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ABSTRACT
Aim: In mobile species, individual movement decisions based on biotic and abiotic conditions determine how individuals in-
teract with the environment, heterospecifics and conspecifics. Accordingly, these decisions underpin all ecological principles 
and structure broader spatial patterns at the population and species level. Species distribution models (SDMs) are therefore 
paramount in ecology, with implications for both fundamental and applied studies. There are many robust SDM techniques, 
from individual-scale (Lagrangian) to population-scale (Eulerian) models. Their outputs routinely support wildlife management, 
conservation, or risk assessments. Yet, it remains unclear whether SDMs built at individual and population scales infer the same 
processes, and whether the spatial distributions they predict are comparable. Here, we address this key question with a simula-
tion exercise.
Location: Virtual environment.
Taxon: Virtual species.
Methods: First, we simulated the individual movements of two highly mobile species, one central-place forager and one free 
ranger. Second, we surveyed the species at the individual-scale, replicating Lagrangian studies by tracking individual move-
ments, and at the population-scale, replicating Eulerian surveys by censusing the study area with standardised protocols. The 
resulting data were analysed following well-established statistical methods to assess species abundance distribution. We used 
Resource Selection Functions (RSFs) for Lagrangian data and Density Surface Models (DSMs) for Eulerian data.
Results and Main Conclusions: Both Lagrangian and Eulerian SDMs adequately estimated the species' relationship with en-
vironmental conditions. Although some fine-scale differences occurred, both perspectives yielded highly correlated spatial dis-
tributions (correlations of 0.8–1.0 between pairs of models), and successfully predicted true abundance distributions (correlations 
of 0.6–0.7 with the true abundance distribution). Our results demonstrate that Lagrangian and Eulerian SDMs are statistically 
consistent and directly comparable, which is of great importance for conservation science. This provides crucial guidance for 
the combination of predictions from both model types to inform spatial planning within a wide range of management contexts.
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1   |   Introduction

Predicting the spatial distribution of species is a central goal in 
ecology. In mobile species, individuals are constantly making 
movement decisions (Mueller and Fagan 2008), which depends 
on environmental conditions, resource availability, previ-
ous knowledge, biological status, but also on inter- and intra-
specific interactions, potential disturbance and fear of predators 
(Courbin et al. 2022; Palmer et al. 2022). From such individual-
scale (Lagrangian) space-use choices emerge population-scale 
space-use patterns (DeCesare et  al.  2012; Winter et  al.  2024), 
which ultimately drive the spatial distribution of occupancy 
and abundance of populations and species (Eulerian process; 
Steenweg et al. 2018). By determining where and when individ-
uals interact with their environment, as well as with heterospe-
cifics and conspecifics, spatial processes at the individual scale 
ultimately underpin all ecological principles: from population 
and community dynamics to trophic relationships, disease 
spread and exposure to anthropogenic threats, which in turn 
affects individual movement decisions. Hence, to get a complete 
picture of ecosystem functioning, it is crucial to describe the 
spatial ecology of species from the individual and the population 
perspective (Truchy et al. 2019).

When studying and predicting the drivers of spatial distribu-
tions, such as resource and habitat use, occurrence or abundance 
distribution, we mostly rely on correlating individual location 
with environmental conditions experienced at these locations 
(Franklin 2010; Matthiopoulos, Fieberg, and Aarts 2020). Such 
correlative approaches form the core of species distribution 
modelling (SDM, also termed habitat modelling) and of habitat-
selection analyses. The SDM terminology encompass many 
robust techniques that rely on a wide array of data types and 
condition the position of the analysis along the individual-to-
population continuum (Figure 1). A majority of SDMs are based 
on observations recorded at discrete sample sites (Guillera-
Arroita et al. 2015) and provide an Eulerian perspective. Such 
data include any type of direct (visual, acoustic) or indirect 
(faeces, tracks, DNA) observation of the species at a site. They 
range from opportunistic presence-only data (citizen science, 
museum collections, photo-ID catalogues), to presence–absence 
and count data, collected with standardised protocols (distance 
sampling, camera traps; Buckland et al. 2023). Eulerian SDMs 
are used to provide occurrence, usage or abundance maps. 
However, most wild populations are not easy to survey. This is 
especially the case of wide-ranging, highly mobile species that 
live at remote locations or that engage in continent- or ocean-
wide migrations. For these, an individual perspective is often 
preferred, which is generally achieved through animal-borne 
tracking devices recording movements over time. This type 
of data can be used to build Lagrangian SDMs, which provide 
information on the probability of usage (Northrup et al. 2022; 
Hays et al. 2019).

