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ABSTRACT

gVirtualXray (gVXR) is an open-source framework that relies on the Beer-Lambert law to simulate X-ray
images in real time on a graphics processor unit (GPU) using triangular meshes. A wide range of programming
languages is supported (C/C++, Python, R, Ruby, Tcl, C#, Java, and GNU Octave). Simulations generated
with gVXR have been benchmarked with clinically realistic phantoms (i.e. complex structures and materials)
using Monte Carlo (MC) simulations, real radiographs and real digitally reconstructed radiographs (DRRs), and
X-ray computed tomography (CT). It has been used in a wide range of applications, including real-time medical
simulators, proposing a new densitometric radiographic modality in clinical imaging, studying noise removal
techniques in fluoroscopy, teaching particle physics and X-ray imaging to undergraduate students in engineering,
and XCT to masters students, predicting image quality and artifacts in material science, etc. gVXR has also
been used to produce a high number of realistic simulated images in optimization problems and to train machine
learning algorithms. This paper presents applications of gVXR related to XCT.
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1. INTRODUCTION

The simulation of accurate and fast X-ray images remains a challenge. State-of-the-art Monte Carlo (MC)
methods can mimic the physics, by tracking photons as they travel from the source, through matter, to the
detector. The computational cost makes it prohibitive in many applications where speed is a requirement, e.g.
interactive virtual reality (VR) or high data throughput support. However, it is possible to trade off some of the
physical effects such as scattering to speed-up computations, whilst retaining a high level of accuracy.

In Section 2, we describe an open-source framework called gVirtualXray (gVXR). No proprietary technology is
used, making it portable and deployable on a wide range of hardware and software platforms. gVXR implements
a deterministic simulation model based on the Beer-Lambert law to generate noise-free images. They can provide
a good compromise between speed and accuracy1 and can be implemented on graphics processor units (GPUs) for
a further increase of speed.2,3 Unlike Monte Carlo methods, deterministic simulations tend to ignore scattering
and noise. In gVXR, the latter is added as a post-process. The software has been quantitatively tested and
validated against MC and experimental data (see Section 3) We also show how it has been deployed in a broad
range of applications in various scientific contexts (see Section 4).

2. DESCRIPTION

gVXR is an open-source application programming interface (API) written in C++ to compute the Beer-Lambert
law, also known as the attenuation law. If scattering is neglected and an ideal (i.e. Dirac) point-spread function
is assumed, X-ray projections I(x, y) can simply be modeled with the Beer-Lambert attenuation law:

I(x, y) =
∑
i

R(Ei)D(Ei) exp

−
∑
j

µj(Ei) dj(x, y)

 (1)

I(x, y) is the integrated energy in electronvolt (eV), keV or MeV, units of energy commonly used in atomic and
nuclear physics, received by pixel (x, y). The beam spectrum emitted by the X-ray source is discretized in several
energy channels in the polychromatic case. Ei corresponds to the energy of the i-th energy channel. D(Ei) is
the number of photons emitted by the source at that energy Ei. When the source is monochromatic, e.g. in the
case of synchrotron radiation, a single energy channel is used. The detector response R(Ei) mimics the use of
a scintillator by replacing the incident energy Ei with a smaller value, i.e. R(Ei) < Ei. The detector response
is assumed space-invariant in Equation 1. j indicates the j-th material being scanned when a multi-material
“object” is considered. µj(Ei) is the linear attenuation coefficient in cm-1 of the j-th material at energy Ei.
dj(x, y) is the path length in cm of the ray from the X-ray source to pixel (x, y) crossing the j-th material.

Polygon meshes, e.g. triangles, are used in gVXR to represent 3D objects. This method is commonly used
in computer graphics (CG), including real-time video games and VR, animations, and computer-aided design
(CAD). It is intuitive to compute the Beer-Lambert law with ray-tracing when polygon meshes are used. However,
this technique is relatively computationally intensive: i) a ray must be fired between the source and each detector
pixel, and ii) intersection tests for each ray for each triangle of each 3D object must be performed. Freud et al.
adapted the Z-buffer technique to efficiently compute dj in Eq. 1 from polygon meshes.4 It relies on rasterization
and does not require to sort intersections. In this case, each polygon is processed a single time, projecting it on
the detector plane, and using an accumulator buffer. The computational complexity is considerably reduced.

