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Abstract: In the present work, we provide insights into the realm of computational elec-
tromagnetics, with a particular focus on time-domain electromagnetism. Numerical modeling
plays a crucial role in revealing the behavior of light and matter interactions at the nanoscale,
exploiting computational schemes, such as Finite-Differences Time-Domain and, as in our case,
Discontinuous Galerkin methods. Since the choice of the basis elements is fundamental to enhance
particularly interesting features, in the following we will consider nodal basis, thus leading to the
Nodal discontinuous Galerkin. Furthermore, we will introduce Reduced Order Modeling (ROM)
strategies, as a consequence of the pressing need for more efficient and accurate models capable
of handling parameterized electromagnetic problems. Traditional ROM techniques like Proper
Orthogonal Decomposition (POD) and the Greedy algorithm have already been investigated in
the literature, along with their inherent limitations in effectively capturing nonlinear phenomena.
Indeed, subsequently, we will introduce a particular deep learning-based ROM, the Graph Con-
volutional Autoencoder (GCA) method. The GCA method serves as a nonlinear extension of
POD compression, harnessing the power of Graph Neural Networks (GNNs) to retain geometric
structures within unstructured meshes.
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Modélisation non linéaire d’ordre réduit avec un
auto-encodeur Graph Convolutional pour

l’électromagnétique dans le domaine temporel
Résumé : Dans ce rapport, nous donnons un aperçu du domaine de l’électromagnétisme
computationnel, avec un accent particulier sur l’électromagnétisme dans le domaine temporel. La
modélisation numérique joue un rôle crucial dans la révélation du comportement des interactions
entre la lumière et la matière à l’échelle nanométrique, en exploitant des schémas de calcul tels
que les différences finies à domaine temporel et, comme dans notre cas, les méthodes de Galerkin
discontinues. Étant donné que le choix des éléments de base est fondamental pour améliorer les
caractéristiques particulièrement intéressantes, nous aborderons dans ce qui suit les bases nodales,
ce qui conduira à la méthode de Galerkin discontinue nodale. Nous introduirons également des
stratégies de modélisation d’ordre réduit (ROM), car les modèles plus efficaces et plus précis
sont nécessaires pour traiter des problèmes électromagnétiques paramétrés. Les techniques
ROM traditionnelles telles que la Proper Orthogonal Decomposition (POD) et l’algorithme
Greedy ont déjà fait l’objet d’études dans la littérature, ainsi que leurs limites inhérentes pour
capturer efficacement les phénomènes non linéaires. Nous introduirons par la suite une ROM
particulière basée sur le deep learning : la méthode Graph Convolutional Autoencoder (GCA).
La méthode GCA est une extension non linéaire de la compression POD qui exploite la puissance
des Graph Neural Network (GNN) pour conserver les structures géométriques dans les maillages
non structurés.

Mots-clés : électromagnétisme computationnel, modélisation d’ordre réduit, phénomènes non
linéaires, réseaux de neurones, nanophotonique
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1 Introduction

Nanophotonics has a pivotal role in the contemporary technological research field since the
understanding and the application of light-matter interactions at the nanoscale emerge as a
powerful tool to enhance technological innovation and societal advancement. The advancements
in nanophotonics are aimed at further developing solar energy control with nanostructured
solar cells, enhancing digital imaging sensitivity through nanostructured Complementary Metal-
Oxide-Semiconductor (CMOS) image sensors [1], and optimizing light extraction and emission in
optoelectronic devices such as microLED displays. Moreover, it contributes to medical applications,
like nanoparticle-based therapies and virus detection biosensors. One of the crucial elements
in the development of nanophotonics is numerical modeling. Numerical modeling is of great
importance, providing researchers with a computational laboratory wherein they can simulate
and dissect the intricate dynamics governing light-matter interactions, but also for tailoring or
harnessing these interactions guided by specific objectives in the context of inverse design studies.
In all generality, numerical modeling for nanophotonics is based on the system of time-domain or
frequency-domain Maxwell’s equations coupled with differential equations modeling the behavior
of propagation media at optical frequencies. In this context several Discontinuous Galerkin
(DG) type methods have been developed [2, 3]. Complementing numerical modeling, the field of
nanophotonics has witnessed the emergence of reduced order modeling (ROM) techniques, such as
the Greedy algorithm [4] and the proper orthogonal decomposition with Cubic Spline Interpolation
(POD-CSI) method [5] and even nonlinear ROMs, introduced to handle the hyperbolic nature of
the underlying PDE system.

Such a system often involves parameters like geometric features, boundary conditions, and
physical properties. Solving these models accurately is crucial, especially when solutions are
needed for numerous parameter variations. ROMs are particularly valuable in simulations where
full-order models are computationally expensive and time-consuming to solve. The goal of a
ROM is then to approximate the solution manifold, that is the set of all PDE solutions, when
the parameters vary in the parameter space, through a suitable, approximated trial manifold,
thus simplifying computationally complex systems by reducing their dimensionality and selecting
the essential features while maintaining acceptable accuracy. Simultaneously, simulations can
often be solved just for a fixed number of parameters or combinations to build the ROM space.
The evaluated solutions are called snapshots and form the dataset used to identify the system’s
most significant modes or features. Once the meaningful features are extracted, the reduced
space can be built. All these steps - dataset formation, features extraction, and low-dimensional
space construction - are part of the offline phase. This initial stage is meant to build the reduced
model assembling all the parameters independent quantities. Subsequently, the reduced model
achieves a faster and cheaper evaluation of the solution associated with the desired parameters.
This is referred to as the online phase. Furthermore, ROMs can be classified into intrusive
and non-intrusive. In the intrusive ROMs, the dimensionality reduction is combined with the
Galerkin projection of the full-order model onto the lower-dimensional space. Meanwhile, when
the projection procedure turns out to be quite expensive, as in the case of non-linear and non-affine
problems, non-intrusive ROMs are preferred, since they treat the original high-fidelity model as a
black box and construct the reduced-order model using input-output data from simulations. These
methods are developed with machine learning, surrogate modeling, and data-driven approaches,
like POD combined with interpolation methods such as Cubic Spline Interpolation (CSI) or Neural
Networks. These methodologies empower researchers to efficiently explore parameterized time-
domain electromagnetic scattering problems, extracting essential insights into system behavior
while facilitating the optimization of design parameters. However, in the context of nanophotonics
simulations, it is common to have an initial full-order model with a discretization based on an

Inria
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unstructured mesh due to the complexity of the geometry, thus the new approach exploiting graph
neural networks (GNNs) fulfills the request of handling the geometrical information enclosed in
the mesh. In this thesis we will exploit and adapt the Graph convolutional Autoencoder (GCA)
architecture presented in [6]. The novelty that we will introduce consists in considering a dataset
built with the DG method, instead of the classical FEM method. In Section 2, we will introduce
in detail the context of time-domain electromagnetism.

Thus, we present the mathematical modeling of Maxwell equations in Section 2. The com-
putational scheme used to build the dataset for our ROM method is detailed in Section 4, and,
finally, in Section 5, we will discuss the peculiarities of a particular nonlinear ROM technique,
the GCA and its application to our physical context.

2 Time-domain electromagnetism
Maxwell’s equations have been studied extensively for many decades and have led to practical
applications in our everyday lives, including wireless communications, optical fibers, and medical
imaging. These devices rely on specialized materials and geometries to control electromagnetic
wave propagation. With the advancement of lithography techniques in recent decades, it has
become possible to fabricate geometrical structures at the nanometer scale. This has led to the
discovery of numerous new phenomena arising from interactions between light and matter at such
small dimensions. These effects typically manifest when the size of the device is comparable to
or smaller than the wavelength of the incident field. In this section we will briefly discuss the
development of the most common simulation techniques used in time-domain electromagnetism,
focusing in particular on the Discontinuous Galerkin (DG) approach. Finally, we will present the
state-of-the-art of reduced-order modeling for nonlinear problems and our physical context.

2.1 Computational electromagnetics
The large variety of phenomena exhibited by nano-optic systems, coupled with their dependency
on numerous parameters and the complexity of most fabrication processes, prevents physicists
from relying solely on experiments. However, apart from very specific cases involving geometries,
and for which electromagnetic fields can be expressed as closed forms, solutions to Maxwell’s
equations are out of reach of hand calculations. Hence simulations emerge as a valuable appropriate
complementary tool to physical experiments and can be exploited in various ways. Indeed, it can
be used to scan a large number of configurations to pinpoint the most optimal set of parameters.
Various techniques are available to solve nano-optics problems: among these techniques, the
Finite-Difference Time-Domain method stands out as the most widely used due to its simple
implementation and high computational efficiency. However, it has its limitations, as it can
suffer from accuracy and convergence problems. To overcome these issues, the DG methods were
developed. Alternatively, Finite Elements are more commonly employed in frequency-domain
problems, providing an alternative approach to tackle nano-optics challenges. We will use the DG
method because of its effectiveness in handling discontinuities that occur at material interfaces
and in dealing with complex geometries, which is common in many nanophotonic devices.

