detection
or dialog with conversational agents. In lan-
guages such as Spanish, where varieties can
significantly overlap, many examples can be
valid across them, which we refer to as com-
mon examples. Ignoring these examples may
cause misclassifications, reducing model accu-
racy and fairness. Therefore, accounting for
these common examples is essential to improve
the robustness and representativeness of NLP
systems trained on such data. In this work, we
address this problem in the context of Spanish
varieties. We use training dynamics to auto-
matically detect common examples or errors
in existing Spanish datasets. We demonstrate
the efficacy of using predicted label confidence
for our Datamaps (Swayamdipta et al., 2020)
implementation for the identification of hard-
to-classify examples, especially common exam-
ples, enhancing model performance in variety
identification tasks. Additionally, we introduce
a Cuban Spanish Variety Identification dataset
with common examples annotations developed
to facilitate more accurate detection of Cuban
and Caribbean Spanish varieties. To our knowl-
edge, this is the first dataset focused on identify-
ing the Cuban, or any other Caribbean, Spanish
variety.

1 Introduction

Language reflects culture and identity, while also
capturing subtle variations that shape communica-
tion. In Natural Language Processing (NLP), it is
crucial to account for these nuances, especially in
language variety identification, where small shifts
in meaning, often tied to cultural interpretations,
can impact sensitive tasks like hate speech detec-
tion. Expressions that may be benign in one dialect

*These authors contributed equally.

can be offensive in another, making accurate variety
identification essential to prevent misclassifications
and ensure culturally appropriate responses (Nozza,
2021; Hershcovich et al., 2022). In such tasks,

“El auto está en el garaje” (The car is in the garage)

variety 1: Argentinian variety 2: Cuban

Common Example

Annotator 1:
“Auto” (Automobile) is commonly used
in Argentina instead of “coche” (car).

Annotator 2:
“Garaje” (Garage) is used in
Cuba, while “cochera” (carport)
might be used elsewhere.

Figure 1: Common Example Identification in Language
Variety Classification

cross-lingual models often struggle with these sub-
tle cultural and linguistic distinctions, as the same
formulation may carry vastly different meanings
across varieties. Language-specific models tend to
perform better in such cases, as they are more sen-
sitive to regional variations (Nozza, 2021; Vaidya
et al., 2024; Arango et al., 2021; Montariol et al.,
2022; Castillo-lópez et al., 2023). However, dis-
tinguishing between closely related languages, di-
alects, and regional varieties of the same language
is a key and difficult task in language identification
(Tiedemann and Ljubešić, 2012; Lui and Cook,
2013; Zampieri and Nakov, 2021; España-Bonet
and Barrón-Cedeño, 2024). Adding to this com-
plexity is the issue of common examples —valid
phrases across multiple dialects or varieties. Over-
looking these examples can result in biased clas-
sifications, especially in languages like Spanish,
where variety overlap is frequent. 1 Despite this,
many current datasets treat the identification of
the language variety as a single label classification

1Following Hudson (1996), we use the terms varieties of
Spanish: “a variety is a set of linguistic items with similar
social (including geographical and cultural) distribution.”



task, which overlooks this crucial aspect (Zampieri
et al., 2024). Current datasets for language variety
identification often rely on manual annotations or
automated methods such as geographic informa-
tion (Zampieri et al., 2019; Abdul-Mageed et al.,
2020, 2022; Aepli et al., 2022) or keyword-based
classification (Althobaiti, 2022). However, both ap-
proaches have limitations, and manually checking
large datasets for common examples is challeng-
ing and costly (Keleg and Magdy, 2023; Bernier-
colborne et al., 2023). Datamaps based on train-
ing dynamics (Swayamdipta et al., 2020; Weber-
Genzel et al., 2024), which track how the confi-
dence of the model changes over epochs, have been
used successfully to detect annotation errors and
human label variation. These methods highlight
which examples are consistently easy or difficult
for the model, with hard examples often pointing
to ambiguity or errors. We propose using training
dynamics to detect common examples in language
variety identification tasks. In 1 we show an exam-
ple of these common examples. These are expected
to be among the hard examples the model struggles
with during training. By tracking the model’s confi-
dence in its predicted labels over multiple training
epochs, rather than using gold labels, we aim to
detect ambiguous instances that are hard for the
model to classify consistently. Our research ad-
dresses the following questions:

• RQ1: Can training dynamics help detect com-
mon examples that are hard for the model to
classify during the training?