gVXR implements Freud’s algorithm on GPU using a graphics API.2 Since its inception, functionalities have
been added to gVXR to improve the level of realism of the simulations. A monochromatic source was initially
used to mimic fluoroscopy in a real-time medical VR simulator.5 Polychromatism and the focal spot of the
detector were then introduced to improve realism.6 In 2013, the code was redeveloped to become, gVXR, and
was made available to the community as an open-source project on SourceForge (https://sourceforge.net/
projects/gvirtualxray/, accessed: 18 Jul 2024).3 The impulse response of the detector and Poisson noise are
also supported.7 The scintillator material of the detector and the tube voltage and beam filtration can now be
specified.8

gVXR is cross-platform: it runs on Windows, GNU/Linux, and MacOS computers (Intel architecture only,
although ARM support is planned). It supports GPUs from any manufacturer. gVXR is scalable: it runs
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on laptops, desktop PCs, supercomputers, and cloud infrastructures. Containerization using Docker is even
possible.9 A wide range of programming languages (C/C++, Python, R, Ruby, Tcl, C#, Java, and GNU Octave)
can be used. Its Python package is available on the Python Package Index (https://pypi.org/project/gVXR/,
accessed: 18 Jul 2024).

Surface meshes (triangles) in most popular file formats (eg. STL, PLY, 3DS, OBJ, DXF, X3D, DAE) can be
used to define the geometry of scanned objects. Volume meshes (tetrahedrons) in the Abacus format may also
be used but their support is experimental. The material property must be specified for each scanned object.
Chemical elements (e.g. the symbol ‘W’ or the atomic number 74 for tungsten); compounds, e.g. H2O for water;
mixtures, e.g. Titanium-aluminum-vanadium alloy, Ti90Al6V4; and Hounsfield units (for medical applications)
are supported. The photon cross-sections provided by Xraylib10 (https://github.com/tschoonj/xraylib,
accessed: 18 Jul 2024) are used to compute µ values in Eq. 1.

Cone beam geometries (both point sources and focal spots) are supported to mimic X-ray tubes. A parallel
beam can be used for synchrotrons. The beam spectrum can be either monochromatic or polychromatic. Both
SpekPy11 and Xpecgen12 are supported as backends to specify the tube voltage and the beam filtration used.
To increase realism, photonic noise can be turned on. In this case, the photon flux must be specified.

It is possible to model ideal detectors as well as realistic detectors. In this case, the user can specify a point
spread function (PSF), i.e. the level of blur inherent to the detector, and the thickness and material composition
of the scintillator. It is also possible to simulate spectral imaging.

Orbital, helical and arbitrary trajectories can be supported to simulate a CT acquisition. It is possible
to describe the simulation and CT acquisition in Python (or any other supported programming languages) or
using a user-friendly JSON file that is loaded from the Python code. Full examples of CT simulation with
gVXR and CT reconstruction with CIL13 are available as Jupyter notebooks on GitHub (https://github.com/
TomographicImaging/gVXR-SPIE2024).

3. VALIDATION

To validate the accuracy of gVXR, successive validation tests of increasing complexity were performed. Each
milestone was validated individually with an appropriate methodology. For the Beer-Lambert implementation,
we initially compared simple images simulated with gVXR with corresponding images simulated with a state-of-
the-art Monte Carlo package (Geant4/Gate).3

More advanced functionalities, such as voltage, beam filtration and scintillation, were validated using two
anthropomorphic phantoms. The first one is a digital phantom: pEdiatRic dosimetRy personalized platfORm
(ERROR).14 It corresponds to the anatomy of a 5-year-old boy. It is provided as a labeled 512 × 511 × 190
volume, which includes 24 different structures, such as air, muscle, bone, stomach-interior, cartilage, etc. As it is
a digital phantom, it can be used to compare gVXR and Gate’s simulations. The number of photons impinging
the detector was 109. About 10 days of computations were required on the test computer to produce a simulated
image of 128 × 128 pixels with Gate; only a few microseconds gVXR. Both simulations are visually close. All
the image comparison metrics indicate that the images are extremely similar when scattering is ignored: Zero-
mean normalised cross-correlation (ZNCC) is 99.99%; mean absolute percentage error (MAPE) is 2.23%, and
structural similarity index (SSIM) is 0.99.