2.2 The Discontinuous Galerkin method
Discontinuous Galerkin methods were first introduced by Reed and Hill in 1973 [7]. They have
been widely used in computational fluid dynamics, but their application to the time-domain
Maxwell’s equations is a more recent development [8].

RR n° 9565



6 Filippin & Strazzullo & Lanteri & Pichi

DG methods can be seen as an extension of the traditional Finite Element (FE) methods,
where global continuity of the approximation is not mandatory. As in FE methods, the unknowns
are approximated using a finite set of basis functions. However, in DG, the basis functions are
limited to a single discretization cell. This implies that the solution obtained by a DG method
could be discontinuous. Consequently, DG methods can effectively handle material and field
discontinuities, and the weak formulation remains local to each element, eliminating the necessity
for large mass matrix inversions during the solving process. Nonetheless, these methods often
require more memory than standard FE methods. In addition, connections between cells are
re-established using a numerical flux, which is similar to finite volume methods. The choice of
numerical flux significantly affects the mathematical properties of the DG discretization. For
example, the choice of centered fluxes will lead to a non-dissipative method, which is a fundamental
property if we consider wave propagation in a closed cavity. Unlike its centered counterpart, the
jump term of the upwind introduces dissipation in the DG scheme, which can be very helpful in
situations where instabilities might occur, since it helps in damping nonphysical modes. A formal
description of the DG method will be presented in Section 4.

2.3 Reduced-Order Modeling
In the context of electromagnetic wave propagation problems, a variety of physical systems require
considerable computational effort, especially in the case of parameterized PDEs. One example of
encountering such a situation is when studying problems in complex geometries for various input
parameters. These parameters include frequency, directional incidence of waves, geometrical
dimensions, and material properties. As mentioned in the previous sections, the discontinuous
Galerkin time-domain (DGTD) method has several attractive features, such as easy adaptation
to complex geometries and material composition, local approximation order strategy, and easy
parallelization, and it does not require the inversion of the global mass matrix when combined
with a full explicit time scheme.

Despite its high accuracy, the DGTD method suffers from a major drawback: its high
dimensional structure due to duplicating the degrees of freedom, which is related to their local
definition in each element. Thus, often the method turns out to be expensive in terms of both CPU
time and memory demands for computing high-fidelity solutions. Especially, when dealing with
complex problems that require solving over a large number of parameter values, cost reduction is
often necessary. To meet this need, reduced-order modeling (ROM) methods have been developed.
The final objective of ROMs is to construct a system with substantially smaller dimensions
compared to the replaced full-order one, also called the high-fidelity system. The selected decrease
in the computational costs is linked to a threshold of controlled loss of accuracy. ROMs have
become a well-established class of methodologies based on solid mathematical foundations due to
increasing interest and efforts over the last few decades. Among them, the Reduced Basis (RB)
method [9, 10] enables fast and reliable evaluations of the solution for new parameter values. One
usually exploits linear techniques, such as POD or the Greedy algorithm to build the reduced
space, which allows for these efficient computations. POD is an SVD-based method, where the
selection of the basis is based on the extraction of the principal components over a properly
selected set of numerical solutions for certain values in the parameter space, called snapshots,
while the Greedy algorithm, iteratively augments the space with the basis corresponding to the
worst approximation in the parametric space with respect to an error estimator between the high
fidelity solution and the ROM one. These methods enable the separation of computation into two
phases: offline and online, yielding reliable and consistent accuracy with minimal computational
overhead during the online phase. The decoupling of the two stages is fully admissible only
when the dependence on the parameters is affine. Even though projection-based RB methods

Inria
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are effective in terms of accuracy, they do not offer any computational advantage compared to a
direct approach for complex nonlinear problems with a non-affine dependence on the parameters.
This is a result of the cost involved in computing the projection coefficients, which depends on
the dimension of the full-order model. To address this, one can use the empirical interpolation
method (EIM) [11] or its variations to obtain a linear expansion of the differential operator.
However, for general nonlinear problems, this is far from trivial.

To address these weaknesses, one approach is to incorporate deep learning tools into the ROM
architecture [12, 13, 14]. These tools consist of neural networks with numerous layers, designed
to imitate the highly connected and highly parallel structure of the brain. An intriguing aspect
of deep learning algorithms is that they do not need prior knowledge of the data structure. By
introducing deep learning tools, thus utilizing non-intrusive model order reduction techniques,
we can overcome some of the limitations of traditional linear approaches. Nonlinear machine
learning methodologies can be particularly helpful in achieving a low-dimensional description of
the solution varying with respect to time and/or parameters in terms of latent subspace, which
represents the solution manifold. This allows for efficient capture of feature correlations and
optimal capacity for pattern learning.

For problems characterized by coherent structures that evolve, such as transport, wave, or
convection-dominated phenomena, the RB method might produce reduced-order models that
are inefficient. To overcome this limitation, deep learning algorithms have been proposed. In
particular, starting from the proper orthogonal decomposition-neural network (POD-NN) [15],
the coupling of classical POD, or randomized POD (r-POD), with deep learning algorithms,
has been investigated [16, 13]. This approach leverages two key strategies: (i) dimensionality
reduction of snapshots from the full-order model via r-POD, treating it as the first layer of the
convolutional autoencoder. This differs from traditional POD-Galerkin ROMs, where r-POD is
used to generate the linear trial solution manifold; (ii) employing a multi-fidelity pretraining stage
to iteratively initialize network parameters by combining different models. The resulting strategy
embodies an effective fusion of the most advantageous aspects of deep learning algorithms and
POD. Specifically, it leverages the non-intrusive nature of deep learning alongside the simplicity
and robust mathematical foundations of POD.

In [5], a non-intrusive model order reduction for the solution of parameterized electromagnetic
scattering problems is presented and, as in the case of the present work, the snapshot vectors are
generated by a high-order discontinuous Galerkin time-domain solver. The approach introduced
here is based on the extraction of time- and parameter-independent POD basis functions. By
using the SVD method, the principal components of the projection coefficient matrices of full-order
solutions onto the RB subspace are extracted. A cubic spline interpolation-based approach is
proposed to approximate the dominating modes without resorting to Galerkin projection.

A notable enhancement in Deep Learning (DL) based ROMs is the autoencoder architecture,
which offers a nonlinear extension of the POD linear compression method. This architecture
allows for encoding the main information into a latent set of variables while extracting their key
features. Indeed, some architectures presented previously [16, 12], have been improved by the
introduction of a Convolutional Neural Network (CNN) [13, 17]. However, all the cited methods,
and in particular classical autoencoders based on CNNs, are not suited for problems based on
unstructured meshes, since they rely on a Cartesian representation of the data and do not embody
geometrical features in the learning process. Thus, geometric deep learning emerges as a unifying
theory for analyzing data by leveraging information about its geometry [18, 19].

A particularly promising approach, exhibiting greater capabilities in handling advection-
dominated phenomena compared to classical POD, has been presented in [6]. This method,
inspired by [12, 13], employs a non-intrusive and data-driven nonlinear reduction technique based
on GNNs to encode the reduced manifold and facilitate rapid evaluation of parameterized PDEs
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[20, 21, 22]. A key feature of GNNs, achieved by assigning geometrical information to the edges of
the graph, is the possibility of overcoming the limitation of the Cartesian representation of CNNs.
Encouraged by these results, we aim to explore the extension of this method to the context of
discontinuous Galerkin discretization applied to time-domain Maxwell’s equations in the following
sections.

3 Mathematical modelling
In this section, we introduce the mathematical models of simple test cases, that will be used in
the present work to generate numerical results in Section 5. First, we focus on a brief introduction
to the classical formulation of Maxwell’s equations and constitutive relations, then we show two
formulations for two simple 2D cases, characterized by the absence of an internal source or an
incident wave. The particularity of these tests is the possibility of having an analytical solution,
allowing us to evaluate the error with respect to the numerical solution.

3.1 Maxwell’s equations
The electric charge is the fundamental property of matter that causes electromagnetic interaction.
A particle of charge q and speed v is subject to the Lorentz force:

F = q (E + v × B) (1)

where E and B are respectively the electric field and the magnetic induction vectors, one shall
see that these are related, through constitutive relations, to the electric displacement D and the
magnetic field H. We also introduce the density of free electric charges ρ, and the free electric
current density J. All these quantities depend on position x = (x, y, z)T and time t, we omit the
dependency for the sake of notation. We can now write Maxwell’s equations in SI units:



▽ × E = −∂B
∂t

,

▽ × H = ∂D
∂t

+ J,

▽ · D = ρ,

▽ · B = 0.