• RQ2: Can we use the model’s confidence over
predicted labels to detect common examples?

• RQ3: Can this approach work effectively
across different domains, such as news articles
and user-generated content?

To investigate these questions, we use two
datasets: the Spanish subset of DSL-TL dataset
(Zampieri et al., 2024), which contains texts ex-
tracted from news articles, and a new dataset of
Cuban Spanish varieties we collected from Twit-
ter. We adapt the Datamaps technique by changing
the way confidence and variability are calculated,
allowing us to identify common examples. Our
results demonstrate the efficiency of this approach
in detecting common examples in both datasets.

Our main contributions are as follows:

1. We propose a modified Datamaps model that
calculates confidence and variability based
on the predicted label’s probability, provid-
ing a more accurate reflection of model un-
certainty. Our model can help accelerate the
re-annotation of existing datasets.

2. Using both frequency-based methods and
SHAP analysis (Lundberg and Lee, 2017), we
provide a thorough error analysis that demon-
strates the usefulness of our approach to cap-
ture annotation errors and shows how the
model predictions are topic-dependent.

3. We present and publicly share a novel Cuban
Spanish variety identification dataset, consist-
ing of 1,762 manually annotated tweets by
three native speakers, with labels assigned
based on agreement and covering Cuban, non-
Cuban varieties, and common examples.

2 Related Work

Common Examples. The challenge of handling
common examples that can be valid across mul-
tiple language varieties has been a recurring is-
sue in language variety identification. Traditional
single-label classification often struggles to as-
sign unique labels to common examples(Althobaiti,
2020; Bernier-colborne et al., 2023). Addressing
this challenge, Zampieri et al. (2024) introduced
a third class specifically for common instances in
their DSL-TL dataset for language variety identi-
fication. This dataset allowed the exploration of the
impact of these ambiguous cases on model perfor-
mance. The authors found that the models had diffi-
culty distinguishing between common and dialect-
specific examples. Then, their results served as a
baseline for the DSL-TL shared task at VarDial
2023 (Aepli et al., 2023). In the scope of this
shared task, Vaidya and Kane (2023) introduced
a two-stage multilingual dialect detection system.
Their approach first identifies the macro-language,
followed by applying dialect-specific models to
refine the classification. Although this system per-
formed well overall, it struggled with the common
examples class, where it frequently misclassified
examples due to the lack of clear dialect-specific
markers. The Spanish language, with its rich ar-
ray of varieties, provides a particularly challenging
landscape for variety identification due to the high
similarity between varieties. Zampieri et al. (2024)
noted that the prevalence of common examples in



Spanish is especially high. Given the significant
lexical and syntactical overlap among Spanish vari-
eties, sentences that can belong to more than one
variety are frequent, making traditional classifica-
tion approaches less reliable. The misclassification
of these common instances not only introduces
noise into the datasets but also impacts the overall
performance of the models, as evidenced by the
poor handling of Argentine examples in Vaidya
and Kane (2023).

Multi-class Approaches for Variety Identifica-
tion. In light of these challenges that affect many
different languages, several works have proposed
moving away from single-label classification to-
wards multi-class or multi-label approaches for va-
riety identification. For example, Keleg and Magdy
(2023) demonstrated that many sentences could
validly belong to multiple Arabic dialects, arguing
for including multiple labels per instance. They in-
troduced the Expected Maximal Accuracy (EMA)
metric to measure the upper-bound accuracy in sce-
narios where common instances occur frequently.
Their results indicated that the majority of false
positives in traditional single-label classifiers were,
in fact, not errors, but cases where multiple dialects
could be correct. Bernier-colborne et al. (2023)
took this further by employing similarity metrics
to identify duplicate or nearly duplicate examples
and assigning multiple labels to ambiguous sen-
tences. Their work, focusing on French varieties,
showed that this multi-class approach significantly
improved F1-macro scores for ambiguous exam-
ples. They argued that applying a multi-class frame-
work can improve the accuracy of variety identi-
fication and better handle the inherent ambiguity
found in multilingual datasets.

3 Task Definition: Automatic Common
Examples Detection

Our main task is to identify common examples
across similar language varieties. Our proposed
pipeline can be separated into two main stages:

• Fine-tune a Transformer-based model on the
Variety Identification datasets for single-label
classification of varieties (binary).

• Assign a score to each example using a scorer
model, expecting higher values for common
examples, and rank them with the highest
scores at the top.