Each approach comes with its limitations and drawbacks. 
Individual-based monitoring is typically limited to a relatively 
small number of tracked animals, due to economic, ethical or 
accessibility constraints. These tracking studies often provide 
a non-random sample of a population, and the data set might 
be further limited to particular demographic subsets (only 

breeders; only males or females). Due to differences between 
these subsets, this individual-based approach might lead to bi-
ased space-use estimates (Carroll et al. 2019; Pettex et al. 2019; 
Phillips et  al.  2019). By contrast, Eulerian approaches pro-
vide a random sample of the population, as they sample all 
demographic subsets (if an adequate sampling scheme is 
used). However, they are limited in their spatio-temporal ex-
tent and resolution and are further subject to detection issues 
(Lahoz-Monfort, Guillera-Arroita, and Wintle 2014; Lambert 
et  al.  2019). Also, the openness of a population (individuals 
moving in and out the study area during the survey) can bias 
abundance estimations. Yet, this bias can be reduced by care-
fully designing surveys (basin-scale surveys designed to cover 
the full range of populations; Hammond et al. 2017; Panigada 
et al. 2021) or by using dedicated statistical tools (N-mixture 
models; Ketz et al. 2018).

Both Lagrangian and Eulerian SDMs are extensively used to 
establish risk assessments, spatial planning, conservation man-
agement or mitigation strategies. They are also used to assess 
ecosystems status, often combining outputs from both SDM 
types (Marshall, Glegg, and Howell 2014). To answer to these 
needs, the SDM field has recently experienced a fast develop-
ment of models that integrate heterogeneous observation data 
of various sources, types, quality and content information 
(Fletcher et al. 2019; Miller, Pacifici, et al. 2019). These models 
effectively combine various types of Eulerian data (standardised 
surveys, citizen science, camera trap or harvest data) to provide 
population-scale models of unprecedented reliability. However, 
although theoretical work has demonstrated that many Eulerian 
and Lagrangian SDMs are actually identical (Aarts, Fieberg, 
and Matthiopoulos  2012), and that individual-level Resource 
Selection Functions (RSFs) can be scaled up to population-level 
estimates of habitat selection (DeCesare et  al.  2012; Winter 
et al. 2024), the integration of Lagrangian and Eulerian data into 
a single integrated SDM (iSDM) has, to the best of our knowl-
edge, not been accomplished yet. Such an integration faces spe-
cific challenges (Matthiopoulos et al. 2022) because the two data 
types sample the spatial distribution in fundamentally different 
ways. This is particularly the case when the output of interest is 
the abundance distribution rather than the space-use or pres-
ence probability. It is also the case for wide-ranging species, 
whose movements occur at a greater spatial scale than Eulerian 
surveys.

Hence, regardless if we want to couple outputs from Eulerian 
and Lagrangian SDMs for management purposes, or if we want 
to build abundance-orientated iSDMs that couple Eulerian and 
Lagrangian data, we need to empirically evaluate that the spa-
tial patterns predicted from the two approaches are comparable. 
This is the aim of our current study and we address this by an-
swering the following two long-standing questions: (1) Do mod-
els built with Lagrangian and Eulerian data provide consistent 
information about the abundance distribution of species? and 
(2) Do these models provide reliable abundance distributions for 
highly mobile species?

Testing these hypotheses with empirical data is difficult. 
Instead, we implemented a virtual individual-based simulation 
experiment (Zurell et  al.  2010). Using a dedicated R package 
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(virtualecologist; Lambert 2024a), we set a virtual envi-
ronment in which we simulated the movements of two wide-
ranging virtual species that either behave as central-place 
forager (hereafter the CPF species, which we assumed live in 
two colonies, with a total of 20,000 individuals) or as a free 
ranger (hereafter the FR species, 8000 individuals). The system 
was sampled from the Lagrangian perspective with a tracking 
study of both species and from the Eulerian perspective with 

two standardised surveys that were conducted from an aircraft 
(fast platform) and from a ship (slow platform).

We then analysed Lagrangian and Eulerian data using state-
of-the-art statistical methods. Movement data were analysed 
with resource selection functions (RSFs; Northrup et al. 2022) 
to compute a map for the probability of usage, which we 
scaled-up to abundance. Using the survey data, we estimated 

FIGURE 1    |    (A) Individual scale (Lagrangian) processes are defined by movement choices of individuals based on the surrounding environmental 
conditions. They scale up to population-level (Eulerian) processes defining broad-scale patterns of occurrence and abundance distributions. Each 
data type samples the spatial processes at a different scale, limiting the type of SDMs available to model the spatial distribution of a species, and, 
ultimately, the metrics that can be inferred from it: From the probability of usage to abundance estimates. SDM refers to all techniques that infer the 
spatial distribution of a species from its relationships with environmental conditions, thus spanning from regression models (GLM, GAM and their 
mixed-effect counterparts) to deep-learning methods. SDM types and metrics that are compared in the present study are highlighted in bold. (B) 
Details of the analytical workflow used for our simulation study and overview of conducted analyses.
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the abundance map with a Density Surface Model (DSM; 
Miller et al. 2013). We then assessed whether Lagrangian and 
Eulerian approaches arrived at similar estimates for the spa-
tial distribution of both species, by comparing the abundance 
maps predicted either by RSF or by DSM (Pearson's correla-
tion). Finally, we determined the absolute reliability of each 
method by comparing the inferred responses to environmen-
tal conditions and the predicted spatial abundance distribu-
tions with the factual situation.