(2)

along with the continuity equation:

∂ρ

∂t
+ ▽ · J = 0. (3)

The two curl equations are considered the "fundamental" equations, while the two divergence
equations are known as the "auxiliary" equations. It is apparent that the last two equations of the
system (2) do not evolve in the sense that they do not contain any time derivative. Indeed, they
only impose constraints on the solution of the first two equations of (2). Taking the divergence of
the two curl equations, and combining with (3), one obtains:

∂

∂t
(▽ · D − ρ) = 0, (4)

∂

∂t
(▽ · B) = 0. (5)

Inria
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Therefore, if the divergence conditions are satisfied for the initial state, they should also hold
for any future state. Hence, we can assume that the divergence conditions are satisfied for all
considered initial states.

3.2 Constitutive relations
Upon examining the system constituted by the curl equations of (2), we can observe that it
contains 12 scalar unknowns but only 6 scalar equations. As a result, the system is not closed and
is therefore unsuitable for solving. In order to close the system, we need to establish relationships
between (E, B) and (D, H), through the introduction of the permittivity ε̄ and permeability µ̄
tensors. Permittivity is a measurement of a medium’s resistance to producing an electric field,
meanwhile, permeability is the capacity by which a material allows magnetic lines to pass through
it. In the most general case, the constitutive relations are:

D = ε̄ E, (6)
B = µ̄ H, (7)

where ε̄ and µ̄ are tensors depending on x, t, E and B. To simplify the notation, a few assumptions
can be made:

• the considered materials are linear, thus ε̄ and µ̄ are independent of E and B;

• materials are isotropic, which means ε̄ ≡ ε I3 and µ̄ ≡ µ I3;

• materials are homogeneous, i.e. ε and µ are constant in a give material;

• ε and µ are independent of time.

Hence, in such a material with constant permittivity ε and permeability µ, (6) and (7) become:

D = ε E,

B = µ H.

The vacuum permittivity and permeability ε0 and µ0 can be introduced, as well as the relative
permittivity and permeability, εr and µr, of the considered material. The previous equations
read as:

D = ε0εr E,

B = µ0µr H.

Then is straightforward to obtain Maxwell’s equations for linear, homogeneous, isotropic, nondis-
persive materials: {

▽ × E = −µ0µr
∂H
∂t ,

▽ × H = ε0εr
∂E
∂t + J.

(8)

This system can now be solved with the appropriate initial and boundary conditions.

RR n° 9565
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Figure 1: Metallic air-filled cavity Ω = [−1, 1]2.

3.3 Analytical solutions

Analytical solutions to electromagnetic propagation problems play a crucial role in validating
numerical implementations of electromagnetic solvers. In this section, we present solutions to
two elementary propagation problems. These solutions will serve as reference benchmarks in the
subsequent sections.

Vacuum-filled perfect electric conductor cavity

As a first example, let us consider the solution of the two-dimensional vacuum Maxwell’s equations
in what is known as transverse magnetic form (TM). These are given as

µ̄
∂H̃x

∂t̃
= −∂Ẽz

∂ỹ
,

µ̄
∂H̃y

∂t̃
= −∂Ẽz

∂x̃
, (9)

ε̄
∂Ẽz

∂t̃
= ∂H̃y

∂x̃
− ∂H̃x

∂ỹ
.

Here, we have tow magnetic fields,
(
H̃x, H̃y

)
, and the electric field, Ẽz, all functions of

(
x̃, ỹ, t̃

)
.

All fields and units are dimensional. Furthermore, we have the magnetic permeability, µ̄, and
the electric permittivity, ε̄, which reflect the material coefficients. In the following, we wish to
model a metallic air-filled cavity, Ω = [−1, 1]2, with perfect electrical conductor (PEC) boundary
conditions, as depicted in Figure 1. We can simplify the equations in this case, since µ̄ = µ0 and
ε̄ = ε0 are the constant vacuum values. If we introduced the vacuum speed of light defined as

c0 = 1
√

ε0µ0
≃ 3 × 108m/s,

Inria
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we can consider the normalized system of equations in the form

∂Hx

∂t
= −∂Ez

∂y
,

∂Hy

∂t
= −∂Ez

∂x
,

∂Ez

∂t
= ∂Hy

∂x
− ∂Hx

∂y
,

where the unit-free variables are obtained as

t = c0t̃

L
, x = x̃

L
, H = H̃

H0
, Ez = (Z0)−1 Ẽz

H0
.

Here, H0 is a unit magnetic field strength, Z0 =
√

µ0/ε0 ≃ 120π Ohms is the vacuum impedance,
and L is some reference length, typically the wavelength of the phenomena of interest. For the
boundary conditions, we assume that the walls of the cavity are perfectly electrically conducting
such that the tangential component of the electric field, Ez, vanishes at the wall, i.e., Ez = 0 on
the boundary of the domain. The exact cavity solution is given as

Hx(x, y, t) = −πn

ω
sin(mπx) cos(nπy) sin(ωt),

Hy(x, y, t) = πm

ω
cos(mπx) sin(nπy) sin(ωt), (10)

Ez(x, y, t) = sin(mπx) sin(nπy) cos(ωt),

where the resonance frequencies, ω, are given as

ω = π
√

m2 + n2, (m, n) ≥ 0.

Perfect electric conductor cavity with two material interfaces

In [23], a lossless dielectric with a relative permittivity ε1 is enclosed by air in the x direc-
tion. The media are nonmagnetic and homogeneous along the y direction, as shown in Figure
2. The computational domain Ω = [−1, 1]2 is bounded by PEC walls. The permittivity is given
as ε = ε0 if 1/2 ≤ |x| ≤ 1 and |y| ≤ 1, and ε = ε1 if |x| ≤ 1/2 and |y| ≤ 1, where ε0 = 1 and
ε1 = 2.25. The exact time-domain solution is [24]

Ez =


sin
(

ω2
2

)
sin (ω1(x+ 1)) sin (ωyy) cos (ωt) , −1 ≤ x < −1/2, |y| ≤ 1,

− sin
(

ω1
2

)
sin (ω2x) sin (ωyy) cos (ωt) , −1/2 ≤ x ≤ 1/2, |y| ≤ 1,

sin
(

ω2
2

)
sin (ω1(x− 1)) sin (ωyy) cos (ωt) , 1/2 ≤ x ≤ 1, |y| ≤ 1,

Hx =


− ωy

ω
sin
(

ω2
2

)
sin (ω1(x+ 1)) cos (ωyy) sin (ωt) , −1 ≤ x < −1/2, |y| ≤ 1,

ωy

ω
sin
(

ω1
2

)
sin (ω2x) cos (ωyy) sin (ωt) , −1/2 ≤ x ≤ 1/2, |y| ≤ 1,

− ωy

ω
sin
(

ω2
2

)
sin (ω1(x− 1)) cos (ωyy) sin (ωt) , 1/2 ≤ x ≤ 1, |y| ≤ 1,
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Figure 2: Metallic dielectric cavity Ω = [−1, 1]2.

Hy =


ωy

ω
sin
(

ω2
2

)
cos (ω1(x+ 1)) sin (ωyy) sin (ωt) , −1 ≤ x < −1/2, |y| ≤ 1,

− ωy

ω
sin
(

ω1
2

)
cos (ω2x) sin (ωyy) sin (ωt) , −1/2 ≤ x ≤ 1/2, |y| ≤ 1,

ωy

ω
sin
(

ω2
2

)
cos (ω1(x− 1)) sin (ωyy) sin (ωt) , 1/2 ≤ x ≤ 1, |y| ≤ 1,

where ω2
1 + ω2

y = ε0ω
2 and ω2

2 + ω2
y = ε1ω

2. The value of ωy is determined according to the relation:

√
ε1ω2 − ω2

y tan

(√
ε0ω2 − ω2

y

2

)
=
√
ε0ω2 − ω2

y tan

(
−
√
ε1ω2 − ω2

y

2

)
. (11)

The aforementioned relations are obtained thanks to the solution of the wave equation with the separation
of variable method. The latter is a resonance condition emerging when continuity conditions are considered
for the tangential electric and magnetic fields at the dielectric interfaces. As in [24] we choose ωy = 2π
to satisfy the PEC conditions on y = ±1 which leads to ω = 9.07716175885174. Across the dielectric
interface, the Ez and Hx components, their derivatives, and their first y derivative are continuous while
their first x derivative is discontinuous. To generate the datasets exploited in Section 5 we will sample
different values of ε1 and, thus, solve the relation 11 with the dichotomy method discussed in Appendix
A.

4 Numerical discretization
In this section, we will be discussing the discretization method used in this study, which is the Discontinuous
Galerkin method (DG). DG combines the finite element method (FEM) and finite volume method (FVM),
using a space of basis and test functions similar to the finite element method. However, DG satisfies the
considered equation in a way that is closer to the FVM, resulting in several advantageous properties.