The second phantom is the Lungman anthropomorphic chest phantom (Kyoto Kagaku, Tokyo, Japan).15 It
represents a 70 kg male. The phantom is made of materials with X-ray absorption properties close to those of
human tissue. Tumors of various densities are embedded. A computed tomography (CT) scan of the phantom
was acquired with a device clinically utilized at Ysbyty Gwynedd Hospital (UK), a 128-slice Somatom Definition
Edge scanner by Siemens Healthcare (Erlangen, Germany). A digital phantom was first created by image
segmentation using open-source toolkits, the Insight Toolkit (ITK)16 and Visualization Toolkit (VTK).17 The
digital phantom is freely available on Zenodo.18 The material composition of each segmented structure is derived
from the average Hounsfiled unit of the structure in the original CT scan. Schneider et al.19’s method is built
in gVXR to convert the Hounsfield values into material compositions and densities. A CT scan acquisition
is then simulated using gVXR and reconstructed with CIL.13 The original CT scan taken with the Somatom
Definition Edge scanner can be compared with CT volume reconstructed from simulated data. Corresponding
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Figure 1: Video 1 – Interface of WebCT in a web browser. A wide variety of X-ray settings allow quick, iterative
scan planning and training. https://youtu.be/KZRkw_p0xbA

slices are close to each other. Hounsfield values are comparable. MAPE is about 5% and the ZNCC is above
98%, indicating a high level of correlation between the two volumes. The errors are more due to segmentation
inaccuracies and noise than the simulation implementation itself. Indeed, when simulated X-ray projections are
compared with digitally reconstructed radiographs (DRRs) computed from the experimental CT scan, ZNCC is
99.66%, which is close to 100%; SSIM is 0.98, which is close to 1; and MAPE is 1.76%, which is close to 0%.

gVXR is so fast that it is possible to embed the X-ray simulation into objective functions and register a
simulated radiograph on experimental data (see Figure 18). A real digital radiograph was taken with a clinical
X-ray machine by GE Healthcare (Chicago, Illinois, USA) at Ysbyty Gwynedd Hospital. The digital Lungman
phantom was registered to reproduce the same position and orientation as in the digital radiography taken with
the clinical device. ZNCC is 98.91%, SSIM is 0.94, and MAPE is 1.56%. It demonstrates the ability of gVXR
to reproduce radiographs taken with clinically utilized devices.

4. APPLICATIONS

4.1 Digital twinning

Digital Twinning is the creation of virtual models of real-life components. In this case, gVirtualXray allows true
representative X-ray simulations calibrated to real-life machines. To create a Digital Twin, all factors of an X-ray
system must be taken into account, ranging from the mechanics of the system (can the detector or source move?
What clearance is available for the sample?, etc) to X-ray source and detector properties (maximum kV, focal
spot size, pixel resolution, scintillator properties, PSF, and so forth). A core part of creating a Digital Twin is
calibrating the noise of a system based on the target amperage, this involves an experimental method to measure
the noise characteristics at differing mAs values, which then can be exposed in the model as a parameter to users
of the Virtual Twin.

gVirtualXray’s flexible API has allowed the development of WebCT (https://webct.io/, accessed: 18 Jul
2024), an interactive real-time web-based app for X-ray simulation, allowing anyone of any skill level to quickly
simulate an X-ray scanner (see Figure 1). This is excellent for scan planning, answering feasibility questions,
and teaching/training on X-ray systems without requiring access to expensive equipment.

https://youtu.be/KZRkw_p0xbA
https://webct.io/


We are developing digital twins of specific beamlines, including selected laboratory computed tomography
(labCT) devices and a synchrotron. One of them is a new dual-beam XRCT laboratory equipment of the MateIS
laboratory (Lyon, France).20 The noise model is under validation and a specific dual-beam calibration protocol
has been proposed.21 We report here the acquisition and simulation of an aluminum component of a tensile
machine for in situ stress in scanning electron microscopes (SEM) because a CAD model is available. The most
significant data acquisition parameters used during the experiment were inputed in gVXR. Simulated X-ray
projections of the CAD model are registered onto the experimental one (see Figure 18). Figure 2 shows a great
level of similarity between images acquired with the actual device and its digital twin. All the artifacts visible
in slices reconstructed from experimental data are also visible in the simulated ones (see Figure 3).
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Figure 2: Comparison between X-ray projections taken with a real dual-beam XRCT laboratory device and its
digital twin. For fair comparison, both projections are displayed using the same lookup table.
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Figure 3: Comparison between CT slices reconstructed from data taken with a real dual-beam XRCT laboratory
device and its digital twin. For fair comparison, both slices are displayed using the same lookup table.

We are also building a predictive tool for synchrotron µ-CT at the Dual Imaging And Diffraction (DIAD)
beamline of the Diamond Light Source22 and integrating it in gVXR. DIAD is a dual-beam X-ray instrument
for quasi-simultaneous imaging and diffraction, which operates two independent beams at energies of 7-38 keV.
Such digital twins will be integrated into gVXR and made available to any user in WebCT.

The development of such digital twins opens up new perspectives, it is now possible:

• To train users on specific devices;

• To predict what experimental data will look like from CAD models;



• To assess the feasibility of scanning specific samples on specific devices before submitting beamtime pro-
posals to facilities;

• To optimize scanning parameters offline, i.e. before beamtime;

• To generate a large amount of automatically annotated data for training machine learning algorithms;

• To design new systems.