2   |   Methods

All analyses were conducted using R, version 4.2.3 (R Core Team 
2024) and a dedicated package to set up the virtual environment, 
the species movements, and the surveys (virtualecologist; 
from which come all functions mentioned below, unless stated 
otherwise; Lambert 2024b).

Since our objective was to compare the efficacy of Lagrangian 
and Eulerian methods in retrieving the spatial distribution of 
abundance of a species, we simulated an ideal system. To this 
end, we controlled for the most common sources of statistical 
noise (species rareness, protocol bias, detection issues), by simu-
lating abundant species and using line-transect protocol without 
detection bias for the surveys (all individuals were available to 
detection, i.e. they did not hide or dive). Such a setting ensured 
that the potential differences in model outputs would primarily 
arise from the performance of each method and not from statis-
tical biases.

We used two types of species for our investigation. First, a 
Central Place Forager (CPF) that has to start each foraging trip 
from a given point (its colony) to which it has to return by the end 
of the day. This species moves across the study area at a medium 
pace, with a speed of about 30–50 km/h when travelling and of 
about 10–20 km/h when foraging. The species is highly mobile 
but cannot roam too far from the colony, as it has to return by the 
end of the day. As a consequence, individuals should maximise 
their search behaviour and focus on favourable patches during 
the time spent away from the colony. Hence, these individuals 
do not remain too long in one place (no more than 15 min in a 1 
km radius). This type of behaviour is typical of the movements 
and ecology of many seabirds. Second, an FR that is not spatially 
constrained by a colony. It moves at a similar pace than the CPF, 
but it is more vagrant and spends less time at a particular place 
(no more than 15 min in a 2 km radius). Hence, it uses a larger 
area during a single day than the CPF. Such behaviour can be 
observed in cetaceans, for example.

2.1   |   Data Simulation

2.1.1   |   Environment

We set up a grid with a 0.5 × 0.5 km resolution (including 32,761 
cells), using the create_grid function. Two Gaussian random 
fields were predicted across this space to simulate environmen-
tal conditions (using the generate_env_layer function; 
Figure 2A). From this, we built species-specific environmental 

suitability layers (using the generate_resource_layer 
function) by combining the two available resources as follows: 
for the CPF, suitability = 2 × Resource 1–1.5 × Resource 2; for the 
FR, suitability = −2 × Resource 1 + 0.5 × Resource 2 for the FR. 
We normalised the environmental conditions and the suitability 
layers.

2.1.2   |   Individual Movements

2.1.2.1   |   Central Place Forager.  We simulated 
the movements of the CPF within the virtual environment 
(using the simulate_trajectory_CPF function). Individu-
als were assigned to two colonies (8000 and 10,000 individuals, 
respectively) from which individuals initiated central-place for-
aging trips on two consecutive days.

Individuals were set to launch foraging trips within 2 h of sun-
rise (departure time was randomly chosen within this interval) 
and to return to the colony before sunset. They departed the 
colony with a bearing drawn from a Von Mises distribution 
centred on 270° for Colony 1 and on 90° for Colony 2 (Table 1). 
Individuals could engage in two movement types: travelling 
(directed movement patterns: large steps with low variability, 
low angles with low variability) and foraging (area-restricted 
movement: short steps with low variability, large angles with 
large variability).

For each position (computed every minute), 10 potential sub-
sequent positions were randomly sampled, using movement 
parameters from the activity at the previous step (travelling or 
foraging). During the first four positions of the track follow-
ing colony departure, the ensuing step was randomly selected 
among these 10 potential positions. Thereafter, residence time 
was checked for every position. If residence time had not been 
reached (i.e., the individual did not spend more than 15 min in a 
1 km radius of its current position), the subsequent position was 
chosen as the potential position with the highest values of en-
vironmental suitability. By contrast, if residence time had been 
reached (i.e., the individual had spent more than 15 min within 
a 1 km radius of its current position), only potential positions 
outside the 1 km radius were retained and the position with the 
best environmental condition was chosen. If all potential posi-
tions remained within the radius (which may happen when the 
individual is foraging), the subsequent position was chosen as 
the point situated at the greatest distance from the current po-
sition, irrespective of its environmental suitability, to force the 
individual moving away.

Then, we updated the behaviour of the individual based on the 
environmental suitability at the selected position: if suitability 
exceeded 0.7, the individual switched from travelling to forag-
ing; otherwise, the individual continued to travel.