4.1 Discontinuous Galerkin method
As presented in [25], time-dependant wave-dominated problems, e.g. time-domain Maxwell’s equations,
emerge as the main candidates for problems where the DG approach is advantageous. We remark that,
even though the structure of the DG method is very similar to that of the FEM, there are several
fundamental differences.

In particular, the DG method features a local mass matrix rather than a global one, allowing for less
expensive inversion and resulting in an explicit semidiscrete scheme. Furthermore, by carefully designing
the numerical flux to capture the underlying dynamics, one can achieve greater flexibility compared to
classical FEM in ensuring stability for wave-dominated problems. Unlike the FVM, the DG method
overcomes the main limitation of obtaining high-order accuracy on general grids by enabling this through
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Nonlinear reduced-order modeling for time-domain electromagnetics 13

the local element-based basis. All this is achieved while retaining advantages such as local conservation
and flexibility in choosing the numerical flux. On the other hand, with the DG method, one has to
face the challenge of an increase in the total degrees of freedom, which is a direct consequence of the
decoupling of the elements.

Weak formulation

Let us consider a domain Ω ⊂ R2, and let n be the unitary outward normal to its boundary ∂Ω. We intro-
duce a discretization of Ω, Ωh, relying on a quasi-uniform triangulation Th verifying Th =

⋃N

i=1 Ti, where
N is the number of mesh elements. The internal faces of the discretization are denoted as aik = Ti ∩ Tk

if Ti and Tk are adjacent cells, and nik are defined as the unit normal vectors to the face aik, oriented
from Ti to Tk. By taking the L2 scalar product of each component with a vector test function ψ, the
system (8), in the adimensionalised form, can be recast into the following variational problem:
Find (E,H) ∈ H0(curl,Ωh) ×H(curl,Ωh) such that ∀ψ ∈ H(curl,Ωh),∫

Ti

µr
∂H
∂t

· ψ dΩ +
∫

Ti

▽ × E · ψ dΩ = 0,∫
Ti

εr
∂E
∂t

· ψ dΩ −
∫

Ti

▽ × H · ψ dΩ = −
∫

Ti

J · ψ dΩ.

When we formally rewrite the previously mentioned equalities using classical vector calculus and Green’s
formulas, we get:∫

Ti

µr
∂H
∂t

· ψ dΩ +
∫

Ti

E · ▽ × ψ dΩ =
∫

∂Ti

(ψ × E) · ni dΓ,∫
Ti

εr
∂E
∂t

· ψ dΩ −
∫

Ti

H · ▽ × ψ dΩ = −
∫

Ti

J · ψ dΩ −
∫

∂Ti

(ψ × H) · ni dΓ.

Considering the properties of the mixed product, the latter becomes:

(ψ × E) · ni = (E × ni) · ψ.

Hence, ∀Ti, ∀ψ ∈ H1(Ωh),∫
Ti

µr
∂H
∂t

· ψ dΩ +
∫

Ti

E · ▽ × ψ dΩ =
∫

∂Ti

(E × ni) · ψ dΓ,∫
Ti

εr
∂E
∂t

· ψ dΩ −
∫

Ti

H · ▽ × ψ dΩ = −
∫

Ti

J · ψ dΩ −
∫

∂Ti

(H × ni) · ψ dΓ.

Space discretization

First, we define the following approximation space Vh:

Vh =
{
v ∈ (L2(Ω))2, v|Ti ∈ (Pp(Ti))2, ∀Ti ∈ Th

}
where Pp(Ti) is the space of polynomials of maximum degree p on Ti. The semi-discrete fields sought
in space Vh, are denoted (Hh,Eh,Jh), and on each cell we define the restrictions (Hi,Ei,Ji). A set of
scalar basis functions (ϕik)1≤k≤di is defined for each Ti, where di is the number of degrees of freedom per
dimension. We notice that, in a 2D system, Ei is actually a vector that has two components:

Ei = [Ex
i , E

y
i ]T ,

each of which is locally expanded on the chosen set of basis functions:

Ev
i =

di∑
j=1

Ev
ij(t)ϕij(x) =

di∑
j=1

Êv
ij(xij , t)ℓij(x), v ∈ {x, y}. (12)
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That is the first step to get a matrix-vector form of the system. In our case, instead of using a local
polynomial basis, we will express the polynomial through the associated interpolated Lagrange polynomial
ℓij(x), as in [25]. The connection between the modal and nodal representations is achieved through a gen-
eralized Vandermnonde matrix, as VE = Ê. The same procedure can be done for the H evolution equation.

Numerical fluxes

Given that the test functions are now allowed to be discontinuous at the interfaces between cells,
it is important to notice that the surface integrals, such as:∫

ail

(Eh × nil) · ψ dΓ,

and ∫
ail

(Hh × nil) · ψ dΓ

are not well-defined. The introduction of a numerical flux facilitates the restoration of a proper definition
of surface integrals and is crucial for connecting field values between neighboring cells. It is important to
note, however, that there is not a singular choice for fluxes. In the context of a set of linear equations,
various selections can yield stable and convergent discrete schemes. Consequently, the surface integrals
mentioned above are replaced with the following expressions:∫

ail

(E∗ × nil) · ψ dΓ

and ∫
ail

(H∗ × nil) · ψ dΓ.

As demonstrated in [2], the flux can be interpreted as the solution of a Riemann problem at cell interfaces.
In the subsequent discussion, we will utilize the centered flux, which is expressed as:

E∗ = Ei + El

2 , H∗ = Hi + Hl

2 . (13)

This flux is non-dissipative, and coupled with a non-dissipative time-integration scheme, will lead to a non-
dissipative Discontinuous Galerkin time domain scheme. This property of the scheme is of fundamental
importance since our test cases are closed cavities and we want to ensure mass conservation.
All this choices, as detailed in [2], lead to the following semidiscrete scheme :

M̄µr
i

∂H̄i

∂t
= −K̄i × Ēi +

∑
l∈Vi

S̄il(Ē∗ × nil),

M̄εr
i

∂Ēi

∂t
= −K̄i × H̄i +

∑
l∈Vi

S̄il(H̄∗ × nil) − M̄iJ̄i,

where M̄, K̄ and S̄, are respectively the extended mass matrix, the stiffness matrix, and the flux matrix,
that are defined as presented in the following:

M̄u
i =

[ Mu
i 0di×di 0di×di

0di×di Mu
i 0di×di

0di×di 0di×di Mu
i

]
, S̄il =

[ Sil 0di×di 0di×di

0di×di Sil 0di×di

0di×di 0di×di Sil

]
and K̄i =

[Kx
i

Ky
i

Kz
i

]
,
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while the matrices used to construct the blocks of the extended matrices are defined as follows:

(Mεr
i )jk =

∫
Ti

εrϕijϕjk dΩ,

(Kv
i )jk =

∫
Ti

ϕij
∂ϕik

∂v
dΩ for v ∈ {x, y, z},

(Sil)jk =
∫

ail

ϕijϕjk dΓ

with (j, k) ∈ [1, di]2.

4.2 Time advancing scheme
So far, we have considered the spatial dimension and a discrete representation of the latter. This reflects
a method-of-lines approach where space and time are discretized. Once the semi-discrete system in space
is obtained, one can use some standard techniques to solve these ordinary differential equations.

As in [25], a low-storage explicit Runge-Kutta (LSERK) method is exploited for discretization in
time. LSERK is an alternative to the explicit Runge-Kutta, that allows to reduce the memory usage,
requiring only one additional storage level. On the other hand, this comes at the price of an additional
function evaluation, as the low-storage version has more stages. At first, it would seem that the additional
stage makes the low-storage approach less interesting due to added cost, however, this is offset by
allowing a larger stable timestep, ∆t. One of the most widely used LSERK schemes in computational
electromagnetics is the 5-stage fourth-order algorithm proposed by Kennedy and Carpenter [26]. We
consider a generalized semidiscrete problem

duh

dt = Lh(uh, t),

where uh is the vector of the unknowns, the nth step of the algorithm has the following form:

p(0) = un
h,

i ∈ [1, ..., 5] :
{

k(i) = aik(i−1) + ∆tLh(p(i−1), tn + ci∆t),
p(i) = p(i−1) + bik(i),

un+1
h = p(5),

where ai , bi and ci are constant coefficients.

4.3 Mesh convergence
To generate the snapshots dataset, for the test cases presented in Section 3, an adaptation of the MATLAB
scripts in the text on Nodal Discontinuous Galerkin methods by Jan S. Hestaven and Tim Wartburton
has been used [25, 27]. The meshes have been generated with the MATLAB package PDE modeler, and
their features are reported in Table 1. In Figure 3 we show the convergence of the electric field, Ez,
under both element and order refinement. We show the results computed using central flux. Similar
convergence behavior can be observed for the other field components. When comparing the results, in
Table 2, we see that there are indications of an even-odd pattern with the accuracy being O(hN+1) for N
even and O(hN ) for N odd; such behavior is often observed when central fluxes are used.