4.2 Education

We have deployed gVXR in material science lab-sessions delivered to about 150 MEng students a year at the
INSA-Lyon and Polytech Lyon 1 engineer schools. It has been embedded in a Jupyter notebook together with the
open-source reconstruction toolkit RTK.23 Several interactive exercises have been proposed to enable students
to learn and gain hands-on experience with X-ray tomographic setups. They first study both digitally with
the twin and experimentally with the bench the critical sensibility to crack orientation in a cylindrical sample
(additive manufacturing) in which a through crack has been added. Then the students gradually familiarize
themselves with the 3D reconstruction technique: (i) first with mono-energy and no noise (i.e. infinite stat),
then (ii) with a given exposure (i.e. number of X-rays per pixel) to highlight photon starvation, and (iii) finally
with a realistic energy distribution typical of an X-ray generator to understand beam hardening. An example
of the 3D visualization of the reconstructed simulated volume is shown in Figure 4. It is worth noting that this
progression in the complexity of the imaging setup cannot be done experimentally with such cohort sizes. The
digital twinning of the X-ray setup is crucial for those lab sessions of the material science department.

Figure 4: Example of visualization (3D-Slicer) of a reconstructed gVXR-simulated volume of an industrial part:
volume rendering, sampled profile in the volume and orthogonal sections.

4.3 Set-up of an experiment

In non-destructive testing (NDT), X-ray computed tomography (CT) is commonly used to find defects in ma-
terials. Simulations were performed to ascertain the feasibility of CT scans of ceramic kernels held within a
dissimilar ceramic matrix. Ceramic-ceramic matrix composites are garnering a great deal of interest in many
applications, including as nuclear fuels for high-temperature gas reactors. The aim is to conduct experiments



i) to detect the interface between two very similar materials (in terms of composition and density), and ii) to
assess the defects in the structure that exist as a result of manufacturing methods in spherical ZrB2 kernels held
within a cylindrical zirconium dioxide (ZrO2) matrix material.

A loss of density compared to theoretical values is expected due to the manufacturing process. Prior to the
simulations, samples were produced. The diameter and height of the cylindrical matrix and the diameter of a
typical spherical kernel were measured using a caliper. Their masses were assessed using a digital weighing scale.
It makes it possible to compute the volume and material densities of the ZrB2 kernels and the ZrO2 matrix.
This way, we can ensure the simulations are based on realistic values in terms of sizes, densities and material
compositions. Table 1 provides a summary of the sample composition.

Table 1: Description of the sample composition.
aaaaaaaaaaa
Properties

Material

Matrix Kernels

Composition ZrO2 ZrB2

Shape Cylinder Spheres

Diameter 8 to 10 mm 0.8 to 1 mm
Height 10 mm N/A

Theoretical density 5.68 g/cm3 6.08 g/cm3

Measured density 3.23 g/cm3 2.43 g/cm3

Measured reduction of density 43% 60%

As the materials are close to each other and as the samples are relatively dense, i.e. opaque to X-rays, we will
favor synchrotron radiation over the use of conventional X-ray tubes used in labCT. This is because synchrotron
radiation can provide almost monochromatic spectra with high flux.

We use the Diamond Light Source, UK’s national synchrotron radiation facilities, as an example. Two CT
beamlines are available: the low-energy DIAD beamline, and higher-energy I12 beamline. A suitable energy
must be selected i) to maximize the contrast between the two materials, and ii) to allow a sufficient level of
radiation transmission through the sample. As CT images correspond to maps of linear attenuation coefficients,
µ in Eq. 1, we aim at maximizing the difference between the coefficients of zirconium diboride (ZrB2) and ZrO2.
The difference is the largest for 7 keV. However, when we apply the Beer-Lambert law in Eq. 1 using µ and d
values corresponding to the sample, the transmission through the sample is 0%, i.e. hardly any photon reaches
the detector behind the sample. The transmission remains low (below 5%) until roughly 95 keV. At first sight,
the issue is that we achieve the best absolute differences at low energies (µZrO2

− µZrB2
in Table 2), but only

high energies seem to be suitable to image the sample. Indeed, Table 2 also shows that the transmission remains
below 5% until 110 keV. We must therefore ascertain that a difference in attenuation coefficient of 0.39, 0.28, or

Table 2: Theoretical linear attenuation coefficients and photon transmission through the sample at energies
supported by the CT beamlines at the Diamond Light Source.