When individuals reached a distance from the colony further 
than 40 km, or when the trip duration reached 12 h, individu-
als started their homeward journey. The ensuing positions were 
chosen as travelling movements and were selected based on the 
minimum distance to the colony. If several potential positions 
met the selection criteria, the next step was randomly chosen 
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from these positions. An individual was considered to have re-
turned when it was within 1 km of the colony.

2.1.2.2   |   Free Ranger.  A similar approach was used 
for the FR (using the simulate_trajectory_FR function), 
simulating the movements of 8000 independent individuals (i.e., 

not moving in coordinated groups). On the first day, the ini-
tial position of each individual was randomly selected within 
the study area. On the second day, individuals started to move 
from their last position recorded during the previous day. Start-
ing bearings and steps were randomly drawn from Von Mises' 
and Gamma distributions, centred on 0 and 4.5, respectively. 

FIGURE 2    |    (A) The virtual environment simulated for the study, showing from top to bottom the spatial distribution of Resources 1 and 2, the 
environmental suitability for the central-place forager (CPF) and the free ranger (FR). A greater value indicates a greater abundance of resources or 
suitability. All maps were normalised. (B) and (C) from top to bottom: True abundance maps, abundance maps predicted from the Resource Selection 
Function (RSF) model, abundance maps predicted from the Density Surface Model (DSM) computed either from aircraft survey data or from ship 
survey data, for the Central-place forager (B) and the Free ranger (C). Colour codes in (B) and (C) indicate the number of individuals. In (B) and (C), 
the solid white lines delimit the area that contains 100% of the population, whereas the dotted lines and the dashed lines indicate the area that delimit 
80% and 50% of the population, respectively. Colonies in (B) are indicated by numbers.

TABLE 1    |    Angle and step parameters used to simulate movements of the CPF.

Movement type Colony Angle Step

Departing the colony Colony 1 Von Mises (μ = 270, κ = 10) Gamma (scale = 0.9, rate = 3)

Colony 2 Von Mises (μ = 90, κ = 10)

Travelling movement Colonies 1, 2 Von Mises (μ = 0, κ = 20) Gamma (scale = 0.7, rate = 3)

Foraging movement Colonies 1, 2 Von Mises (μ = 0, κ = 0.5) Gamma (scale = 0.2, rate = 3)
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Movements were simulated for each day independently. Indi-
vidual movements were simulated following the same logic 
as for the CPF, although without returning to the colony. The 
suitability threshold used to cause a switch from travelling 
to foraging and the residence time were identical to those 
used for the CPF. However, we used a larger residence radius 
for the FR (2 km) than the CPF (1 km).

2.1.2.3   |   Analysis, Formatting and Sampling Tracking 
Data.  We quantified the track durations and the proportions 
of time spent travelling and foraging for each species and col-
ony separately. The reference abundance map for the CPF 
population was quantified as follows: (1) we estimated the util-
isation distributions (UDs, i.e., home range; using the ade-
habitatHR package; Calenge & contributions from Scott 
Fortmann-Roe  2023) for each individual, and normalised 
the map so that the sum of its values equalled one (Morris, 
Proffitt, and Blackburn 2016); (2) we averaged these individ-
ual UDs for each colony; (3) we multiplied the colony-specific 
maps by the number of individuals in each colony and (4) 
we summed both colony-specific maps to provide the refer-
ence (‘true’) map of abundance, which provides the average 
number of individuals present in each cell at any moment. 
The reference map for the FR was obtained in a similar way: 
the normalised individual UDs were averaged for the entire 
population and multiplied by the number of individuals in 
the population.

2.1.3   |   Surveys

The surveys were simulated using the generate_sur-
vey_plan and launch_survey_on_movement functions. 
The virtual aerial survey was set up with 21 parallel transects 
(each 80 km in length), which were segmentised into 1-km-long 
segments. The survey spanned 1 day (from 6:00 to 16:16) and 
transects were sampled at 160 km/h (a 1-km-long segment was 
sampled in 22 s), which is the typical aircraft speed in aerial 
surveys (Lambert et  al.  2019). The observation area around 
transects was set to 1 km2 (a 500 m wide strip on each side). All 
individuals whose trajectories crossed a segment of the survey 
during the period it was sampled were considered available for 
detection by the survey as long as the centroid of the matching 
step was within the observation area. We stored the distance 
between the step centroid and the transect line for each individ-
ual. The survey was carried out using a line-transect protocol, 
where the probability for an animal to be detected is a func-
tion of its distance to the track line. This distance-dependent 
detection probability was modelled using a half-normal distri-
bution with a 200 m effective strip half-width (ESW; Buckland 
et al. 2015). The number of individuals sighted per survey seg-
ment was computed as the sum of individuals detected within 
each segment.

A similar approach was used to simulate the ship survey. 
Since ships are slower than aircrafts (10 knots, or 18.5 km/h; 
a 1-km-long segment was sampled in 3.2 min), we set up eight 
parallel transects with a length of 50 km each. The ship survey 
was conducted over 2 days (4 transects sampled per day). The 
same logic as for the aerial survey was used to carry out the 

ship survey, but the ESW was set up to 500 m (ESW is typically 
greater for ship surveys, when compared to aerial surveys).