5 Reduced order modelling
Parameterized partial differential equation models are frequently encountered in engineering and applied
sciences, where the parameters include geometric features, boundary conditions, and physical properties.
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Nodes Elements hmin

Mesh 1 177 312 0.2
Mesh 2 665 1248 0.09
Mesh 3 2577 4992 0.045

Table 1: Features of the grids.

N + 1 h = 0.2 h = 0.09 h = 0.045 Estimated order

2 1.46e-01 3.66e-02 9.23e-3 1.85
3 8.91e-03 1.13e-03 1.42e-04 2.77
4 4.40e-04 3.24e-05 2.89e-06 3.37

Table 2: h-Convergence results for the PEC cavity problem with a centered fluxes DG discretiza-
tion in the time interval [0, 1].

These parameterized models implicitly establish connections between input parameters and outputs of
interest.

While developing accurate computational tools to solve such problems is of broad interest, our focus
lies on scenarios where solutions are sought for a multitude of parameters. Typical applications of
relevance include optimization, control, design, uncertainty quantification, real-time query, and others. In
such cases it is not only the accuracy of the model that matters, but also the computational efficiency of
the model.

With applications characterized by parameterized problems that require repeated evaluation, it is
clear that we need to seek alternatives to simply solve the full-order problem many times. This is exactly
the place where reduced models need to be developed.

The reduced order modeling is based on a two-stage procedure, consisting of an offline and online stage.
In the potentially very costly offline stage, one empirically explores the solution manifold to construct an
approximation of the latter, exploiting a finite, and as small as possible, number of high-fidelity solutions.
The online stage consists of the fast evaluation of the ROM solution, with a varying set of parameters
µ ∈ P. In this stage, one can explore the parameter space P at a substantially reduced cost, ideally at a
cost that is independent of the dimension of the high-fidelity model.

As presented in Section 2, the intrusive nature of projection-based model order reduction can
compromise the efficiency of traditional reduced order models when dealing with nonlinear and non-affine
problems. Non-intrusive and data-driven ROMs offer an alternative approach to these techniques by
reducing computational complexity without needing to project the governing equation. The first step in
constructing such ROMs involves a dataset built up from the previously introduced snapshots. Various
linear and non-linear methodologies have been developed and studied for this purpose. Moreover, machine
learning approaches are beneficial in non-intrusive methods, such as Neural Networks, CNNs, and
GNNs. In particular, the GCA showed good performances, with respect to classical linear and intrusive
approaches, when dealing with advection dominated phenomena, which is the case in our physical context.

In this section, we will present the main features of the GCA architecture [6], and discuss its application
to the context of Maxwell’s equations with a DGTD scheme.

5.1 Reduced Order Models
Full-order models are designed to solve PDEs by utilizing high-fidelity systems of equations. These
systems are characterized by a large number of degrees of freedom, denoted by Nh, which makes the
numerical solution process computationally expensive. This computational cost becomes particularly
significant in the context of parameterized PDEs, where the goal is to obtain real-time evaluations for
a variety of different physical or geometrical configurations. Each configuration is linked to a unique
parameter vector µ, resulting in a parameter-dependent high-fidelity solution uh(µ).
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Figure 3: h-Convergence results for the PEC cavity problem with a centered fluxes DG
discretization in the time interval [0, 1] (left) and evolution of the L2 error in time (right).

In practical applications, where real-time solution recovery is required, solving such large-scale systems
repeatedly for different parameter values becomes infeasible due to the high computational cost. To
overcome this challenge, ROMs are employed. ROMs aim to create and solve a much less expensive
reduced system, which is derived from the original full-order model but has a significantly lower number of
degrees of freedom, denoted as N , where N ≪ Nh. This reduced system yields the reduced order solution
uN (µ), which approximates the behavior of the full system but at a fraction of the computational cost.

Once the reduced order solution uN (µ) is obtained, it can be used to estimate the high-fidelity solution
uh(µ) through a transformation, typically expressed as uh(µ) ≈ ϕ(uN (µ)). The function ϕ represents
a mapping that can be either linear or nonlinear, depending on the ROM technique being used. This
mapping ensures that the reduced model captures the essential dynamics of the full-order model, thereby
providing an accurate approximation of the high-fidelity solution.

ROMs can be developed using either intrusive or non-intrusive approaches. Intrusive methods require
direct access to and manipulation of the full-order model’s governing equations. This means that detailed
knowledge of the high-fidelity system is necessary to construct the reduced system and to compute the
reduced order solution uN (µ). In contrast, non-intrusive methods do not require such access; instead,
they rely on external data, such as snapshots of high-fidelity solutions for various parameters, to build
the ROM. These non-intrusive methods often employ machine learning or statistical techniques to learn
the relationship between the parameters and the solution, making them more flexible but sometimes less
accurate than intrusive methods.

Overall, ROMs [28, 29] provide a powerful mean of reducing computational costs in the solution of
parameterized PDEs, enabling real-time simulation and optimization in complex systems. By carefully
selecting the appropriate ROM technique and mapping function ϕ, it is possible to achieve a balance
between accuracy and efficiency, making ROMs an essential tool in many engineering and scientific
applications.

5.1.1 Intrusive Model Order Reduction
Intrusive model order reduction (MOR) methods require knowledge of the high-fidelity system they aim
to simplify. These methods directly interact with the system’s governing equations, making them highly
dependent on the precise structure and properties of the original model. To illustrate the application of
these methods, let us focus on a linear high-fidelity system characterized by the following equation:

Ah(µ)uh(µ) = fh(µ).
In this equation, µ ∈ RNµ represents the vector of parameters that influence the system, such as

physical properties or boundary conditions. The matrix Ah ∈ RNh×Nh is the stiffness matrix, which
encapsulates the system’s structural properties and interactions. The vector uh ∈ RNh is the high-fidelity
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solution, which provides a detailed and accurate representation of the system’s response to the forcing
term fh ∈ RNh , the latter representing external influences or sources acting on the system.

To make the problem more tractable, linear MOR techniques seek to approximate the high-fidelity
solution ũh using a reduced set of basis functions. These basis functions are chosen to efficiently capture
the dominant features of the solution across the parameter space. Specifically, ũh is expressed as a linear
expansion over these basis functions {ψi}N

i=1, where each ψi ∈ RNh represents a basis vector that spans
the reduced subspace. By introducing the matrix V = [ψ1| . . . |ψN ], which contains these basis vectors as
columns, the approximation can be written as uh ≈ VuN , where uN are the coefficients in the reduced
space.

POD is a prevalent technique for constructing the basis {ψi}. POD works by analyzing a series of
high-fidelity solutions, known as snapshots, which are computed for different parameter values. The
objective of POD is to extract the principal components or modes that capture the most significant
variations in the system’s behavior. These modes form an optimal rank-N subspace that approximates
the snapshot data in the least squares sense. This process ensures that the reduced model retains the
most critical dynamics of the original high-fidelity model, while significantly reducing computational
complexity.

Once the basis functions have been selected through POD or another method, the next step is to
determine the reduced coefficients uN , which represent the system’s behavior within the reduced subspace.
Intrusive projection-based MOR approaches leverage the structure of the high-fidelity system by imposing
a condition that the residual, i.e., the difference between the actual and approximated solutions when
projected onto the reduced basis V, should be zero. This condition leads to the following system of
equations that must be solved for uN :

VT (fh − AhVuN ) = 0.

Solving this system yields the coefficients uN , which can then be used to reconstruct an approximate
solution to the original high-fidelity problem. However, despite their effectiveness in certain scenarios,
intrusive methods can be inefficient or challenging to apply in cases where the system exhibits non-affine
parameter dependencies, meaning that the parameters do not influence the system in a straightforward
linear manner. Additionally, these methods often struggle with complex or nonlinear problems, where the
underlying assumptions of linearity and superposition may no longer hold. Consequently, while intrusive
methods are powerful tools in MOR, their application is often limited to scenarios where the system’s
behavior is well-understood and sufficiently linear to permit accurate approximation.

