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ABSTRACT  

The development of models that accurately predict the formation of Eutectic Mixtures (EM) – 

including the well-known Deep Eutectic Solvents (DES) – and their viscosity is imperative to 

save time in synthesizing new solvents. We developed reliable machine learning-based 

classifiers able to discern between eutectic and non-eutectic (non-EM) mixtures and regressors 

able to predict the viscosity of EM. A new experimental dataset of 219 EM, 384 non-EM and 
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1450 viscosity points at different temperatures and water contents is provided and used to 

challenge several models, defined both by an algorithm and by descriptors. The top performing 

EM/non-EM classifier yields accuracy of 92% and the best regressor achieves viscosity 

predictions with a Mean Absolute Error (MAE) of 2.2 mPa.s; the extrapolation capabilities of 

the latter were assessed on additional measurements at temperatures and water contents outside 

the range of the training dataset, revealing good accuracy at low viscosities. The SHapley 

Additive exPlanations (SHAP) algorithm was employed in several models as an eXplainable 

Artificial Intelligence (XAI) technique to quantify input feature contributions to model output. 

These results represent a significant step forward in developing robust and highly accurate 

models for determining eutectic mixtures and their viscosity. 

 

Introduction 

Deep eutectic solvents (DES) have emerged as promising environmentally friendly alternatives 

to conventional organic solvents. Since their discovery by Abbott et al. in 2003, DES have been 

applied in a wide range of fields.1 Whether in catalysis2,3 or biocatalysis4, analytical chemistry5, 

organic synthesis6, electrochemistry7, extraction, medicine or CO2 capture8, they have found 

their place among conventional solvents. 

DES are composed of at least two compounds associated by weak interactions, such as 

hydrogen bonds or electrostatic interactions. This combination enables the mixture to be liquid 

at a lower temperature than if it behaved as an ideal mixture. The so-called “eutectic point” is 

the temperature and composition at which the mixture is liquid. In the case of DES, this eutectic 

point is significantly “deeper” than the ideal eutectic point, i.e. at much lower temperature.9,10 

DES have a number of advantages: as well as being easy to prepare, they have physico-



3 

 

chemical properties that can be modulated for a specific application according to their 

composition, such as viscosity, pH, polarity, density or conductivity.11  

Given the multitude of possible mixtures, it is essential to be able to rationalize the design of 

new DES, and to predict their influential properties according to their intended application. For 

instance, one major drawback of DES lies in their generally high viscosity, a characteristic that 

poses practical hurdles in their utilization for industrial applications.12,13 It is reported that the 

high viscosity of DES can be attributed to a notable hydrogen bonding network, as well as to 

large molecular size, small void volume or electrostatic or van der Waals interactions.14 The 

viscosity of DES is known to also be influenced by other factors, including the temperature, 

the water content and the molar ratio. Moreover, great variability can be observed in 

experimental measurements of a given DES under the same conditions; for instance, for 

Choline chloride-Urea (1:2) at 30°C, viscosities close to 527 mPa.s are observed by Dou et al. 

(527.0 mPa.s), Yadav and Pandey (527.3 mPa.s) as well as Shekaari et al. (527.1 mPa.s), while 

Xie et al. reported a viscosity of 953.7 mPa.s.15–18 Hence, special attention should be given to 

outliers or other possible inconsistencies within the dataset. Given the complexity of the 

hydrogen bonding network, the non-ideal behavior of DES and the number of parameters 

affecting their physical properties, predicting the viscosity of DES is a very challenging task. 