2.2   |   Lagrangian SDMs

For the Lagrangian modelling, we considered that 1% of the 
population was tracked per colony (for the CPF: 80 individuals 
for Colony 1, 120 individuals for Colony 2; for the FR: 80 indi-
viduals), with devices sampling one position every 15 min. This 
sampling rate is intermediate to rates commonly used in ma-
rine tracking studies, where positions are frequently sampled at 
2–30 min intervals.

Based on these sampled tracks, we mapped space-use by 
using an RSF based on a use-availability design (presence-
background; Fieberg et  al.  2021; Northrup et  al.  2022). We 
modelled the distribution using the environmental variables 
(the two resource layers) instead of using the suitability map 
directly. This was done to simulate realistic situation, where 
knowledge of the exact suitability of the environment is rarely 
available.

The first step was to define available points from the environ-
ment to which the track locations (used points) could be com-
pared. For the CPF, we randomly sampled 10 available points 
for each location point, within a buffer around the colony of or-
igin. The latter was colony-specific and constructed by adding 
5 km to the maximum distance between the furthest sampled 
track point and the colony. For the FR, available points were 
sampled from the whole study area. Geographic coordinates of 
each point, used/available, were used to extract the values for 
Resource 1 and Resource 2 (using extract from the terra 
package; Hijmans  2023). For the CPF, we also computed the 
distance to the colony of origin for every point (st_distance 
from the sf package; Pebesma 2018).

We fitted Generalised Additive Models (GAMs, using the 
mgcv package; Wood 2011) with ‘usage’ as the response vari-
able and the binomial family as link function. ‘Used points’ 
were given a weight of 1, whereas ‘available points’ received a 
weight of 5000. The three environmental conditions (Resource 
1, Resource 2, Distance to Nearest Colony) were included as 
covariates for the CPF, while only the first two conditions 
were included for the FR. To avoid overfitting, the curve com-
plexity was restrained to a maximum of 4 degrees of freedom. 
We retrieved the smoothed terms for each component of the 
linear predictors to draw the responses of the species to en-
vironmental conditions (see predict.gam and plot.gam 
functions in mgcv).

The spatial distribution of the probability of usage was predicted 
from each model and normalised so that the sum of its values 
equalled one (Morris, Proffitt, and Blackburn  2016). For the 
CPF, this prediction was computed for each colony separately 
and only within the colony-specific buffers used to sample avail-
ability points. Hence, accessibility constraints are taken into 
account (cells outside the buffers were assigned a value of zero, 
since no individual used these areas). For the FR, a single pre-
diction was computed for the entire study area.
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We converted these maps into abundance maps by assuming 
that population sizes were known from an analysis indepen-
dent of the data at hand. Abundance maps were obtained by 
multiplying each prediction by the number of individuals living 
within the considered population (Colonies 1 and 2 separately 
for the CPF; the whole population for the FR). For the CPF, the 
final abundance map was subsequently obtained by summing 
the maps from both colonies. These final species-scale maps 
represent the average number of individuals that occur in each 
cell at any moment.

2.3   |   Eulerian SDMs

We used a classical DSM to estimate the spatial distribution of 
abundance (Miller et al. 2013). Environmental conditions asso-
ciated with each survey segment were retrieved based on their 
centroid coordinates (using st_centroid from the sf pack-
age and extract from the terra package). Because the colony 
of origin for sighted individuals is unknown during an observa-
tion survey, we used the distance to the closest colony as a proxy 
(from the segment centroids).

We fitted a GAM using the count of individuals per segment 
as the response variable and the Tweedie distribution as link 

function. We included the sampled area per segment as an off-
set (2 × ESW), where the ESW was estimated with Conventional 
Distance Sampling (CDS; Miller, Rexstad, et al. 2019). As for the 
RSF, we included the three environmental conditions (Resource 
1, Resource 2, Distance to Nearest Colony) as covariates for the 
CPF, but only the first two for the FR. To avoid overfitting, the 
curve complexity was limited to a maximum of 4 degrees of 
freedom. We retrieved the smoothed terms for each component 
of the linear predictors to draw the responses to environmental 
conditions. The spatial distribution of abundance was subse-
quently predicted from these models for each species, and the 
total population abundances were computed as the sum of all 
cells from the study area.