5.1.2 Non-Intrusive Model Order Reduction

Non-intrusive methods offer a way to reduce computational complexity compared to projection-based
approaches. Traditional methods, such as the RB [9] approach, rely on projecting the governing equations
onto a reduced basis, which requires solving a potentially nonlinear reduced system to obtain the
reduced coefficient vector uN (µ), whereas non-intrusive methods use different approaches to avoid this
step. Examples of such methods include POD-NN [15] and Proper Orthogonal Decomposition with
Interpolation (PODI) [30, 31]. POD-NN projects snapshots onto a reduced POD basis and then uses
a neural network to predict the system’s behavior, while PODI interpolates the reduced coefficients,
enabling efficient recovery of approximate solutions. Another example of POD with a particular kind of
interpolation is POD-CSI [5]. These approaches approximate high-fidelity coefficients relying on a linear
scheme. Despite their efficiency, linear approaches struggle with complex systems where phenomena
exhibit slow decay in the Kolmogorov n-width, such as in advection-dominated problems, where a large
number of modes is required for accurate approximation [32]. To overcome these limitations, nonlinear
reduction techniques have been developed, introducing nonlinear mappings to improve approximation
quality.

To address this limitation, nonlinear approaches involving a nonlinear mapping Ψ, such that uh ≈
Ψ(uN ), have been explored. For example, methods based on kernel principal component analysis
[33], shifted POD [34], and nonlinear autoencoders aim to map reduced solutions through nonlinear
transformations, thereby capturing the underlying dynamics more effectively. Autoencoders, in particular,
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Figure 4: Offline phase for the GCA-ROM architecture [6].

have gained attention for their ability to generalize the POD technique, offering superior accuracy in
problems with complex, nonlinear behavior.

For instance, in [12], the authors propose a nonlinear manifold least-squares Petrov-Galerkin method
that utilizes convolutional autoencoders, while [17] introduces a hyper-reduced extension that leverages
physical insights. The DL-ROM approach developed in [13] enhances the training process through a
supervised task, allowing a feedforward neural network to effectively learn the bottleneck. Additionally, a
POD preprocessing step is considered in [16] to streamline the network’s size. Notably, the reconstruction
of hyper-reduction operators is explored in [35], and dynamic integration informed by thermodynamic
principles utilizes autoencoders to establish mappings to low-dimensional manifolds, as discussed in [36, 37].
Other non-intrusive methodologies, such as Gaussian Process Regression [38] and Operator Inference [39],
have also gained traction in recent literature. Furthermore, Neural Operators have demonstrated success in
approximating mappings between function spaces, moving beyond direct function approximations. These
approaches commonly exploit both discretization-invariance and universal approximation properties [40,
41, 42]. In light of these developments, graph convolutional autoencoders emerge as a promising avenue for
furthering nonlinear model order reduction techniques, integrating machine learning with classical PDE
frameworks, particularly for solutions defined on unstructured grids. These approaches allow for encoding
geometric features and handling more sophisticated physical systems, opening up new possibilities for the
development of nonlinear MOR techniques. By combining the geometric flexibility of graph-based models
with the efficiency of autoencoders, these methods represent a promising direction for improving both
accuracy and scalability in MOR, making them well-suited for high-dimensional, parameterized problems
in fields such as fluid dynamics, structural mechanics, and multiphysics simulations.

5.2 Graph Convolutional Autoencoder
In their work [6], the authors introduce a framework for non-linear model order reduction using a GCA.
This autoencoder architecture extends the POD compression method in a non-linear way. On the other
hand, GNNs provide a natural framework for analyzing PDE solutions on unstructured meshes.

The autoencoder is constituted by nonlinear encoding and decoding structures connected through a
bottleneck. This bottleneck layer identifies the latent dimension and plays the role of the reduced space,
or the approximation of the solution manifold. This setup exemplifies an unsupervised learning task. To
construct the autoencoder architecture, both Fully Connected Neural Networks (FCNNs) [43] and CNNs
have been investigated. CNNs have been studied for their spatial-related properties [44, 45, 12, 13], in
order to incorporate geometrical features in the learning process, even though their natural context of
application is a structured dataset and the aim in this case is to obtain a more versatile architecture,
able to deal with unstructured meshes. In this setting, GNNs are employed to preserve the underlying
geometric structure of the data. CNN-based autoencoder architectures serve as the primary inspiration
for the GCA. These approaches, as mentioned earlier, are particularly effective when dealing with
structured meshes, which can be seen as images with a fixed number of neighboring pixels. Consequently,
a similar architecture has been explored to extend their applicability in a geometrically consistent manner
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Figure 5: Online phase for the GCA-ROM architecture [6].

to unstructured meshes defined over complex domains, where a Cartesian representation is no longer
feasible. Machine learning approaches mirror the standard ROM setting, featuring an offline phase for
dataset formation and reduced model construction via neural network training, and an online phase for
real-time evaluation of the field of interest.

Graph Neural Networks

The GNN model [46] was first presented as an extension of the already existing neural network method
for processing the data represented in graph domains. The idea behind GNNs is to encode the underlying
graph structured data using the topological relationships among the nodes of the graph, to incorporate
graph-structured information in the data-processing step. GNNs are based on an information diffusion
mechanism. A graph is processed by a set of units, each one corresponding to a node of the graph, which
are linked according to the graph connectivity. The units update their states and exchange information
until they reach a stable equilibrium.

Let’s consider a mesh T (V, E ,F), which can be seen as a simple, undirected, and connected graph
G(V, E). The nodes have associated features u, that represent the evaluation of a set of state variables at
the vertices of the mesh. Starting from the defined graph structure, a graph neural network is obtained
by defining a set of optimizable operations that act on all attributes of the graph. The basic operations
of many GNNs are (i) message-passing framework, (ii) convolutional layers, and (iii) down-sampling and
up-sampling procedures.

We consider the graph dataset Ξ =
{

uN (µi), ΩN (µi)Ns

i=1

}
formed by Ns solutions uN (µi) of a

parameterized PDE defined over unstructured meshes ΩN (µi). The architecture for the offline training is
composed of an autoencoder and a multi-layer perceptron (MLP). The former seeks to approximate the
identity map while encoding the information into low-dimensional space expressed by the bottleneck or
latent space.

Message passing framework

The main idea is to propagate information to the local neighborhood of each node u, which is de-
noted by N(u) and defines the computation graph with degree |N(u)|. Such messages are exchanged
between nodes at different k-th hops computing the hidden embedding h(k)

u of the node u. At a node
u ∈ V, one assemble the messages to be sent through the operation m(k) as

m(k)
v = m(k)(h(k−1)

v ), from each node v ∈ N(u)

aggregates them with a(k) in
m(k)

N(u) = a(k)({m(k)
v , ∀v ∈ N(u)}),
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and finally updates the hidden embedding through the function u(k)

h(k)
u = u(k)(m(k)

N(u)).

Initialization is defined by h(0)
vj = uj . Since the previous information must be preserved with each

update of the embeddings, we also include ghost self-edges, meaning that we consider u as part of its
neighborhood N (u).

Convolutional layers in the non-Euclidean setting

The graph convolutional network (GCN) learns to combine the hidden embeddings by defining convolu-
tional operations able to capture the relationships between the nodes and optimizing a given loss function.
MoNet [47] is used, which can be interpreted as a Gaussian Mixture Model, and thus a general class for
convolutions in non-Euclidean domains. MoNet builds a set of pseudo-coordinates e used to define the
weights of an optimizable Gaussian kernel with Q filters, through the iteration procedure

hu = 1
|N(u)|

∑
v∈N(u)

1
Q

Q∑
q=1

ωq(eu) ⊙ Wqhv,

where the weighting function ωq is defined in terms of a trainable mean vector µq and a diagonal covariance
matrix Σq as

ωq(eu) = exp
(

−1
2(eu − µq)T Σ−1

q (eu − µq)
)
.

In practice, MoNet considers pseudo-coordinates as the edge attributes given by the distance between
two connected nodes, introducing a geometric bias in the learning process.

Down-sampling and up-sampling procedures

Pooling is the most widely used technique to down-sample the size of the input by aggregating information
from multiple nodes and edges. This results in a more manageable graph, improving generalization and
performance, but there is no natural hierarchy in node importance. Un-pooling is still an open research
challenge. PointNet++ [48] proposes a k-NN interpolation of the points to up-sample by considering the
position and the features of the nodes in the down-sampled coarser configuration. In particular, given a
node to position xi, we define its feature vector ui as the weighted interpolation

ui =
∑N(i)

j=1 ξ(xjuj)∑N(i)
j=1 ξ(xj)

,

ξ(xj) = 1
d(xi,xj)2 .

In our test cases, the pooling step will not be considered, as the information embedded in each node will
be not just related to the value of a single state variable.

GCA architecture

We can now present the graph convolutional autoencoder for model order reduction applications. As
detailed before, this approach, like standard ROMs, relies on two stages, the offline and the online
stage. The architecture for offline learning (Figure 4) is composed of an autoencoder and a multi-layer
perceptron (MLP). The former aims to mimic the identity map while encoding the information into a
low-dimensional space represented by the bottleneck. The encoder module takes as input the graph
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Figure 6: Representation of a classical Galerkin method (a), and representation of the DG
method (b), for P1 elements.

data Ξ, exploiting MoNet [47] as the message passing algorithm. Employing the convolutions, the most
meaningful information between the nodes and their evolution is extracted with respect to the samples.
To reduce dimensionality, one can consider the additional module of down-sampling and a second batch
of convolutional layers can be used to encode the latent space further. After these steps, an FCNN is
used to connect the graph structure with the bottleneck. Thus, the initial information is encoded in the
latent vector ũN (µ) ∈ RN .