3.1 Scorer Models
Datamaps Swayamdipta et al. (2020) proposed
Datamaps (DM) using Training Dynamics, which
is the behavior of a model as training progresses,
for detecting annotation errors in datasets. Their
approach focused on tracking the confidence and
variability on the gold label during training. Specif-
ically, examples consistently showing low confi-
dence for this label across epochs were flagged
as potential annotation errors or ambiguous cases.
This technique has also been adapted to identify
the variation of human labels, where examples
can legitimately belong to more than one category
(Weber-Genzel et al., 2024). We use this technique
to identify common examples for the Variety Iden-
tification task.

Datamaps using predicted label probability
We adapt the Datamaps metrics to our use case.
Unlike Swayamdipta et al. (2020), who focus on
the gold labels, and Weber-Genzel et al. (2024),
who prioritize re-annotating erroneous labels, our
goal is to detect instances that the model struggles
to classify consistently. Therefore, we calculate
confidence and variability differently: rather than
focusing on the correctness of assigned labels or
identifying annotation errors, we calculate these
metrics based on the maximum predicted probabil-
ity for each instance at each epoch, aiming to de-
tect instances that exhibit inconsistent predictions
or low confidence and, therefore, could belong to
both classes or an unobserved third class. For com-
mon examples, which can be associated with more
than one label, it would be more natural to describe
the uncertainty in terms of the model’s confidence
in its predictions. The confidence is defined as:

DMmean−pred = − 1

E

E∑
e=1

max
j

(pi,j,e) (1)

where pi,j,e is the probability assigned to the i’th
instance for the label j in epoch e. Then, the lowest
confidences correspond to a higher score because
of the negative sign. The idea is that examples with
small probabilities associated with the predicted
label across the epochs are likely challenging ex-
amples.

The variability is defined as:

DMstd−pred =√√√√ 1

E

(
E∑

e=1

max
j

(pi,j,e) + DMmean−pred

)2 (2)



The high variability indicates that the model’s
confidence changes significantly across epochs,
suggesting the model is uncertain about the in-
stance. This can point to an instance that is hard to
classify or potentially common.

Random baseline We use a random model as
a scorer, which assigns uniformly random scores
between 0 and 1 to each example as a baseline.

Language Model For the Variety Identification
module we use the model BETO, a monolin-
gual Spanish BERT model version (Canete et al.,
2020) for our experiments; it has proven effec-
tive in several downstream tasks for this language.
This model was trained on all Wikipedia and all
Spanish data from the OPUS project (Tiedemann,
2012). In the case of Spanish Wikipedia, by 2017,
around 39.2% of edits came from Spain (Spanish
Wikipedia, 2021), which can negatively impact the
model performance in varieties not from Spain.

Evaluation The first metric considered for eval-
uation is the Average Precision Score in the Com-
mon Examples Identification Task. In addition, we
evaluate precision and recall by considering the top
N instances, ranked by their score values, with N
ranging from 10 to the size of each dataset.

4 Datasets

In this section, we describe the datasets used for
our analysis. We use an existing dataset DSL-TL
and propose a new dataset CUBANSPVARIETY

focused on the Cuban Spanish variety.

4.1 DSL-TL

The Discriminating Similar Language - True La-
bels ( DSL-TL) dataset (Zampieri et al., 2024)
was employed in a shared task at the VarDial 2023
workshop2. This dataset contains examples from
Portuguese, Spanish, and English varieties, but our
focus is solely on the Spanish subset. The Span-
ish subset is derived from the DSLCC dataset (Tan
et al., 2014) and includes sentences extracted from
various Argentinian and Spanish newspapers, with
each example annotated based on the country asso-
ciated with the news source. However, annotating
the examples with a single label proved difficult,
even for human annotators (Goutte et al., 2016).
Specifically, Spanish annotators achieved an aver-
age accuracy of only 54.90%. To address these

2VarDial 2023 website.

challenges, Zampieri et al. (2024) randomly sam-
pled the Spanish, Portuguese, and English subsets
and conducted a new round of human annotations.
In addition to the original binary labels, a third
label—both or neither—was introduced. This ad-
ditional label was assigned when annotators were
unable to identify the characteristics of the different
varieties. For our experiments with the DSL-TL
dataset, we use the newly introduced labels from
the DSL-TL dataset and the original labels from
the DSL-2014 corpus. It allowed us to simulate a
scenario where new annotations would be unavail-
able. We only use the training set to analyze the
training dynamics.

