

Liberté Égalité Fraternité

AOP & ECOLOGICAL RADIATION PROTECTION – CHALLENGES & INSIGHTS

Sandrine Frelon (IRSN) & co-authors

Department of Radiation Protection of Populations and of Environment SERPEN Laboratory of ecology and ecotoxicology of radionuclides (LECO)

CONTEXT – ECOLOGICAL RADIATION PROTECTION

Reference levels for ERA based on relationship exposures <-> effects

- Several (10 400 μGy/h^{1,2,4} + Derived Considered Reference Levels³)
- Some limits: amount of chronic data, umbrella individual endpoints (mortality, reproduction, morbidity), lab experiments, monospecies, monostressor, mainly γ
- Some knowledge gaps (*e.g.* species radiosensitivity¹, SSD field versus lab⁴)

¹ Garnier Laplace 2010, FASSET ² UNSCEAR, 2008 ³ ICRP Publication 108 2008, ⁴ Garnier-Laplace et al. 2013, ⁵ Schmeisser et al., 2023

CONTEXT – ECOLOGICAL RADIATION PROTECTION

Reference levels for ERA based on relationship exposures <-> effects

- Several (10 400 μGy/h^{1,2,4} + Derived Considered Reference Levels³)
- Some limits: amount of chronic data, umbrella individual endpoints (mortality, reproduction, morbidity), lab experiments, monospecies, monostressor, mainly γ
- Some knowledge gaps (*e.g.* species radiosensitivity¹, SSD field versus lab⁴)

Upcoming challenge identification

 To increase the number of data used in regulatory assessments (e.g. using New Approach Methodologies (NAMs)⁵, including molecular omics data)

• To bring **more realism** in data acquisition and considered endpoints

¹ Garnier Laplace 2010, FASSET ² UNSCEAR, 2008 ³ ICRP Publication 108 2008, ⁴ Garnier-Laplace et al. 2013, ⁵ Schmeisser et al., 2023

CHALLENGES OF ECOLOGICAL RADIATION PROTECTION

IRSN

INTERACTIONS media/organisms, inter-species (predation, parasitism, competition)

CHALLENGES OF ECOLOGICAL RADIATION PROTECTION

IRS

CHALLENGES OF ECOLOGICAL RADIATION PROTECTION

IRS

Investigation regarding the recent AOP framework

¹ Noss 1990, ² Dubois et al 2019, ³ Pereira et al 2011 ⁴ Sreetharan et al 2024 EUROPEAN RADIATION PROTECTION WEEK ROME – NOVEMBER 2024 6

THE ADVERSE OUTCOME PATHWAY (AOP) FRAMEWORK

AOP¹ = Tool for data structuration: from an initiating event (MIE) to an adverse outcome (AO), mostly phenotypical (individual, population), used for ERA

THE ADVERSE OUTCOME PATHWAY (AOP) FRAMEWORK

AOP¹ = Tool for data structuration: from an initiating event (MIE) to an adverse outcome (AO), mostly phenotypical (individual, population), used for ERA

AOP framework enables:

- Linking different biological levels, with WoE assessment
 - \rightarrow Main steps leading to an Adverse Outcome and relative knowledge gaps
 - ightarrow Possible use of molecular data
- Common tool between radiations and other stressors (AOP networks),
- Sharing common tool between researchers and regulators³

THE ADVERSE OUTCOME PATHWAY (AOP) FRAMEWORK

AOP¹ = Tool for data structuration: from an initiating event (MIE) to an adverse outcome (AO), mostly phenotypical (individual, population), used for ERA

IRSN

SOME CHALLENGES OF AOP REGARDING ERA

EXPOSURE: chronicity, long-term, multi-stressors

Multi-stressors: to rank stressors with their modes of action (MoA)

- \Rightarrow helps in prediction of interaction between stressors (additivity, synergism, antagonism¹⁻³)
- \Rightarrow calculation of mixture assessment factor.