2.4   |   Assessing Prediction Accuracy

We evaluated the accuracy of model predictions with Pearson's 
correlation coefficients (with the rcorr function from the 
Hmisc package; Harrell Jr 2024) between all pairs of models, 
across data types and surveys, as well as against the true abun-
dance distributions (derived from the UD, see Section  2.1.2) 
and the environmental suitability maps. To quantify the de-
pendency of species space-use on environmental conditions, 
we also calculated Pearson's correlation coefficients between 

FIGURE 3    |    Lagrangian perspective results for the central-place foraging (CPF; A) and the free-ranging (FR; B) species. (Top) The locations sam-
pled from the tracks are shown in black (used locations), whereas the locations sampled from the available environment are shown in grey. For the 
CPF, available points were sampled within a buffer zone around the colony (see text), whereas for the FR, they were sampled over the entire study 
area. (Bottom) Responses to conditions estimated with the RSF for both species, showing the relationships between the linear predictor (log(usage)) 
on the y-axis and the covariates on the x-axis. The rugs on the x-axes indicate the data used to fit the model (note the ranges of sampled values for 
each variable differ between species).
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the environment suitability maps and the true abundance 
distributions.

3   |   Results

3.1   |   Simulated Individual Trajectories

The simulated individual movements and surveys for each spe-
cies are presented in detail in the Data S1. Both CPF and FR 
individuals spent more time travelling than foraging. CPFs 
from Colony 1 spent more time travelling than individuals from 
Colony 2 (Figure S3), while the activity budget (time spent trav-
elling and foraging) of individuals from both colonies did not 
differ between the days. By contrast, FRs were relieved from the 
need to commute and spent more time foraging on day 2 than 
on the first day because a greater number of individuals had 
reached favourable areas (Figures  S1–S4). The same patterns 
were found in our movement data analysis, which sampled 1% 
of the population every 15 min (Figures S5–S8).

The distribution of abundance differed between species 
(Figure 2B,C). Abundance of the CPF was centred around the 

two colonies, with most individuals from Colony 1 (top left in 
Figure 2B) spread to the south of the colony, whereas individuals 
from Colony 2 (bottom right in Figure 2B) spread to the north of 
their colony. The distribution of the FRs was widespread, with 
high abundance patches scattered throughout the study area 
(Figure 2C).

3.2   |   Lagrangian SDMs

The variance explained by RSF models differed greatly between 
species (13.6% for the CPF, 1.1% for the FR). All variables were 
significant in each case (p < 2 × 10−16) and the orientation of re-
sponses to environmental conditions were correctly identified 
for both species (Figure  3). Predicted abundance maps were 
consistent with the true patterns (Figure 2B,C, second and first 
rows, respectively). The CPF model correctly predicted the ag-
gregation around the two colonies, but overestimated the abun-
dance to the north of Colony 1, whereas it underestimated the 
abundances to the north of the Colony 2. The FR model correctly 
identified high abundance areas, but tended to underestimate 
the absolute values in the southern part of the study area, while 
overestimating the northern part.

FIGURE 4    |    Eulerian perspective results for the central-place foraging (CPF; A) and the free-ranging (FR; B) species. (Top) The aerial (left) and 
ship (right) survey designs are illustrated, where transects are depicted as black lines, and sightings are overlaid as black dots (first day of survey), 
and in the case of the ship-based survey, as golden dots for the second day of survey. For the CPF, colony locations are indicated by red dots. The total 
number of individuals sighted per survey is indicated on the top-left of each graph. (Bottom) The responses to environmental conditions estimated 
with the DSM for both species are shown, for aircraft (top) and ship (bottom) surveys. The relationship between the linear predictor (log(individuals); 
y-axis) and the covariates (x-axis) is shown. The rugs on the x-axes display the data used to fit the model (note the ranges of sampled values for each 
variable differ between aircraft and ship surveys).
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3.3   |   Eulerian SDMs

The aerial survey sighted 2295 CPFs and 938 FRs, whereas the 
ship survey yielded 2103 CPF and 577 FR detections (Figure 4, 
Figures S1–S12). The vast majority of detected individuals were 
sighted only once. However, some individuals were sighted sev-
eral times throughout the survey (Figure S15; up to four times 
for the FR during the ship survey).

For the CPF, aircraft- and ship-based surveys achieved sim-
ilar explained deviances for the CPF (66.8% and 66.5%, re-
spectively). They also correctly estimated the orientation 
of the responses to environmental conditions (Figure  4A), 
with all relationships being highly significant (p < 2 × 10−16). 
Both models predicted a similar distribution of abundance in 
the study area (Figure  2B,C, third and fourth rows), which 
matched well the true distribution of the species (Figure 2B,C, 
top row). However, they overestimated the abundance to the 
north of Colony 1 and to the south of Colony 2 while underes-
timating abundance to the north of Colony 2 (so did the RSF). 
Both models estimated the absolute true abundance of the 
species correctly (18,620 ± 2614 individuals for aircraft-based 
model, 17,471 ± 3784 individuals for ship-based model; values 
are mean ± standard deviation). By contrast, CDS estimation 
(Figure S16) largely overestimated abundance for ship survey, 
while this is not the case for the aerial survey.