Hence, the demand for accurate predictive models has become paramount. Several models can 

be found in the current literature using either experimental viscosity data19,20 or thermodynamic 

properties, such as the COSMO-RS (COnductor-like Screening MOdel for Real Solvents) 

model.21–24 However, the COSMO-RS model has so far mainly been applied to the prediction 

of Solid-Liquid Equilibria (SLE) of DES based on choline chloride, and has certain limitations, 

which will be discussed later in more detail.21–24 Machine learning (ML) models have also been 

in the spotlight for the prediction of the viscosities of DES.25,26 There is still room for evaluating 

new models and descriptors on the basis of a set of experimental data obtained in similar 
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conditions and in a relatively large chemical space. The availability of predictive models for 

the feasibility and the viscosity of DES taking the water content into account is limited, as 

already underlined by Bakhtyari et al.19, primarily due to the lack of this information in datasets. 

ML models have been developed for the prediction of other properties of DES, for instance 

Ayres et al. developed an extreme gradient boosting model to predict the melting point of DES 

and evaluated several sets of descriptors for this task. Their top performing model was trained 

over the molecular fingerprints (ECFP) of the components of DES, the molar ratios and a set 

of other chemical descriptors.27 

In this study, we focus on eutectic mixtures (EM) in the broad sense, that means mixtures that 

are liquid and homogeneous at working temperature and do not necessarily exhibit a "deep" 

eutectic point. We report a new dataset of 1450 viscosity points of EM in a wide range of 

temperatures, molar ratios and water contents, alongside additional data representing a total of 

219 EM and 384 non-eutectic mixtures (non-EM), i.e. mixtures of compounds that have not 

liquefied completely or at all, all collected through our experimental investigations and 

measurements. Data analysis techniques were used to uncover patterns and correlations 

between the data and the property of the mixture (EM or not). The dataset was then used with 

machine learning classification models aiming to discern between EM and non-EM and with 

regression models established for viscosity predictions. Several structural descriptors were 

evaluated for both classification and regression tasks. EXplainable Artificial Intelligence (XAI) 

techniques were employed in order to interpret and rationalize the predictions. It is both a way 

to open the AI black box, to verify that a seemingly good behavior of an algorithm is chemically 

grounded and to investigate the system from an AI perspective. 
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Experimental Procedures 

Chemicals  

All compounds were purchased from Alfa Aesar. More details are available in ESI. 

Mixtures Preparation 

EM and non-EM were prepared by mixing and heating the components from 65°C to 80°C 

until homogeneous liquids were obtained for EM; in cases where the mixture melted only 

partially or not at all, heating was stopped after several hours. In some cases, a known quantity 

of water was added to the mixture; water was not considered as a third component of the 

mixture. Non-EM were not stored, while EM were cooled to room temperature and stored at 

the same temperature. They have been assigned internal laboratory identifiers, in the form "OC-

xx-xx" or "DIV-xx-xx". 

Water Content 

The water content of the eutectic mixtures was determined in mass percentage using a Karl 

Fischer 831 KF Coulometer titrator from Metrohm. The percentage given is the average of 3 

measurements.  

Viscosity 

Viscosity measurements were performed with an Anton Paar MCR301 rheometer using parallel 

plate geometry. The upper plane has a diameter of 75 mm (reference PP75/P2 1288) and the 

surface of the wall of the plates in contact with the samples was roughened to prevent slipping. 

Temperature was controlled by a Peltier system. Measurements were made at a fixed shear rate 

of 4 s-1. Temperature variation ranged from 25°C to 75°C for initial database measurements; 

for extrapolation tests, temperature variation ranged from 20°C to 90°C.  
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Modeling Procedures 

Comparison of Existing Methods 

Due to their ease of preparation, eutectic mixtures have been developed and applied for many 

years with little fundamental knowledge and molecular understanding.28 Especially since there 

is an infinite number of possible combinations of compounds for the formation of new EM, it 

has become crucial to be able to define upstream whether a mixture of compounds can become 

an EM and to know its physico-chemical properties, in order to determine whether it will be 

interesting for the desired application. Quite a few studies have been carried out in this field, 

and we propose a brief overview in order to better understand the interest in developing new 

predictive models in this article. 