The decoding structure consists of the same operations but in a reversed order. Thanks to the
decoding process, the output data, which is a reconstruction ũN of the input, can be confronted with the
latter in terms of a loss function for the unsupervised learning task, defined as

LMSE = 1
Ntr

Ntr∑
i=1

||ũN (µi) − uN (µi)||22,

where Ntr is the number of samples in the training set. Another term can be taken into account when
evaluating the loss function, in fact, the supervised learning task, confronting the dataset and the latent
vector, can be added, and also balanced by the hyperparameter λ. Hence we have the following loss
functions

LBT T = 1
Ntr

Ntr∑
i=1

||uN (µi) − ũN (µi)||22,

L =LMSE + λLBT T ,

which guides the training procedure through the Adam optimizer. During the online phase (Figure 5), the
bottleneck can be directly evaluated using the MLP to process a new parameter, µ, and then successfully
decompressed through the graph decoder to recover the corresponding field defined over its geometry.

Regarding the preprocessing of the dataset, we will consider different normalization procedures. In
addition to [6], we will also explore the non-normalized dataset.

5.3 Adaptation to the Discontinuous Galerkin framework
The GCA-ROM architecture, as described in [6], deals with a graph input. The data information used
consists of nodal values obtained from classical FEM simulations as described in the previous sections. In
the case of P1 elements, each node on the mesh or graph has only one degree of freedom when creating
the dataset. When dealing with P2 elements, such as in test cases for Navier-Stokes equations, only the
degrees of freedom at the mesh nodes were considered during the training step. It is worth mentioning
that, despite neglecting information linked to the degrees of freedom on the edges of the elements, the
results obtained are still satisfactory.

To make the method applicable to datasets obtained from DG numerical solutions, and to retain
information for all degrees of freedom, a new definition for the input graph needs to be introduced. This
is necessary because, e.g. in the case of P1 elements, more than one value is defined in each node of the
mesh, as depicted in Figure 6. Also, we might consider retaining the values defined on the edges of each
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element, since in our physical context, an optimal characterization of discontinuities in our quantity of
interest is crucial.

In the following, first, we will consider the Averaged Discontinuous Galerkin Graph Convolutional
Autoencoder (AVG-DG-GCA), an approach that considers the same architecture exploited with the FEM
structure, so for each node, we will consider an average value of all the degrees of freedom linked to it, then
we will present the results with the DG-GCA, obtained preserving all the degrees of freedom of the DG
scheme, with the new graph structure. In this new graph structure, each node represents a single element
of the triangulation, while the edges of the graph are no longer the edges of the elements, but the distance
between the barycenters of the corresponding adjacent elements. In this case, a different preprocessing
should be done, since we are no longer associating the degrees of freedom to a specific coordinate. Still,
we will associate them with the corresponding element. Thus the resulting snapshot matrix will consist of
column vectors with components ul,m(µk), with l = 1 . . . N , k = 1 . . . Ns, m = 1 . . .K, with K being the
number of the degrees of freedom per element associated to the chosen method order. Another path, not
explored in this work, could be to exploit the properties of the DG scheme and consider just the value of
our quantity of interest in the barycentre, which can be obtained knowing the values of the degrees of
freedom and the basis functions.

Moreover, in our 2D test cases, we have different components for the electric and the magnetic fields,
thus we are interested in having a GCA architecture able to handle all our state variables at once. This
feature is encountered also in the Navier-Stokes example since we have both velocity and pressure, but in
[6] the two fields are treated separately.

6 Numerical results
This section presents results for the test cases introduced in Section 3. The first section will focus on the
test case with a single value for the permittivity, and the only parameter will be time. In the second
section, we will treat a slightly more complex problem, taking into account a variation in the composition
of the materials inside the PEC cavity, thus we will consider different values for the permittivity.

6.1 Time as parameter
As a first step, we will deal with the problem of the vacuum-filled perfect electric conductor cavity
presented in Section 3. This toy problem lacks practical applications but is valuable for understanding
qualitative behavior in our physical context.

In order to study the behavior of the AVG-DG-GCA method using our physical case, we initially
conducted an analysis of its performance while changing the dimensions of the dataset. This involved
varying the number of snapshots, the size of the considered meshes, and the dataset partitioning into
training and testing subsets. As shown in Table 3, better results are obtained with finer meshes, as we
expected since the more nodes a network has, the more complex and diverse features of the solution field
it can learn. It is important to note that certain parameters of the architecture need to be adjusted when
working with coarse meshes. In compressing procedures, the input nodes of the MLP may have a higher
number of nodes than the triangulation vertices. As a result, the GCA architecture attempts to compress
the information in a higher dimension, thus leading to an inaccurate representation of the input dataset.

One of the promising aspects of the GCA architecture is that it can obtain good results by exploiting
just the 30% of the dataset for the training process. In Table 4, we see that a quite good error is obtained
with the smaller training dataset and that increasing it leads to possible overfitting problems. After this
first examination of the behavior of the architecture depending on the chosen hyperparameters, we are
able to obtain quite satisfactory results for all three components of our electromagnetic field, as shown in
Figure 7, using a dataset of 336 snapshots and a learning rate lr = 0.1.

One important tool to detect critical points in the learning procedure is to plot the relative error in
function of the parameter space. In fact, in Figure 9, the evolution of our numerical solution reaches a
critical point at half a period. The explanation for the presence of this peak is that the related snapshots
approximate a solution that is close to zero. The problem is not just that we are considering the relative
error, thus dividing by a quantity close to zero, but also that in the scaling process, we are considering
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nodes 1220 317 90
max relative error 1.04e+00 7.61e-01 5.13e-01
mean relative error 2.50e-02 8.54e-02 7.08e-02
min relative error 2.76e-03 5.94e-02 3.41e-02

Table 3: Relative errors with fine and coarse mesh (from left to right) with rt = 30% and lr = 10,
obtained with the AVG-DG-GCA method.

rt 30% 60% 70%
max relative error 1.044e+00 9.04e-01 4.42e-01
mean relative error 2.50e-02 1.75e-01 1.48e-01
min relative error 2.76e-03 1.36e-01 1.29e-01

Table 4: Relative errors obtained increasing the dimension of the training set, with 1220 nodes
and lr = 10, obtained with the AVG-DG-GCA method.

a standard scaling that takes into account all the snapshots. So, part of the difficulties in the learning
process here relies also on the physics of the problem what we have is a solution, that preserves its
shapes, while varying sign and amplitude, in fact, training over 3 periods leads to an increase in the
mean relative error ēr = 5.99e− 01 and qualitatively much worse results (Figure 8), while if we consider
a dataset of snapshots ranging on half a period we obtain a mean relative error that decrease of two
orders of magnitude. A similar behavior is present also for both the components of the magnetic field, in
particular, in this case, we have a zero initial condition that strongly impacts the learning process. Thus,
we also removed the initial condition snapshot from the dataset. In Figure 10 it is displayed how the
information encoded in the latent space is flattened in the case of standard scaling, while more variance
is captured when imposing the identity scaling.

All the considerations done with the AVG-DG-CGA are a useful starting point to set our framework
of parameters in the case of the DG-GCA. Indeed we will neglect the initial condition and train with the
30% of the initial dataset over half a period. Since we are now considering all the degrees of freedom,
our dataset will have a greater size, thus leading to more information to be incorporated in the learning
phase, in fact, in Table 6 we see that the training time for the DG-GCA with P1 elements is twice with
respect to the AVG-DG-CGA training time, while for grids with 1220 nodes it is almost 20 minutes,
and for the AVG-DG-GCA it is about 8 minutes. Furthermore, increasing the order of the DG method
does not significantly affect the training time, but it allows us to work with a more accurate dataset
of snapshots. Comparing Figure 11 and Figure 10 we notice that applying the DG-GCA method with
the same grid, which has 2310 elements, especially with P2 elements, allows the loss to have a steepest
decrease. Confronting the error field in Figures 7 and 12 for the electric field, we can see that we achieve
a better and uniform accuracy with the DG-GCA method.

Ez Hx Hy

max relative error 1.75e-02 1.45e-03 1.25e-03
mean relative error 1.68e-03 3.97e-04 2.76e-04
min relative error 1.81e-04 5.24e-05 6.93e-05

Table 5: Relative errors obtained training over half a period with the AVG-DG-GCA method.
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Figure 7: AVG-DG-GCA solution and error fields for the electric field (top) and x and y
components of the magnetic field, at the instant of time t = 0.02, on a mesh with 1220 nodes.