ES-ES 50.6%
(1752)

ES-AR49.4%
(1710)

ES-ES
37.8%
(1309)

ES

38.0%
(1317)

ES-AR24.2%
(837)

(a) DSL-TL dataset distribution.

ES-CU
38.8%
(676)

not-ES-CU

61.2%
(1066)

ES-CU
17.2%
(299)

ES

46.7%
(812)

not-ES-CU36.2%
(629)

(b) CUBANSPVARIETY dataset distribution.

Figure 2: Datasets distributions.

4.2 CUBANSPVARIETY

To our knowledge, the dataset is the first dataset
for Cuban or any Caribbean Spanish variety identi-
fication. The dataset contains manually annotated
tweets with variety information. We collected the
data from the publicly available archive The Twit-
ter Stream Grab in the website archive.org. We

https://sites.google.com/view/vardial-2023/shared-tasks


worked particularly with data from July 2021. 3

Data Annotation. We randomly sampled 10000
tweets from July 11th and July 12th. Among those,
we finally annotated 1762 examples. We consid-
ered this time frame because of the high Twitter
activity in Cuba after July 11th protest in 2021
with trending hashtags such as #SOSCuba or #SOS-
Matanzas. 4 Each tweet was annotated across
five columns: cuban_variety, not_cuban_variety,
specific_variety, not_able_to_identify, and irrel-
evant. Annotators marked cuban_variety if the
tweet belonged to the Cuban Spanish variety and
not_cuban_variety if it did not (cf. Section B). In
case of identifying a different Spanish variety (e.g.,
from Spain or Chile), they were asked to annotate
it in the specific_variety column for future work.
When uncertain about the variety, they marked
not_able_to_identify. Tweets deemed noisy or non-
Spanish were marked as irrelevant.

We focused on three labels for analysis: ES-
CU (Cuban variety), not-ES-CU (non-Cuban),
and ES (common examples). Tweets with
cuban_variety marked True were labeled ES-CU,
those with not_cuban_variety marked True were
labeled not-ES-CU, and tweets marked only as
not_able_to_identify were labeled ES, aligning
with the DSL-TL dataset. Three volunteers, native
Cuban Spanish speakers with a Master’s degree in
Cuba, performed the annotations. Their familiarity
with other Spanish varieties helped them recognize
common examples. Labels were assigned when at
least two annotators agreed and tweets marked as
irrelevant by any annotator were discarded. Full
agreement was reached for 984 examples (55.8%),
partial agreement for 776 (43.5%), with disagree-
ment in just 12 cases (0.7%). We use the full dataset
for training dynamics analysis. In this case, we
only have the annotations with the common exam-
ples information (i.e. not single label approach).
Then, to simulate a real-world scenario with single
labels, we randomly assigned each common exam-
ple a label of either ES-CU or not-ES-CU. Figure
2b shows the final dataset distribution. The inter-
nal circle represents the original distribution (cf.
Table 2 for an overview of lexical properties).

Figure 3: F1-score during training for common and non-
common examples on both datasets.

5 Results

5.1 Variety Identification
We investigate the learning behavior of BETO-
based Variety Identification model by analyzing the
F1 scores across both datasets. Figure 3 presents
the F1-score evaluation for Language Variety Clas-
sification over 10 training epochs, with separate
curves for common examples and the rest of the
data in both datasets. As shown in the figure,
the performance gap between common and non-
common examples is substantial during the early
stages of training. Furthermore, the error bars indi-
cate greater variability in the F1-scores for common
examples than the rest. This gap is particularly pro-
nounced in the CUBANSPVARIETY dataset, which
exhibits lower F1 scores, likely due to the addi-
tional challenges of social media content, unlike
DSL-TL, which contains sentences from newspa-
per articles. These observations suggest that the
model finds it more challenging to learn common
examples, supporting the idea that their character-
istics can be identified through training dynamics.