Models based on thermodynamics and quantum chemistry 

Several thermodynamic models have been used in the literature as predictive tools, mainly to 

identify new eutectic mixtures. These include the UNIFAC, PC-SAFT and COSMO-SAC 

methods.29–31 The best known is undoubtedly COSMO-RS. Developed by Klamt, COSMO-RS 

is a quantum chemistry-based method which can be used to predict the chemical potential of 

pure compounds or mixtures.32 Using this method, it is possible to predict the SLE diagram of 

a mixture, useful for eutectic solvents screening. The prediction of SLE diagrams highlights a 

window at which the mixture is liquid; it can therefore be used to determine the eutectic 

temperature Te, or eutectic point, and the associated ratio.22 Several studies have been carried 

out for the evaluation of this method as a predictive tool for the SLE of binary eutectic solvents, 

and to our knowledge have focused mainly on the association of a quaternary ammonium, 

choline chloride (ChCl) with a hydrogen bond donor (HBD).21–24 Although some results are 
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promising, these predictions by COSMO-RS have optimization constraints; according to Song 

et al., depending on the different conformers employed and parameterizations of the software 

used for the SLE calculation the SLE diagram of some mixtures cannot be predicted.22 Overall, 

the main limitation of thermodynamic models is that these methods require knowledge of 

certain physico-chemical properties such as the melting temperature or enthalpy of fusion of 

the compounds, which are not always available in the literature or measurable experimentally. 

For example, some compounds, such as amino acids, degrade before reaching their melting 

point.21  

For viscosity prediction, COSMO-RS is mainly used to generate σ-profiles of molecules, which 

allow the molecular structure to be described and then included in a model.25,33,34 The direct 

viscosity prediction function in the software is not commonly used for EM as far as we are 

aware. Mutalib et al. compared predicted and experimental values in the case of ionic liquid 

(IL) derivatives, solvents described by some as the predecessors of DES. It was found that 

COSMO-RS significantly underestimated the viscosity of these IL derivatives.33   

Whether predicting the formation of eutectic mixtures or their viscosity, COSMO-RS studies 

rarely take the mixture's water content into account. 

Models based on experimental data  

Other models exist, based on experimental data. Most of them can be used to predict the 

physico-chemical properties of eutectic solvents, such as their viscosity. For instance, Al-

Dawsary et al. employ the Arrhenius and Vogel-Fulcher-Tamman (VFT) equations to fit 

experimental viscosity data to temperature for 70 DES and obtained fitting parameters for each 

of the considered DES used to estimate viscosities.20 Bakhtyari et al. propose a global model 

for the estimation of the viscosities of DES over wide ranges of temperatures using critical 

temperature, critical pressure and a reference viscosity point as input variables; however, these 
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values are not always easily available.19 The authors also optimized a DES-specific VFT 

model. 

On the machine learning side, Roosta et al. employed the Least Square Support Vector Machine 

(LSSVM)35 and Multilayer Perceptron Artificial Neural Network (MLPANN)36 algorithms 

coupled with the Group Contribution (GC) method37, temperature and molar ratios, on a 

databank of 2533 data points collected from the literature.38 Mohan et al. developed several 

machine learning models to predict viscosities of DES, using a dataset of 4949 data points at 

various temperatures and molar ratios, and they employed COSMO-RS σ-profiles as training 

features.26 Cat-Boost was their best-performing model. While these models yield highly 

satisfactory predictions, they do not consider the water content of the solvent, a parameter that 

has a significant impact on the viscosity.17,39 Benguerba et al. proposed a Quantitative Structure 

Property Relationship (QSPR) model using multilinear regression (MLR) and Artificial Neural 

Network (ANN) methods applied to 108 experimental viscosity measurements of DES at 

different temperatures using σ-profiles derived from COSMO-RS as descriptors.25 The ANN 

model outputs satisfactory predictions on the validation set, however its applicability is limited 

to amine-based DES. Shi et al. used a dataset of 994 experimental viscosities in different 

temperatures, along with basic properties, Morgan fingerprints and water content as input 

features for Support Vector Regression (SVR)40,41, Random Forests (RF)42,43, Neural Network 