Energy µZrO2 (matrix) µZrB2 (kernels)
µZrO2

− µZrB2

µZrO2
−µZrB2

µZrO2
Transmission

(in keV) (in cm-1) (in cm-1)
7 479.61 383.02 96.59 20.14% 0.00%
38 31.63 25.84 5.79 18.31% 0.00%
53 12.78 10.42 2.36 18.47% 0.00%
60 9.13 7.43 1.70 18.62% 0.01%
70 6.05 4.91 1.14 18.84% 0.28%
90 3.16 2.55 0.61 19.30% 4.61%
110 1.95 1.56 0.39 20.00% 14.96%
130 1.36 1.07 0.28 20.59% 26.79%
150 1.02 0.80 0.22 21.57% 37.05%



0.22 cm-1 is significant enough to be visualized in reconstructed CT scans. The relative difference (
µZrO2

−µZrB2

µZrO2
)

remains constant (19.54% ± 1.11%) across all the energies, despite both material being close to each other. To
select a suitable energy and make sure this relative difference in µ is sufficient enough, we performed simulated
CT acquisitions at energies with the ranges [7, 38] and [53, 150] keV supported by the DIAD and I12 beamlines.
Photonic noise and a few percent of harmonics were empirically added to the beam spectrum for added realism.
Figure 5 shows that according to our initial assumption energies below 85 keV were inappropriate. At 7, 38 and
53 keV, we were not able to scan the sample due to photon starvation. Figure 6 shows CT slices reconstructed
from experimental data acquired at the high energy beamline. As expected, no kernel is visible in the experimental
images at 70 keV. Again, this is due to photon starvation as transmission is only 0.28%. As expected, 110 keV
and 150 keV are suitable energies. However, 150 keV was selected as it can lead to faster scans due to a higher
transmission rate.
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Figure 5: CT slices of mock nuclear fuel reconstructed from simulated data.
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Figure 6: Corresponding CT slices of mock nuclear fuel reconstructed from experimental data acquired at the
high energy beamline. The same geometrical set up is used. The only change is the incident energy.

4.4 Machine Learning

4.4.1 Data augmentation for image segmentation

The use of deep learning models has become increasingly common in image analysis, particularly for detection,
classification and segmentation tasks. To effectively train these diagnostic tools, a large database of labeled images
is required to prevent overfitting and promote model generalization. Collecting these samples is a major obstacle
due to the time, money, and human resources required to acquire labeled images, as well as data anonymization
requirements.24 To improve the performance of these diagnostic tools, various data augmentation strategies have
been developed to generate synthetic images along with their corresponding labels. The most common method
is the use of generative networks.25 However, generative networks have limitations, including the need for a large
database for training and often limited generalization capabilities.26

The combined use of a virtual anthropomorphic model with gVirtualXray in clinical imaging would allow
the rapid generation of a large dataset of labeled synthetic images. This method allows the injection of artificial
lesions into the virtual model, as well as the deformation of organ shapes and the modification of scanner settings
to replicate the variability found in real datasets. This approach is used for both conventional X-ray tomography
as well as spectral imaging.



(a) A simulated tomographic slice. (b) The slice in (a) segmented in to air, weft yarns, warp
yarns, and pure matrix.

Figure 7: A tomographic slice of a virtual recreation of a woven carbon fiber reinforced woven composite (a) is
shown next to its corresponding voxelization, i.e segmentation ground truth (b).

(a) A tomographic slice of a woven carbon fiber reinforced
polymer sample.

(b) A machine learning derived segmentation. Air is
shown in red, weft yarns in blue, warp yarns in green,
and pure matrix is shown in yellow.

Figure 8: A tomographic slice of a carbon fiber reinforced polymer woven composite (a) is shown together with
a machine learning derived segmentation (b).

The applicability of gVirtualXray for synthetic training data generation in material science is demonstrated
by training DeepLabV3 with a Resnet50 backbone using simulated tomograms.27 The geometries to be scanned
are generated with the open source software TexGen.28 The segmented ground truths are received by voxelizing
the input surface meshes in the same frame of reference as the simulated scan is performed. This is shown in
Figure 7. The model is trained on 30 synthetic tomograms, where the scan settings and geometry have been
domain randomized. Inference on an experimentally derived (not-simulated) tomographic slice is shown in Figure
8. This initial test shows promise, and it is likely a larger dataset and better tuned training procedure will yield
better performance.

4.4.2 Defect detection and characterization

In another material science application, gVirtualXray is used to automatically detect and characterize damages
in composite and laminate materials by deploying it in data-driven predictor models. It has been evaluated for
different specimens under test, structure geometries, materials, and defects. They pose different coincidences
between material (defect) and image features:

1. Homogeneous aluminum die casting plates with pore defects29

2. Composite Fibre-Metal laminate plates (FML, aluminum and PREG layers with impact damages posing
layer delaminations, deformation, cracks, and kissing bond defects (loss of adhesive contact between layers).