5.2 Common Examples Identification
We present in Table 1 the results for both the DSL-
TL and CUBANSPVARIETY datasets, comparing
DMmean-pred, DMstd-pred and the random baseline.
Across both datasets, the two Datamaps models
significantly outperform the baseline, indicating
that both capture relevant information about com-
mon examples. In addition, DMmean-pred, which
leverages the confidence in predicted labels, con-
sistently outperforms DMstd-pred. This suggests

3Link to available data for July 2021.
4New York Times (July 11th, 2O21).

https://archive.org/details/archiveteam-twitter-stream-2021-07
https://www.nytimes.com/2021/07/11/world/americas/cuba-crisis-protests.html


Model APS Prec-500 Recall-500 Prec-1000 Recall-1000

DSL-TL
Random 39.45 ± 2.54 38.71 ± 1.49 14.98 ± 0.57 37.80 ± 1.16 28.99 ± 0.89

DMmean−pred 54.75 ± 1.8 62.78 ± 2.47 24.31 ± 0.95 57.76 ± 1.58 44.29 ± 1.21
DMstd−pred 52.88± 3.00 58.70 ± 3.05 22.73 ± 1.18 56.03 ± 2.59 42.97 ± 1.98

CUBANSPVARIETY
Random 46.42 ± 1.20 46.39 ± 2.32 29.10 ± 1.46 46.83 ± 0.52 58.17 ± 0.65

DMmean−pred 63.51 ± 2.56 66.19 ± 3.43 41.52 ± 2.15 59.16 ± 1.25 73.50 ± 1.55
DMstd−pred 61.97 ± 2.60 64.86 ± 3.59 40.68 ± 2.25 58.15 ± 1.07 72.25 ± 1.33

Table 1: Evaluation metrics for Automatic Common Examples on DSL-TL and CUBANSPVARIETY datasets. We
present the Average Precision Score, equivalent to the area under the precision-recall curve, and the precision and
recall for Top-500 and Top-1000 instances. All the metrics are expressed in percentages.
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Figure 4: Precision versus recall curve

that the model’s average confidence offers a more
reliable signal for identifying common examples,
while the variability-based approach (DMstd-pred)
tracks changes that do not always correspond with
common examples. We observe that the difference
in performance between the two datasets follows a
similar pattern across all models, including the ran-
dom baselines. This is likely due to the proportion
of common examples in each dataset. In DSL-
TL, where 38% of the examples are common, the
random baseline precision is close to 38%. Simi-
larly, in CUBANSPVARIETY, with 46% common
examples, the baseline precision is near 46%. This
suggests that the metrics’ ranges are closely tied to
each dataset’s distribution of common examples.

Figure 4 shows both datasets’ precision versus
recall curves. In both cases, precision remains rel-
atively stable in the early ranking stages and be-
gins to converge toward the common examples’
proportion as recall increases. The performance
difference between DMmean-pred and DMstd-pred is
more pronounced for smaller values of N, particu-
larly in precision. However, the recall curves show
a steeper slope at earlier ranking stages, which

gradually decreases as N increases, consistent with
expected behavior.

Figure 5: Precision and Recall versus Top-N instances
DSL-TL dataset

Figure 5 highlights that in the DSL-TL dataset,
which contains clean, edited content unlike our
Twitter-based Cuban dataset, DMmean-pred identi-
fies common examples early in the ranking. This
is likely because we had access to the original la-
bels for common examples in this dataset, reduc-
ing noise. Furthermore, the clear class boundaries
distinguishing Spanish varieties from Spain and
Argentina likely contributed to the model’s more
stable performance, while DMstd-pred is less effec-
tive in this context. In Figure 6, we observe that for
the CUBANSPVARIETY dataset, which contains
more dynamic and informal language from user-
generated content, the performance gap between
DMmean-pred and DMstd-pred becomes smaller. This
indicates that variability has a more significant
impact on identifying common examples in user-
generated content. In this dataset, common ex-
amples were identified in the first round and ran-
domly assigned to Cuban or non-Cuban classes,



Figure 6: Precision and Recall versus Top-N instances
CUBANSPVARIETY dataset

increasing ambiguity. It is worth noting that, be-
yond the differences in the nature of the dataset
(newswire text vs. Twitter user-generated content),
the collection period dates vary over six years be-
tween both datasets, likely affecting model perfor-
mance since languages evolve and are shaped by
social dynamics. Furthermore, the Cuban dataset
includes tweets from July 11th and 12th, during
large protests in Cuba that were trending among
Spanish-speaking countries. This may introduce
biases into the dataset and influence the variety
identification.

6 Error Analysis

To better understand our models’ performance, we
analyzed the errors for each dataset by counting the
most frequent words in the Top-500 non-common
instances predicted by the DMmean−pred model
(prediction errors). After removing stopwords and
special tokens, we found that in the CUBANSP-
VARIETY dataset, the most frequent words were
Cuba and SOSCuba, directly tied to the Cuban va-
riety in this context. In contrast, the DSL-TL
dataset showed common words like ha, pero, fue,
and también, which do not indicate a specific va-
riety. The topic bias in the Cuban dataset can in-
fluence the model predictions, mainly when the
examples contain keywords specific to the variety.
This also explains why DMstd−pred performs bet-
ter for CUBANSPVARIETY, as these keywords in
both classes make variability more significant than
in DSL-TL.