(NN)44 and XGBoost45 algorithms for viscosity predictions.46 The latter exhibited the best 

performance. More models for viscosity prediction can be found in the literature; some of these 

have enabled Odegova et al. to develop an open-access predictive tool, DESignSolvents. Note 

that this tool does not take into account the water content of mixtures in its predictions.47–49  
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Other models 

Fewer models can predict the formation of eutectic solvents. Abbas et al. analyzed the hydrogen 

bonding features of known DES and non-Deep Eutectic Solvents (non-DES) systems using 

Molecular Dynamics (MD) trajectories and developed several machine learning models aiming 

to discern between the two classes, using input features based on intra-component and inter-

component hydrogen bonds. However, their models have only been validated on 17 DES and 

17 non-DES.50  

In summary, although predictive models for the design of new EM or for estimating their 

viscosity are being developed, those that take the water content of EM into account are scarce. 

Development of New Machine Learning Models 

We therefore present nine classification models employing NN, Support Vector Machines 

(SVM) and RF (Figure 1). These algorithms are amongst the most common classification 

algorithms, and they achieved satisfactory accuracy in the work of Abbas et al.50 In addition, 

they differ significantly and employing them for the same task covers different algorithmic 

perspectives. NN, SVM and RF have also been successfully employed for other classification 

tasks in materials science.51,52 The dataset used with the classifiers comprises 219 EM and 384 

non-EM. Three structural descriptors were evaluated with each algorithm: Morgan 

fingerprints53, Bag of Bonds (BoB)54 and Bond-Angle-Torsion (BAT)55, with and without 

performing Principal Component Analysis (PCA) for dimensionality reduction. We also 

present two new regression models employing NN to predict the viscosities of EM, for which 

we evaluate two structural descriptors: Morgan fingerprints without PCA dimensionality 

reduction, Morgan fingerprints upon PCA dimensionality reduction, BAT upon PCA 

dimensionality reduction. The dataset used with the regressors comprises 1450 experimental 

viscosity measurements. 
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Figure 1: Workflow used for the development of classification (EM/non-EM) and 

regression (viscosity) models.  

*Models were assessed with and without PCA for dimensionality reduction on structural 

descriptors. Regression employing BAT was only assessed upon PCA dimensionality 

reduction 

 

Most machine learning algorithms applied to chemistry, cheminformatics and materials science 

require to translate 2D or 3D molecular structures into numerical representations. Yet, the 

training and the accuracy of a ML algorithm is crucially dependent on the choice of data 

representation in a machine-readable form, also called “featurization”. Whatever the method 

chosen, highly problem-specific, the resulting representation must be a unique identifier, 

invariant with respect to rotation operations, translation in space and permutation of the 

ordering of the atoms. The SMILES, Morgan fingerprints, BoB and BAT used in the present 

study are descriptors often encountered in ML applications to chemistry. Morgan fingerprints 

are a commonly used descriptor for the prediction of properties of DES, with a recent variant 

aiming to take into account the number of atom groups56, a possibility that has not been 
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thoroughly explored in the present paper. In this work, we used the ECFP implementation of 

the Morgan fingerprints with radius=3 and nbits=2048 per molecule. As far as we are aware, 

BoB and BAT have not been used in the context of eutectic mixtures yet. Our work can serve 

as a first example of the potential of such descriptors for this specific task. A nice summary 

can be found in the work of Raghunathan and Priyakumar.57 These descriptors are schematized 

in Figure 2.  To describe the electron density distribution in molecules in a more realistic way, 

the original version of BoB and BAT descriptors has been modified such that the generated 

matrix is calculated on the natural charges, also known as natural population charges, of the 

involved atoms instead of their atomic numbers. More details about BoB and BAT descriptors 

can be found in the original articles.54,55 Natural charges were obtained through Density 

Functional Theory (DFT) calculations (see section S2 in ESI for computational details).  