Automated feature detection and marking in measuring images can occur on different levels:

• Region-of-Interest search;



• Feature marking and maps;

• Damage and defect classification;

• Damage and defect localization;

• Global statistical aggregates (e.g., pore density, defect distribution).

One of the major issues in data-driven modeling in materials science is the low variance of data with respect to
the parameter space. The number of features in measuring data is often limited. For example, impact damages,
breakage defects, or tensile tests can only be applied once to a specimen. To overcome the limitation of the
sparse experimental parameter space, simulation of measuring data (e.g., X-ray images) using parameterizable
mechanical models should be used. The mechanical model is used for the X-ray image simulation. The model
consists of geometric objects with different material densities. Constructive Solid Geometry (CSG) modeling is
used to create complex 3-dim bodies. CSG consists of additive and subtractive Boolean operations combining
shapes. A subtractive operation assumes a host material and a tool shape, e.g., using cylinders for creating holes.
We are using the OpenSCAD tool30 to create triangular mesh-grid models (STL format) that are processed by
gVXR. Multi-material parts are imported with multiple STL files, each file is associated with a material density.
All parts are merged internally with the respective material density. The basic CSG-CAD model for a plate with
pores is shown in Figure 9. Monte Carlo simulation is used to provide random distributions of locations, sizes,
and orientations of pores. Pores will reduce the total material density along an X-ray path, resulting in brighter
areas. The gVXR-based xraysim tool was used to create X-ray radiography images (1024 × 1024 pixels), finally
overlayed with Gaussian distributed random noise (average SNR=2 with respect to the pore intensity variation).
Examples of noisy X-ray images and the output of the feature marking machine learning (ML) model are shown
in Figure 10. In contrast to the pore analysis use-case, impact damage analysis is still a challenge31 and a work
in progress.

Figure 9: CSG-CAD model of a plate with pores

4.4.3 Characterization of surface roughness for additive manufacturing

This project investigates the use of deep learning (DL) as a tool to quickly determine where the “real” surface is in
a reconstructed XCT image with a good level of precision. To do so, synthetic virtual rough surfaces were created
to obtain the “ground truth” data (Figure 11a) using a newly developed plugin written in ImageJ macro language.
The macro allows the generation of a cuboid hollow shape presenting various surface roughness (Figure 11b).



Figure 10: False-positive markings of pores located at the same positions in different synthetic X-ray images
with different specimens.

These cuboids were successively virtually scanned using X-ray simulation code gVirtualXray. Using simulations
to generate virtual scans and data provided several advantages over real experimental scans: a full CT scan can
take several hours to complete, whereas simulations are a time-efficient tool that can rapidly generate data for
analysis. The trained neural network demonstrated significant success in improving the resolution of the rough
surface images, as evidenced by a relative mean average error on the test data of 1.92% (Figure 12).

(a) On the left, a “slice” of the cuboid can be seen. In the middle, a
zoomed-in section of the surface is shown, with the A being the amplitude,
I the wavelength and T the thickness. The dashed red line is the baseline
from which the rough surface was constructed.

(b) Three-dimensional repre-
sentation of one of the cuboids.

Figure 11: Synthetic data created by the software.

4.5 Simulations in the objective function of an optimization algorithm

4.5.1 Focal spot assessment

In the industry of non-destructive testing, common X-ray generating devices consist of a wire-cathode emitting
an electron beam which is accelerated towards an anode. The scattering of electrons on the anode causes the
emission of X-rays via the bremsstrahlung, Auger and X-ray fluorescence effects.32 This type of device can be
relatively compact and is therefore well-suited for industrial applications. However, this type of device suffers
from some image blurring as the electron beam impacts the anode on a non-punctual area; creating a focal



Figure 12: Comparison of the ground truth, gVXR scan and neural network prediction for 3 different cube slices:
the cube parameters are shown at the left of each ground truth image. The x and y axes are labeled with the
pixel numbers.

spot. Controlling the size and shape of the focal spot is an important challenge as nowadays non-destructive
testing and dimensional measurements require spatial resolution in the micrometer range.33–35 Achieving spatial
resolution of the order of the micrometer requires small focal spot sizes and large magnification factors, resulting
in low X-ray flux; thus impeding the ability to scan thick mechanical pieces in a reasonable time frame. The
X-ray flux may be increased by increasing the applied current, but usually at the expense of a larger focal spot
size, and a consecutive loss in spatial resolution.32