In the CUBANSPVARIETY dataset, Figure 7
shows that about 67% of the Top-500 non-common
examples and 54% of the Top-1000 non-common

examples contained the word Cuba, suggesting a
strong influence on model behavior, given that only
33% of the total examples contain this word. Ad-
ditionally, we found that 63.31% of the Top-500
errors in CUBANSPVARIETY were cases where
only two annotators agreed on the label, and for
the Top-1000, this number was 57%. Across all
non-common instances, full agreement (three anno-
tators) occurred in 57% of cases, indicating a clear
link between annotation difficulty and model errors
as shown in Figure 8.
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Figure 7: Fraction of error instances containing the word
Cuba in Top-N instances using DMmean score metric.
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Figure 8: Agreement index for error instances in Top-N
using DMmean score metric.

Another key point is understanding why the
model fails to retrieve certain common examples.
We focus on the last two common examples in the
ranking for each dataset, using SHapley Additive
exPlanations (SHAP) (Lundberg and Lee, 2017)
to analyze the model’s behavior. SHAP is based
on Game Theory and assigns importance scores
to features, showing how much each feature influ-



(a) DSL-TL dataset examples.

(b) CUBANSPVARIETY dataset examples.

Figure 9: For each dataset, we analyze the last two common examples in the ranking obtained using DMmean−pred.
The model is trained on binary classification for variety detection. The final output of the models for the predicted
variety/class is highlighted. Red-colored terms influence the final decision towards ES-ES or ES-CU depending on
the dataset, while blue-colored terms influence the model classification towards ES-AR or not-ES-CU classes.

ences the model’s prediction. Figure 9a presents
the SHAP scores for the last two common examples
in the DSL-TL dataset ranking. For the first ex-
ample, the words Argentina, Rosario, and Marcelo
are the most influential for predicting the ES-AR
label. The first two refer to the country and one
of its major cities, while Marcelo is a common
name in Argentina. For the second example, auto
(commonly used in Argentina to mean "car," as
opposed to coche in Spain) is the most significant
feature, followed by Puerto and Madero, a well-
known place in Argentina. While named entities
influence the first example, the second example,
with the word auto, suggests a potential annotation
error, as it points to the Argentinian variety.

In Figure 9b, we provide the corresponding anal-
ysis for the CUBANSPVARIETY dataset. For the
first example, the word buen (from the phrase buen
día, which is used in Spanish varieties other than

the Cuban one) is the most significant, along with
Argenzuela (a blend of Argentina and Venezuela),
garchan, and tenés, which are characteristic of the
Argentinian variety. This example likely represents
an annotation mistake. For the second example,
the most influential words are profesional, partido,
fidelidad, and obediencia, none of which are strong
indicators of a specific variety. This suggests that
common topics in Cuban tweets may affect the
model’s prediction, potentially introducing biases
into the classification process.

Regarding the named entities, we followed the
precedent set by previous works in variety Identifi-
cation, such as the study introducing the DSL-TL
dataset (Zampieri et al., 2024), retained named enti-
ties. Consequently, we included them in our initial
approach while emphasizing the importance of
analyzing their influence. We agree that a set
of experiments where we could switch the named



entities with neutral entities (or even adversarial en-
tities (eg switch SosCuba with SosMexico) would
be interesting. In our case, while evidence suggests
that named entities contribute to model errors, our
preliminary analysis demonstrates the model’s
robustness to their presence. For example, the
sentence “Mi mensaje para el pueblo de cuba emoji
bandera cuba emoji :. ¡No están solos!. Cuenten
con nosotros para seguir apoyando su lucha por la
libertad y la democracia. soscuba url” was ranked
second using the Datamaps mean approach. Al-
though it contained clear markers such as “Cuba”
and “soscuba,” the model correctly identified it.
This is not an isolated case, and further analysis
of correctly classified examples can provide addi-
tional evidence of the system’s robustness.