Figure 2: Molecular featurization of alanine. (a) SMILES is a textual representation that 

encodes the molecular structure as a string, that can be further processed into binary 

features; (b) Morgan fingerprints are binary vectors where each non-zero bit represents 

a specific substructure within the molecule; (c) The Bag of Bonds (BoB) representation is 

an extension of the Bag-of-Words concept used in natural language processing. It is based 
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on the types and counts of bonds it contains; (d) The Bond-Angle-Torsion (BAT) 

representation is expected to improve the BoB featurization by adding direct and 

torsional angles contributions. The BoB and BAT packages automatically apply a process 

called zero-padding, which ensures that all descriptors have a consistent length, by 

adding zeros to shorter descriptors as needed. This allows for uniform descriptor length 

across all compounds. While SMILES and Morgan fingerprints can be inferred from a 

2D graph, BoB and BAT are calculated from a 3D representation, usually obtained by 

DFT, or by X-ray measurements 

 

PCA dimensionality reduction was employed to reduce the dimensionality of the structural 

descriptors, while retaining the essential information. This enhances the model’s efficiency and 

speed.58 In addition to the aforementioned descriptors, molar ratios, number of hydrogen bond 

donor (HBD) and acceptor (HBA) sites, molecular weights (MW) and logP (see 

Computational details and Figure S6-S1 in ESI) of each component were given as input 

features to all predictive models. Temperatures and water contents were also incorporated as 

input features for the regressors. It is worth noting that the possible hydrogen bonding 

interactions between water molecules and EM components are not taken into account explicitly 

in this work. In fact, quantifying the impact of such interactions on viscosity would require 

methods such as molecular dynamics, that add complexity in terms of model development and 

computational time. As mentioned in the work of Herschlag and Pinney, hydrogen bonding 

interactions are affected by a multitude of parameters.59 For instance, information on pKa could 

be an interesting additional descriptor, however these data are not always easily available. The 

structural descriptors before PCA dimensionality reduction were described as the 

concatenation of the structural descriptors for molecule A and molecule B, where molecule A 

is defined as the component with the highest logP. Hyperparameters have been carefully fine-
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tuned (see sections S9 and S11 in ESI for details). Descriptors have been standardized as 

needed using StandardScaler provided by scikit-learn.60 The regressors’ performance was 

monitored using Mean Absolute Error (MAE), Mean Squared Error (MSE) and R2 metrics 

during the training process, where MAE was the loss function. The accuracy of the classifiers 

was monitored during the training process. Each model was trained on 80% of the dataset and 

tested on the remaining 20%. The generalizability of all models was assessed through k-fold 

cross-validation (k=5) and the regressors were further evaluated on a separate dataset of unseen 

data. The extrapolative ability of the best regressor was also evaluated on new experimental 

measurements, beyond the temperature and water content ranges of the training dataset. 

Finally, the SHapley Additive exPlanations (SHAP, 

https://shap.readthedocs.io/en/latest/index.html) algorithm was employed as model 

explainability technique, aiming to provide insights on feature importance for model output.61 

SHAP values have been preferred over feature selection. Although the latter focuses on 

optimizing model performance and on reducing complexity, it may remove features that, while 

not highly correlated with the target variable, contribute to subtle information when combined 

with other features. All models were developed using Keras (v2.14.0, available on 

https://keras.io) and TensorFlow (software available on https://www.tensorflow.org) libraries, 

both implemented in Python programming language.62–64  

 

Results and Discussion 

Data Analysis 

Data analysis is a crucial prerequisite in ML and is an integral part of the ML workflow. It 

involves preparing the data, identifying patterns and cleaning the data from possible outliers. 