In this context, deconvolution techniques are a promising and full software solution for retrieving sharp X-ray
images from blurred ones. Indeed, new deconvolution techniques have been rapidly developing last decade36,37

and offer the possibility to use devices with large focal spots, while generating images with sufficient resolution.
However, deconvolution techniques require the knowledge of the shape of the focal spot, or PSF. Numerous
techniques exist for determining the PSF of a CT device, such as pin-hole camera, line and edge profiles,38

spheres39 and other phantoms.40

We propose to estimate 2D PSFs of a CT device from 2D images of tungsten sphere phantoms. Given a
2D experimental image of a tungsten sphere, a sharp theoretical 2D X-ray image with a punctual focal spot is
generated using gVXR. The corresponding PSF h is then estimated from the two theoretical x and experimental
y images using a Richardson-Lucy41,42 algorithm along with a total variation (TV) regularization.43As proposed
by Engelhardt and Baumann,44 the idea is to retrieve the PSF by inversion of a convolution process, where the
experimental image is regarded as the blurred version of the theoretical image. A robust optimization procedure
is performed using the simplex method45 for taking into account the uncertainties on the position of the sphere
with respect to the X-ray source. The optimization procedure is depicted in Figure 13. gVXR plays a central role
as it generates a new theoretical image x(P ) for each new guessed sphere’s position P during this optimization
procedure. Especially, the fact that gVXR is fast in generating an X-ray image allows it to run the optimization
within a reasonable time frame.

Figure 14 schematizes the experimental set-up. Experimental images of a 1mm tungsten sphere were acquired
at different voltages and currents (see Figure 15). The X-ray generator is a Comet MXR 320 HP 11 FB 90 with
two focal spots of 0.4mm and 1.0mm. The detector is a Varex XRD 1620 xN CS of 41×41 cm with 2048×2048
pixels and a pixel pitch of 200µm. The source-to-detector distance (SDD) was 1150mm, while the source to
object (a.k.a. the sphere) distance was approximately measured at 90mm.



Using simplex algorithm, find:

P ∗ = argmin∥y − h ∗ x(P )∥
P

with x(P ) theoretical image for sphere
at position P (generated with gVXR)

h* from Richardson-Lucy deconvolution

∥h− h∗∥ < tol

h = h*

h = h*

Yes

No

Experimental image y Initial sphere position
guess P Initial PSF guess h

Figure 13: Flow chart of the process for estimating the PSF h from the X-ray image of a sphere. See text for
details.

Figure 14: Schematic of the experimental set-up for acquiring the X-ray image of a tungsten sphere.



Figure 16 shows the corresponding estimated PSFs to the acquired X-ray sphere images of Figure 15 using
the algorithm described in Figure 13. Figure 17 displays the corresponding deblurred spheres of Figure 15 using
their related estimated PSFs of Figure 16 through the “fast total variation deconvolution” algorithm.46

(a) 100 kV at 650µA, 0.4mm focal spot. (b) 240 kV at 7500µA, 1.0mm focal spot.

Figure 15: Acquired X-ray images of a 1mm tungsten sphere at different voltages, currents and focal spots sizes
using a Comet MXR 320 HP 11 FB 90 tube. Note: for visualization purposes, images were cropped and contrast
enhanced.

(a) 100 kV at 650µA, 0.4mm focal spot. (b) 240 kV at 7500µA, 1.0mm focal spot.

Figure 16: Corresponding 81× 81 pixels PSFs estimated to the X-ray sphere images shown in Figure 15.

(a) 100 kV at 650µA, 0.4mm focal spot. (b) 240 kV at 7500µA, 1.0mm focal spot.

Figure 17: Deblurred spheres of Figure 15, using corresponding estimated PSFs of Figure 16. Note: for visual-
ization purposes, images were cropped and contrast enhanced.

4.5.2 Comparison of a manufactured object with its original CAD design

When a scanned object is manufactured from CAD, it is possible to register simulated projections of the CAD
model onto the X-ray projections taken during a CT scan acquisition. An optimization algorithm iteratively
tweaks the position and orientation of the CAD model until the differences between the simulated and the
experimental projections are minimized. Figure 18 illustrates the whole process. We show here the results on
an optical component (mirror petal) for a nanosatellite (< 10 kg) produced with additive manufacturing (AM)
(see Figure 19),47 but the technique has been applied on other samples. After registration, we have a perfect
geometrical alignment of the simulated CAD model and the object in the CT device. It makes it possible to
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Figure 18: Flowchart of the process to compare a manufactured object with its original CAD design.