Adapted from Schafer and Pigott 2018¹

IRSI

SOME CHALLENGES OF AOP REGARDING ERA

ENDPOINT LEVEL:

Determination of KE / AO more ecologically relevant i.e. in relation with the different biodiversity components (composition, structure and function (Noss et al, 1990))

From literature analysis of IR effects (16 papers, in situ)

=> List of descriptors for relevant cascade of events leading to outcomes for ecosystems

DEFINITION OF ECOLOGICALLY RELEVANT DESCRIPTORS (KE, AO)

Type/Level of Organisation	Event	AOP wiki ID	Parameter analysed / Ref
KE/Population structure ,, KE/Population composition	Sex ratio, skewed Adaptive potential, o Mutation rate, increase	#417 decrease ase, Mutations, #185	Sex ratio measurement over population exposed ¹ Affiliation rate, increase ²⁻³ Population genetic inference (genetic diversity) ⁴⁻⁸
"	Nuclear Genetic dive	ersity, decrease	Genetic markers (e.g., mitochondrial), SSRs, SNPs ²⁻³
AO/Population KE/Ecosytem	Population size, decr demography, decrea	rease / Population se #997	Standard counts (e.g., bird point counts, track analysis, motion activated camera traps, etc.) ^{5,9-13}
AO/Population KE/Ecosytem	Abundancy, decrease	e/increase	Modelling, Fruit tree numbering (indirect; pollinator and bird disturbance), Tracks analysis ⁹⁻ ¹³
AO/Ecosystem AO/Ecosystem structure AO/Ecosystem composition	Pollination, decrease Organic matter cycling, increase/ decrease Biodiversity richness decrease		Indirect; pollinator disturbance ¹⁴⁻¹⁵ Indirect; litter detritivore numbering ¹²⁻¹³ All previous parameters/upcoming eDNA methods

¹Quevarec et al. 2022, ²Car et al. 2023, ³Shimalina et al. 2020, ⁴Baker et al., 2017, ⁵Car et al. 2022, ⁶Ellegren et al. 1997, ⁷Goodman et al. 2022, ⁸Møller & Mousseau 2015, ⁹Bonzom et al. 2016, ¹⁰Deryabina et al., 2015¹¹Moller & Mousseau 2007, ¹²Mousseau et al 2014, ¹³Møller et al 2012, ¹⁴Burrows et al 2022, ¹⁵Raines et al 2020, ¹⁶Sakauchi et al., 2021

CONCLUSIVE REMARKS

[STILL ONGOING WORK BUT...

AOP seems to be useful for:

- event cascade building and analysis,
- knowledge gap identification
- hazard identification,

Developing Adverse Outcome Pathways to support Radioecological

Risk Assessment: Challenges and Insights

Dufourcq-Sekatcheff, E. ‡*¹, Quevarec, L.¹, Delignette-Muller, M. Car, C.¹, Bonzom, J-M.¹, Gilbin, R., Tollefsen, K-E.^{3,4}, Armant, O. ‡*¹, Frelon, S. *¹

1 Institut de Radioprotection et de Sûreté Nucléane (IRSN), Laboratoire d'Ecologie et d'Ecotoxicologie des Radionucléides, Cadarache, 15115 Saint Paul-Lez-Durance, France

2 Laboratoire de Biométrie et Biologn Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, VetAgro Supervilleurbanne, France

3 Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, <u>Økernveien</u> 94, N-0579 OSLO, Norway

4 Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), Post box 5003, N-1432 Ås, Norway

Difficulties:

to go beyond the population to predict a risk

Imited by lack of knowledge

Long-term investigation

[THANK YOU FOR YOUR ATTENTION !

Acknowledgements to all co-authors of this work:

- Dufourcq-Sekatcheff Elizabeth, Quevarec Loïc, Car Clément, Bonzom Jean-Marc, Gilbin Rodolphe, Armant Olivier: IRSN / Department of Radiation Protection of Populations and of Environment (SERPEN) - Laboratory of ecology and ecotoxicology of radionuclides (LECO)
- Tollefsen Knut-Erik: Section for Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Delignette-Muller Marie-Laure: Laboratoire de Biométrie Et Biologie Evolutive, Université de Lyon, Université Lyon 1