In this section, similarity heatmaps and boxplots were employed to investigate correlations 

https://shap.readthedocs.io/en/latest/index.html
https://keras.io/
https://www.tensorflow.org/
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between various dataset features and the target property. The aim is to highlight relevant 

descriptors for our predictive models and to provide an overview of the EM and non-EM from 

a data perspective. Heatmap in Figure 3 depicts the molecular similarity between 20 randomly 

chosen EM and 20 randomly chosen non-EM in 1:1 component ratio, as computed using the 

Dice similarity algorithm (see section S5 in ESI for equation) with Morgan fingerprints.53 A 

detailed heatmap with similarity values is available in the ESI (Figure S7-S1).  

 

Figure 3: Heatmap of structural similarities between 20 randomly chosen EM and 20 

randomly chosen non-EM in ratio 1:1 calculated using Dice Similarity Coefficient on 

Morgan fingerprints. The darker the color, the more structurally similar the mixtures. 

Blue dashed lines separate EM and non-EM. Labels correspond to identifiers assigned by 



15 

 

the authors to each mixture. Similarity values and details are reported in ESI (Figure S7-

S1 and Table S7-S2)  

 

Computed similarities do not reveal any significant patterns between either EM, or EM and 

non-EM. For instance, DIV-502-AO (Phenoxyethanol-Decanoic acid), a non-EM, and DIV-

492-OA (Phenoxyethanol-Octanoic acid), an EM, are 99% similar in terms of molecular 

structure. The difference lies in the length of the acid's alkyl chain (Figure 4a).  

 

(a)    

Phenoxyethanol Decanoic acid Octanoic acid 

(b) 

  

Tetradecanol Hexanol 

  

Dodecanol Decanol 

(c) 
 

 
 

Proline Glycerol D-Sorbitol 

(d) 
 

  

Lactic acid Choline chloride Malonic acid 

Figure 4: Chemical structures of some compounds involved in EM and non-EM. (a) DIV-

502-AO and DIV-492-OA; (b) OC-394-OO and DIV-985-OO; (c) OC-228-MO and OC-

229-MO; (d) OC-07-AO and DIV-13-NA 

 

Likewise, the non-EM OC-394-OO (Tetradecanol-Hexanol) and the EM DIV-985-OO 

(Dodecanol-Decanol) present a computed similarity of 97%. DIV-985-OO has a total of two 
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more carbons than OC-394-OO (Figure 4b). The different distributions of carbons between 

the compounds of each mixture seems to influence the formation of the EM, since in the first 

case the mixture did not become liquid and homogeneous, unlike the second mixture. 

 

The boxplots in Figure 5 depict the distribution of the number of hydrogen bonding acceptor 

and donor sites for each component of EM and non-EM on the whole dataset. In Figure 5a, 

the median values indicate that the number of HBA sites of 50% of the first components of 

non-EM is within the range of 5-7, whereas 50% of EM exhibit numbers of HBA sites of the 

first component ranging from 3 to 7. Similarly, 50% of the numbers of HBA sites of the second 

component of non-EM ranges from 4 to7, while for EM they range within 5-11 (Figure 5a). 

Additionally, 50% of the first components of non-EM have numbers of HBD sites between 3 

and 8, whereas the corresponding numbers for EM are between 2 and 6 (Figure 5b). 

Considering these points, the overall distribution of the number of HBA and HBD sites across 

the components of the mixtures is different for EM and non-EM. Moreover, non-EM generally 

have higher mean molecular weights (Figure 5c). It has been reported in the literature that this 

parameter has an impact on the viscosity of EM; Al-Dawsari et al. demonstrate an increase in 

the viscosity with an increase in the molecular weight of the salt involved in the mixture.20 

These findings suggest that the number of HBA and HBD sites, and molecular weights may 

serve as suitable input features for our classifiers. It will be interesting to evaluate, thanks to 

XAI, chemically agnostic by definition, if the best models will agree with these observations. 
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(a)   (b)  