As-printed – mirror surface

As-printed – back surface

Cross section of mirror surface

Optical assembly for the nanosatellite

Figure 19: (left) the nanosatellite optical assembly highlighting the mirror petal; (middle) the as-printed design
that underwent XCT acquisition; and (right) a cross section through the reflective surface showing the internal
lattice.

Figure 20: Discrepancies [in mm] between the 3D surface models from the original CAD with the one extracted
from the segmentation of the experimental scan.



visually compare and quantify differences between the 3D surface models from the original CAD with the one
extracted from the segmentation of the experimental scan (see Figure 20). The color used in the visualization is
related to the error, making it easy to identify where the sample is smaller or larger than the CAD model.

4.5.3 Assessment and optimization of industrial XCT performance

The performance of an XCT scan depends on many factors. Furthermore, the performance of an XCT scan
is likely to vary across the reconstructed volume of a given component. For example, in NDT for industrial
components using polychromatic sources, the contrast generated by a defect in the part is expected to vary
depending on the amount of material being penetrated across each projection in the scan.

While the performance will clearly be affected by modifying the X-ray source parameters and modifying the
pose of the part, it is difficult to gain a good understanding of the spatial variability of the inspection performance
for a given setup without running a significant experimental campaign utilizing a large number of samples with
defects deliberately seeded at specific locations. However, experimental testing can be unattractive, not only due
to associated high cost and material waste, but it requires the development to be mature enough for component
manufacturing. This is often not the case for newly developing products, and often the design may need to be
re-iterated, and sometimes re-designed to alleviate any identified inspection challenges.

The MTC has developed a Python framework to automatically configure gVXR setups, seed defect geometries
into a part, and track the positions and orientations of these defects in 3D space as the part is reoriented. From
this, defect positions in each projection and the reconstructed volume are also computed, which will become
important in the calculation of an objective function that aims to maximize the Inspection Performance Map48

at defect locations.

The part geometry used was the Digital Reconfigurable Additive Manufacturing facilities for Aerospace
(DRAMA) additively manufactured 250× 15× 70 mm aerofoil in Ti-6Al-4V with laser powder bed fusion. The
system being modelled was based on a diondo d2 system, with a 225 kV source and a 400 mm by 400 mm
detector, shown in Figure 21.

(a) The arrangement of the part with respect to the source and detector. Note that the
3D visualization is a built-in feature of gVXR. It can be used interactively.

(b) The initial projection.

Figure 21: The initial simulation setup for the DRAMA aerofoil blade component, prior to optimization.

(a) The arrangement of the part with respect to the source and detector. (b) The initial projection.

Figure 22: The initial simulation setup for the DRAMA aerofoil blade component, after optimization.

The final simplex used by the Nelder-Mead optimizer spanned less than 0.5 degrees across the rotational
parameters, less than 0.5 mm in the translational offsets, and approximately 1 mm for the source-to-object



distance parameter. The best setup found is shown in Figure 22. Figure 23 shows defect indications evaluated at
each position, where it can be seen that the defect indications appear significantly improved, both in magnification
and contrast. The most notable change between the initial and optimized setup is that the magnification has
been increased to focus the scan on the bracket section. Additionally, the aerofoil has been tilted slightly, which
explores the trade-off of incurring slightly longer material path lengths across the part (reducing performance),
at the benefit of reducing the vertical extent of the bracket to increase magnification (increasing performance).
It can be seen that the tip section of the bracket region lies outside of the scan. This is because the optimizer did
not check that all parts of the bracket were in the field of view (only the 7 positions were checked) but in future,
more points along the outer extent of the region of interest should be factored into this field of view check.
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Figure 23: Defect indications for the seven positions before and after optimization. The grayscale range used
for plotting is identical across all of the reconstructed volume patches. The grayscale range used for plotting the
difference volume patches is also identical across all different images.

5. CONCLUSION

This paper presents gVXR, an open-source framework for simulating X-ray images in real time using GPUs.
We have demonstrated gVXR’s versatility and applicability across various domains, including education, exper-
imental setup optimization, digital twinning, machine learning, non-destructive testing, and materials science.
Extensive validation efforts, including comparisons with Monte Carlo simulations and real experimental data,
have confirmed the accuracy of gVXR’s simulations. The framework’s ability to rapidly generate verifiably accu-
rate X-ray simulations enables researchers and practitioners to explore complex scenarios, optimize experimental
parameters, and develop novel approaches in X-ray imaging and analysis. As gVXR continues to evolve, potential
areas for future development include improved scatter estimation and enhanced support for spectral imaging.
The open-source nature of gVXR enables collaboration and innovation, encouraging future advancements in
X-ray simulation and analysis across multiple disciplines.
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