Results for the FR differed somewhat. Here, the aircraft-based 
model explained a larger proportion of the deviance than the 
ship-based survey (29.2% vs. 7.7%, respectively). Yet, both models 
found the two covariates to be highly significant (p < 2 × 10−16) 
and also successfully identified the responses to environmental 
conditions (though the ship-based model identified an inflection 
point for Resource 2 at greater values; Figure 4B). The predicted 
abundance distributions were rather similar (Figure  2C, third 
and fourth rows) and matched the true distribution (Figure 2C, 
top rows). However, the ship-based model locally overestimated 
the abundance in the north-eastern part of the study area. 
Nevertheless, this latter model achieved better results in repro-
ducing the spatial gradients in abundance, especially for areas 
where the species was absent. The aircraft-based model slightly 
overestimated the absolute true abundance (9259 ± 517 individ-
uals), whereas the ship-based model was correct (8811 ± 970 
individuals). One should note that the uncertainties associated 
with the estimated abundances were lower for the FR than the 
CPF species (Figure S16).

3.4   |   Assessing Prediction Accuracy

Pearson's correlations were high between RSF and DSM, all ex-
ceeding 0.8 for both the CPF and the FR (0.89–0.94 for the CPF; 
0.90–0.98 for the FR; Figure 5). Correlation intensity with true 
abundance and with environmental suitability, however, dif-
fered between species. For the CPF, the RSF and DSM reached 
correlation values with the true abundance map of about 0.65 
(0.61–0.71), while correlations with the suitability layer were 
poor (0.11–0.19). Furthermore, the correlation between true 
abundance and environmental suitability was also fairly low 
(0.05) for the CPF, which is due to the constraints imposed by 
central-place foraging that drive most of the spatial patterns 

with respect to abundance. By contrast, for the FR, true abun-
dance and environmental suitability were highly correlated 
(0.68), and the RSF and DSM prediction maps reached high cor-
relation levels with both the suitability (0.79–0.94) and the true 
abundance maps (0.69–0.71).

4   |   Discussion

In this study, we investigated whether models built from 
Lagrangian and Eulerian data provide consistent information 
about species abundance distribution for highly mobile species. 
To address these issues, we conducted a simulation exercise, 
reproducing the whole SDM analysis process. We (1) simulated 
individual movements for two populations and (2) conducted 
dedicated surveys to monitor various parts of the system. To as-
sess species abundance distributions, we subsequently analysed 
collected data, following well-established statistical methods. 
Our results provide important insights into the performance 
and reliability of SDM techniques.

Identifying the spatial distribution of environmental suitabil-
ity is the paramount goal for which SDMs have been conceived 
(Franklin  2010; Elith and Leathwick  2009). The agreement 
between predicted and true distributions has been previously 
confirmed by simulation-based studies (Koshkina et  al.  2017; 
Lambert and Virgili 2023). However, these studies focused on 
stationary individuals or individuals whose movements oc-
curred at spatial scales smaller than the observation process 
(i.e., home ranges were smaller than the size of sampling units). 
Whether such agreement in distribution holds true for individu-
als that move at a larger scale relative to that of the survey has so 
far remained an open question.

In real life, individual movement decisions depend upon many 
intrinsic and extrinsic factors, from individual energy balance 
to inter-specific competition. The consequence is that the ac-
tual choice of favouring a particular site seldom depends exclu-
sively on the site's quality. For example, mobile individuals in 
the marine realm rely on memory to target patches where they 
have been successfully finding resources during previous trips 
(Robira et al. 2021). They might also use social learning to find 

FIGURE 5    |    Pearson's correlation coefficients between pairs of pre-
dicted and species-specific suitability and true abundance maps, for the 
central-place forager (A) and the free ranger (B). Correlation intensity is 
depicted by colour shading (a darker shade representing a greater cor-
relation coefficients) and actual values.
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high-quality patches in such dynamic environment (Thiebault, 
Mullers, Pistorius, Meza-Torres, et al. 2014; Thiebault, Mullers, 
Pistorius, and Tremblay 2014). These processes have the poten-
tial to reduce search time considerably. Hence, individuals may 
spend more time within high-quality patches. They might also 
avoid particular patches that are of high environmental quality, 
but where biotic conditions are unfavourable.

Since individual trajectories rely less on the encountered envi-
ronmental conditions, the true drivers of movement choice are 
generally not directly accounted for in spatially-explicit models 
(but see the particular case of step selection functions (SSF); 
Michelot, Blackwell, and Matthiopoulos 2019). This results in 
a blurring of the signal encompassed in the data. Consequently, 
SDMs typically predict the distribution of favourable habitats 
or the potential abundance/usage according to habitat char-
acteristics, rather than the absolute abundance or space-use. 
Hence, such a model will predict the potential abundance or 
usage at a given site based on its characteristics, while the 
actual, realised abundance or usage depends on a multitude 
of other factors (Franklin  2010; Elith and Leathwick  2009; 
Peterson  2011). The less the movement of a species relies on 
environmental suitability, the harder it will be to estimate such 
suitability with a SDM.