7 Conclusion

In this work, we examine the effectiveness of
Datamaps methods in identifying common exam-
ples across closely related language varieties. Our
results demonstrate the value of training dynamics
in detecting difficult examples early in the model’s
learning process, as reflected by the effectiveness of
DMmean-pred across both datasets. This confidence-
based approach consistently outperformed the
variability-based method, suggesting that tracking
model confidence over predicted labels offers a
reliable way to identify common examples auto-
matically across different domains. Although the
performance difference between variability-based
and confidence-based approaches is less significant
for theinformal dataset, the overall results indicate
that confidence-based Datamaps can be a powerful
tool for improving data quality in different con-
texts.

Although these methods may not fully solve the
challenges of variety and dialect annotation, they
offer a promising step forward, particularly when
combined with automatic techniques and targeted
human annotation.

We hope that this initial dataset, freely accessible
under a CC-BY-SA license upon publication, the
first centered on Cuban, a Caribbean variety of
Spanish, will prove a valuable resource for future
research on this topic.

8 Limitations

One limitation of our work is that the analysis
focuses on binary classification scenarios, explic-
itly distinguishing between two main classes in

each dataset without incorporating multi-class ap-
proaches or more complex variety distinctions.
While this setup allows us to study common exam-
ples effectively, expanding the approach to multi-
variety settings could provide a more comprehen-
sive understanding of the challenges posed by lan-
guage variety identification.

Another limitation is inherent in the way the an-
notations in the CUBANSPVARIETY dataset were
built. Since all annotators were Cuban native speak-
ers, the dataset focuses on Cuban versus non-Cuban
distinctions. Incorporating annotators from other
Spanish-speaking regions would allow for broader
variety distinctions and more nuanced annotations,
which could reduce potential biases introduced by
a single-region perspective. However, the frame-
work for annotations was designed with enough
flexibility to make it extensible for further an-
notations in variants different from Cuban with
the final aim of creating a dataset which cover most
of the Spanish varieties. In this scenario, common
examples between specific varieties will be deter-
mined by overlapping between annotation made by
native speakers from each variant.

Finally, as discussed in Section 6, named enti-
ties, including hashtags, play a significant role in
model behavior. Managing these entities, such as
replacing them with special tokens, could be an
effective way to reduce bias and improve general-
ization. This is especially important in tasks like
language variety classification, where named enti-
ties might disproportionately influence predictions.

9 Ethical Considerations

This work involves using social media data, partic-
ularly from Twitter, which may contain sensitive
or controversial content. Although we anonymize
the data by replacing user mentions and URLs, the
content could still involve personal opinions, po-
litical statements, or even hate speech, especially
in datasets like the CUBANSPVARIETY dataset,
which includes tweets related to politically sensi-
tive events such as the July 11th protests in Cuba.
Given the nature of the protests, some tweets may
contain offensive content. We are aware of the
potential privacy implications when working with
such data, and we have adhered to Twitter’s data
usage policy to ensure compliance with ethical stan-
dards. Researchers accessing this dataset should
consider the ethical implications when using politi-
cally charged content or messages that might harm



individuals or communities.
Furthermore, identifying language varieties, es-

pecially in socially and politically sensitive con-
texts, risks reinforcing stereotypes or biases associ-
ated with particular regions. In this work, we frame
our approach as a technical solution for linguistic
diversity and not as a tool for making any sociopo-
litical or cultural assumptions about the speakers
of these varieties. However, we acknowledge that
any automated system trained on real-world data
is susceptible to unintended biases arising from
imbalanced datasets or biased annotations. The
annotations in the CUBANSPVARIETY dataset are
from native Cuban speakers, and while this helps
in identifying Cuban Spanish, it may introduce a
regional bias.
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A Data Preprocessing:

Following previous works (Pérez et al., 2022;
Castillo-lópez et al., 2023), we pre-processed the
data by replacing user mentions with the token
@usuario (or @user in English), allowing up to two
consecutive mentions. URLs were substituted with
the token url, and hashtags were segmented into
words assuming Camel Case typing (e.g., #CubaIs-
laBella becomes Cuba isla bella). Emojis were
replaced with their corresponding descriptions us-
ing the emoji python library 5, and any repeated
emojis were removed. Laughs were normalized
to jaja, following the standard in Spanish, and for
letter repetitions, we kept up to two. We also re-
moved repeated spaces and replaced line breaks
with periods.

#sentences 1762
#tokens 41374
Avg length 23.48
Length variation (std) 13.49
Vocab size (unique words) 13336

Table 2: DSL-TL Overview.