AVG P1 P2
training time (min) 3.32 7.50 8.41

mean error 0.0653 0.0642 0.0505

Table 6: Training time and accuracy for the original and the new definition of the graph structure
for a mesh with 317 nodes and 568 elements.
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Figure 8: AVG-DG-GCA solution fields and error field for the electric field obtained training
over a time of three periods.
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Figure 9: Relative error over one period for the electric field component obtained with the
AVG-DG-GCA method.
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Figure 10: Top row: Loss and latent space for the training of the AVG-DG-GCA method with
standard scaling over one period. Bottom row: Without scaling, over half a period, the training
exhibits more stable loss convergence (left) and more information captured in the latent space
(right).
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Figure 11: Loss evolution for P1 and P2 elements (2310 graph nodes), with MinMax scaling
function (sample scaling) for the DG-GCA method.

Figure 12: Solution field and error field obtained with the DC-GCA method with P1 elements
for the component EZ at time t = 0.02.
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6.2 Variation in the permittivity
We will now consider a slight modification of the previous physical setting by introducing a thin slab of a
certain conducting material. This leads to the second problem presented in Section 3, the perfect electric
conductor cavity with two material interfaces.

As a first attempt to build a dataset, we selected 10 values for the permittivity parameter ε1 ∈
[1.25 , 3.50] (see Appendix A) and sampled 300 time steps, thus having 3000 snapshots.

In Figure 13, we see that, due to the presence of a higher number of modes, for the AVG-DG-GCA
method it is harder to capture the shape of the solutions. This low accuracy might be due to the presence
of some critical snapshots with values of the permittivity ε1 = {1.25 , 1.75 , 2.75, 3.0}, as displayed in
Figures 14 and 15. For these values of the parameter ε1, the numerical solutions exhibit a qualitative
behavior that is different from the others, which is related to the nonlinearity of the relation (11). Indeed
the dichotomy method does not guarantee the selection of the most appropriate value for ωy.

To avoid feeding the relative error with the contributions of those snapshots we tried to train the
architecture on the parameter space P = [1.75, 1, 3.5] × [0, 1], notwithstanding the resulting error fields
are not improving. An explanation of this could be that during the evolution of the electromagnetic wave
in t = [0, 1] the zero solution is encountered three times and, more importantly, that in the dielectric
slab, the number of minima and maxima vary a lot depending on the permittivity value (see Figure
13). All these features of the physical problem impose to better investigate the hyperparameters of the
architecture and the dataset construction part.

In Figure 15 we can compare the results obtained with the three sampling of the parameter space,
i.e. with equispaced nodes sampling over ε1 ∈ [1.25, 3.5] and with the sampling based on the snapshots
selection. The mean relative error is still high, but we can achieve some good results for ε1 ∈ [2.75, 3.5] as
shown in Figure 16, where the magnitude of the error is decreased by one order. The small improvement
in the learning process is also visible confronting the behaviors of the losses in Figure 17.

Moreover, as said before, a source of error is due to periodicity of the solution. Thus, we tried to
train the architecture over t = [0, 0.2], corresponding to half a period, augmenting the sampled values in
the parameter space for time. Figure 18 exhibits that, as in the first test case, the relative error increases
significantly when approaching the zero solution at t = 0.2 and close to the initial condition. In between
these values of time, the architecture seems quite able to recover the expected solution, as shown in
Figure 19. Though improving, the obtained results are still not satisfactory, and a better way to choose
the parameter space sampling should be found before proceeding with the DG-GCA method.

7 Conclusions
In this Master’s thesis, we investigated the application of the GCA architecture for simulating Maxwell’s
equations using a DG method. Two simple 2D test cases were used: a vacuum-filled perfect electric
conductor cavity and a cavity with the introduction of a dielectric slab. These cases were designed to
introduce the DG scheme and evaluate the performance of the GCA architecture.

The AVG-DG-GCA method was able to produce good results, effectively capturing the behavior of
the electromagnetic field. However, the DG-GCA method outperformed AVG-DG-GCA, providing more
uniform accuracy across the field, albeit with longer training times. This method, particularly when
using higher-order elements (e.g., P2), led to a steeper loss curve compared to P1 elements. Although
considering all degrees of freedom increased the dataset size and extended the training time for DG-GCA,
the model achieved better precision, as reflected in the error fields.

When introducing the permittivity parameter, solving the problem using the GCA method proved to
be more challenging than expected. The low accuracy in capturing solutions for critical values of the
permittivity was linked to the nonlinear behavior of electromagnetic waves within the cavity. Adjusting
the parameter space and hyperparameters did not sufficiently resolve these issues.

The model’s accuracy was highly sensitive to the structure of the dataset, particularly with respect to
time, mesh refinement, and physical parameters like permittivity. Proper scaling and careful dataset con-
struction were crucial for capturing accurate physical behavior in numerical simulations, as demonstrated
by the improvements observed when scaling and hyperparameters were optimized.
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Figure 13: AVG-DG-GCA solution and error fields for the Ez component of the perfect electric
conductor cavity with two material interfaces with ε1 = {3.25, 2.25}
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Figure 14: Dataset partitioning in training and testing set (left) and relative error (right).

Figure 15: Relative error for the electric field over the parameter space P = [1.25, 3.5] × [0, 1]
(left), P = [1.75, 3.5] × [0, 1] without critical values for ε1(center) and P = [2.25, 3.5] × [0, 1]
(right).
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Figure 16: AVG-DG-GCA solution and error fields for the Ez component of the perfect electric
conductor cavity with two material interfaces with ε1 = {3.25, 2.25}.
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Figure 17: Loss and latent space for the training of the AVG-DG-GCA method over all the
parameter space P = [1.25, 3.5] × [0, 1] (left) and P = [1.75, 3.5] × [0, 1] without critical values for
ε1(right).

Figure 18: Relative error for the electric field over the parameter space P = [1.75, 3.5] × [0, 1]
without critical values and over half a period.
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Figure 19: AVG-DG-GCA solution and error fields for the Ez component of the perfect electric
conductor cavity with two material interfaces with ε1 = 3.5 (training over half a period).

Training a single architecture to capture the behavior of all components of the electromagnetic field
would be prohibitively expensive due to the requirement for a very large dataset. However, there are
potential improvements to the methodology. For instance, leveraging the properties of the DG scheme
could offer a solution. By focusing on the values of the solution fields at the barycenter—derived from the
degrees of freedom and basis functions—it is possible to construct a more compact dataset. This approach
could reduce the dataset size without compromising accuracy, as it avoids the loss of information that
might occur with averaging or omitting certain degrees of freedom.
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A Dichotomy method
The dichotomy method, also known as the bisection method, is a numerical technique used to find the
roots of a continuous function. A root of a function f(x) is a value x such that f(x) = 0. The method
is particularly useful when you have a continuous function and you want to find the value of x that
makes the function equal to zero within a certain interval. In the present work, we implemented the code
reported here to evaluate the solution of 11 in Chapter 3. The obtained results are presented in Tab 7,
with a chosen tolerance η = 1e−14.

function omega = dichotomy_solver ( a , b , eps i l on1 , eta )
% Function to s o l v e
f = @( omega ) sqrt ( e p s i l o n 2 ∗ omega^2 − 4 ∗ pi ^2) ∗ . . .
. . . ∗ tan ( sqrt ( omega^2 − 4 ∗ pi ^2)/2) + sqrt ( omega^2 − 4 ∗ pi ^2) ∗ . . .
. . . ∗ tan ( sqrt ( e p s i l o n 2 ∗ omega^2 − 4 ∗ pi ^ 2 ) / 2 ) ;

% While the i n t e r v a l s i z e i s g r e a t e r than e ta
while abs (b − a ) > eta

c = ( a + b) / 2 ;
f a = f ( a ) ;
fb = f (b ) ;
f c = f ( c ) ;

i f f a ∗ f c < 0
b = c ;

e l s e i f fb ∗ f c < 0
a = c ;

else
omega = c ;
return ;

end
end

% s o l u t i o n i s the f i n a l i n t e r v a l
omega = ( a + b) / 2 ;

end

ε1 ω L2 error
1.25 8.451365660882516 0.0596
1.50 8.150576639168921 0.1527
1.75 9.657458497408417 0.2252
2.00 9.325449970024170 0.1550
2.25 9.077161758851740 0.0795
2.50 7.163933478590142 0.5860
2.75 6.880812768081277 0.6708
3.00 8.590706586245833 0.1757
3.25 8.459595371133265 0.3309
3.50 8.328310981355269 0.5238

Table 7: Values of ω obtained with the bisection method, according to the variation of the
permittivity ε1

.
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