In our simulated system, individuals were naive about resource 
locations, and no interaction (neither positive nor negative) oc-
curred between individuals. Yet, we reproduced the separation 
between environmental suitability and site use by introducing 
stochasticity in the movement decision process for both species 
and by also adding a spatial constraint on the possible move-
ment patterns of the CPF species. This approach successfully 
decoupled environmental suitability and space-use, as indicated 
by the low correlation value between the suitability map and the 
abundance distribution of the CPF (Figure 5). For this species, 
the need to return to the colony strongly constrained the dis-
tribution of individuals. By contrast, correlation values for the 
FR were considerably higher, since its distribution was more di-
rectly linked to environmental suitability.

Despite this, both Lagrangian and Eulerian SDMs successfully 
retrieved the orientation and intensity of the species response 
to environmental conditions (Figures 3 and 4). Correlation co-
efficients with true abundance distributions were also high, 
indicating that large-scale movements of species have little 
impact on model reliability. Predictions from Lagrangian and 
Eulerian SDMs were well correlated (0.8–0.98), confirming the 
results from previous studies that used real data. With camera 
traps, Popescu, de Valpine, and Sweitzer  (2014) and Bassing 
et al. (2023) found that estimates agreed well between the two 
model types for most tested species. However, Ferrer-Ferrando 
et al. (2023) reported contrasting results. When they found was 
a poor correlation between the two data types, the divergence 
likely was a consequence of the models selecting different pre-
dictors, which resulted in different predicted distributions. Such 
differences may arise from how the used data actually sampled 
the environment (Braun et  al.  2023). Carroll et  al.  (2019) and 
Phillips et al. (2019) have specifically examined the consistency 
between distributions inferred from movement data and from 
distance sampling surveys. In both cases, the consistency de-
pended on the temporal and demographic alignment of data 

types. The two models provided more diverging estimates, when 
tracking data did not exactly cover the survey period (e.g., one 
data set included the pre-migration period, whereas the other 
did not) or when the survey sampled a wider demographic sub-
set of the population of interest. This latter aspect is of utmost 
importance for species for which tracking data focus on a small 
subset of the population, such as adult breeders or one sex, and 
where different groups of the population show different space-
use patterns (Pettex et al. 2019).

Such mechanisms, however, were of no relevance in our sim-
ulation study, where all individuals behaved similarly, fol-
lowing the same movement principles and drivers. The good 
match between data types we obtained suggested that most of 
the divergence observed between models in real life may arise 
from misalignment of the sampled population subsets rather 
than from statistical inconsistency between the two types of 
approaches. Therefore, when considering the coupling of pre-
dictions from SDMs of heterogeneous nature for conservation 
management purposes, these misalignments should be explic-
itly incorporated to ensure accuracy.

When combining Lagrangian and Eulerian data, one should 
also consider the potential impact of data-specific statistical 
biases. For Lagrangian data, most biases typically arise from 
the unrepresentative nature of the data (low sample size; pop-
ulation subsets) and the construction of availability points 
(Fieberg et al. 2021). When built on Eulerian data, SDM accu-
racy is directly affected by many factors, such as species rare-
ness, observation protocol or detection bias (Virgili et al. 2018; 
Lambert et  al.  2024). Although, in our simulation study, we 
modelled an ideal system, we tested two different survey con-
figurations. This resulted in a different sampling regime in 
space and time (aerial vs. ship survey) and demonstrated that 
both models were capable to reliably retrieve and predict abun-
dance maps, at least for abundant species and without further 
bias. However, real-life Eulerian data are often subject to detec-
tion bias (Buckland et al. 2015; Lambert et al. 2019; Hammond 
et  al.  2021). This might be due to availability issues (when 
individuals are present but cannot be detected by observers 
because they are resting in dens or are diving, e.g.) or to per-
ception issues (when individuals are present and available for 
detection, but circumstances prevent their perception by the 
observer; e.g., sun glare). These statistical limitations can ex-
plicitly be accounted for in state-of-the-art SDMs (Buckland 
et al. 2015; Lambert et al. 2019), but it remains unclear to which 
degree this might alter the capacity of SDMs to identify the true 
spatial pattern of a species.

The uncertainty in the capacity of Lagrangian and Eulerian 
data to provide similar information on the abundance distri-
bution process of species was one of the main impediments to 
their effective combination. However, such combination might 
be important to enable informed management decisions, as-
sess anthropogenic threats, plan conservation strategies or as-
sess ecosystem status. It is also important for the integration of 
these data in abundance-orientated iSDMs. By confirming that 
distributions predicted by both SDM types are similar when 
alignment of data types is ensured, our study paves the way 
for effectively building such iSDMs. Such achievement would 
considerably advance our knowledge of species distribution 
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patterns at broad scales by overcoming the drawbacks associ-
ated with each data type.
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