B Annotation Guidelines for
CubanSpVariety

The following guidelines were provided to the an-
notators to ensure consistent labeling of the dataset:

• cuban_variety: A boolean value indicating
whether the tweet belongs to the target Span-
ish variety (Cuban). This value should be
set to true only if the annotator can clearly
identify evidence that the tweet belongs to the
Cuban variety.

• not_cuban_variety: A boolean value indicat-
ing that the tweet does not belong to the target
Cuban variety. This value should be set to true
only if it is clear that the tweet does not be-
long to the Cuban variety, even if the specific
variety cannot be identified.

• specific_variety: A string indicating the spe-
cific variety if the annotator can easily identify
it. The value should remain empty if the spe-
cific variety cannot be identified. The possible
varieties are based on the Spanish varieties
map presented in the appendix of Analyzing
Zero-Shot Transfer Scenarios Across Spanish

5Emoji python library website.

Variants for Hate Speech Detection. These
are:

– Other Caribbean variety
– Central American varieties (Costa Rica,

El Salvador, Panamá)
– Mexican
– Spain
– Rioplatense (Argentina, Uruguay)
– Chilean
– Habla de las tierras altas (Perú,

Venezuela, Colombia, Bolivia, Ecuador)

• unable_to_identify_variety: A boolean
value set to true if the annotator cannot iden-
tify any specific variety for the tweet.

• irrelevant: A boolean value set to true if the
tweet’s content is considered irrelevant. This
can be due to the tweet’s size or other char-
acteristics that lead to a lack of meaningful
content.

Annotator Age Gender
Annotator 1 26 Male
Annotator 2 26 Female
Annotator 3 23 Female

Table 3: Socio-demographic attributes of the annotators

These annotations guidelines are extensible for
speakers form varieties different from Cuba by
changing the variety target. It makes it possible
to extend the varieties covered in the dataset in a
direct way.

C Hyper-parameters

The model will be released under the Creative Com-
mons CC-BY-SA license, allowing for open access
and use with appropriate attribution.

All experiments were conducted using a single
NVIDIA RTX 8000 GPU, with each experiment
taking less than two hours to complete. We used
the AutoModelForSequenceClassification
from Hugging Face’s Transformers library (Wolf
et al., 2020) for sequence classification tasks.

D Variety Identification Results

D.1 Variety Identification Benchmarks on
CubanSpVariety dataset

In this section, we present the benchmark results for
the CUBANSPVARIETY dataset. We use the same

https://pypi.org/project/emoji/


Hyper-parameter Value

Max sequence length 512
Batch size 32
FP16 Enabled
Learning rate 1e-5
Epochs 10
Scheduler linear
Warmup ratio 0.1
Weight decay 0.01
Save strategy Epoch
Logging steps 10
Seed {42,151,2021,15,98}

Table 4: Hyper-parameters used for the fine-tuning.

experimental setting for this task, as explained be-
fore. We present the dataset’s benchmark for both
approaches, single and multi-class. For the multi-
class approach, we follow the procedure suggested
by Keleg and Magdy (2023); Bernier-colborne et al.
(2023) of using one binary classifier per label. For
the metrics, we used the macro average across all
possible varieties.

Table 5 shows the final results. We can notice
a significant improvement in the model’s perfor-
mance in the multi-class scenario. This strengthens
the point about single-class approach limitations
for variety identification.

D.2 Variety Identification Benchmarks on
DSL-TL dataset

In this section, we present the benchmark results
for the DSL-TL dataset. Table 6 shows the final
results. As for the CUBANSPVARIETY dataset,
there is a significant improvement in the model’s
performance in the multi-class scenario.



Approach Acc Precision Recall f1-score
single-class 67.54 ± 1.42 65.86 ± 1.69 64.45 ± 1.01 64.62 ± 1.05
multi-class 78.69 ± 0.86 82.64 ± 0.91 87.80 ± 1.28 85.06 ± 0.61

Table 5: Benchmarks for Variety Identification task on CUBANSPVARIETY dataset. We present the results for both
the single-class and the multi-class approaches.

Approach Acc Precision Recall f1-score
single-class 76.76 ± 0.74 76.18 ± 0.80 75.78 ± 0.75 76.76 ± 0.74
multi-class 77.65 ± 0.27 82.00 ± 0.29 83.99 ± 0.30 82.97 ± 0.25

Table 6: Benchmarks for Variety Identification task on DSL-TL dataset. We present the results for both the
single-class and the multi-class approaches.
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