(c)  

Figure 5: Boxplots representing the distribution of (a) HBA sites of the two components 

of the mixture in the case of a eutectic, or not, mixture; (b) HBD sites of the two 

components of the mixture in the case of a eutectic, or not, mixture; (c) Molecular weight 

of each of the two components of the mixture and the ratio weighted total MW in the case 

of a eutectic or not mixture (“YES” label: EM; “NO” label: non-EM) 

 

A possible simple chemical similarity, EM vs non-EM relationship, has already been discarded 

(see Figure 3), shedding light on the necessity to train a model able to account for multifactorial 

properties. The same evaluation was carried out for the viscosity of a selection of EM. A 

possible molecular similarity of EM in 1:1 component ratio, as depicted in the heatmap in 

Figure 6, does not exhibit correlations between molecular structure and viscosities (Table 1).  
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Figure 6: Molecular similarities between EM at 1:1 ratio (associated viscosities in Table 

1, with more details in ESI, Table S7-S3) 

 

Table 1: Viscosity at 25°C of the EM involved in the heatmap in Figure 6. The complete 

table is available in ESI (Table S7-S3) 

EM number Composition Water content  

(% by mass) 
Viscosity η at 25°C  

(mPa.s) 

OC-07-AO Lactic acid-Glycerol 30.0 19.3 
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DIV-13-NA Choline chloride-Malonic acid 30.0 10.3 

OC-37-AO Thymol-Decanoic acid 0.8 79.4 

OC-41-AO Thymol-Octanoic acid 1.0 9.6 

OC-228-MO Proline-Glycerol 17.5 246.0 

OC-229-MO Proline-Sorbitol 18.0 1578.1 

 

 

For instance, OC-41-AO (Thymol-Octanoic acid) and OC-37-AO (Thymol-Decanoic acid), 

both in water content ⩽1%, show a calculated similarity of 99% and measured viscosities of 

9.6 and 79.4 mPa.s, respectively. The increase in the viscosity with the length of the alkyl chain 

of a DES compound has already been reported by Chen et al.65 They revealed that the 

viscosities of alkylammonium bromide-based DES increased with the length of the salt's alkyl 

chain: Ethylammonium bromide-Glycerol (307 cP at 20°C) < Propylammonium bromide-

Glycerol (398 cP at 20°C) < Butylammonium bromide-Glycerol (421 cP at 20°C).65 The 

solvents OC-228-MO (Proline-Glycerol) and OC-229-MO (Proline-Sorbitol), with a water 

content of 17.5% and 18% respectively, are 85% similar, with respective viscosities of 246.0 

and 1578.1 mPa.s. The structural difference between glycerol and sorbitol is that sorbitol has 

three more carbons and three more hydroxyl functions than glycerol (Figure 4c). This may 

explain the major difference in viscosity. Indeed, the hydroxyl functions are known to make 

hydrogen bonds, thus generating a more interconnected network of hydrogen bonds, which 

induces a higher viscosity. Grayson et al. carried out studies aiming to quantify the relationship 

between viscosity and the number of hydroxyl functional groups in organic solvents.66 Their 

findings suggest an increase in the viscosity of organic compounds upon addition of a hydroxyl 

functional group to a carbon backbone, following a linear relationship.  

 

In contrast, OC-07-AO (Lactic acid-Glycerol) and DIV-13-NA (Choline chloride-Malonic 

acid), both in water contents of 30%, demonstrate closer viscosity values of 19.3 and 10.3 
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mPa.s respectively, despite having a lower similarity of 38% as can be seen from the 

component structures of each of these two EM (Figure 4d).  

 

Overall, molecular similarity alone does not seem to be sufficient to discern between EM and 

non-EM, nor to be correlated to the viscosity of EM. This can be partially explained by the 

inability of molecular similarity to quantify the number of times a fragment is present in a 

molecule, as it only considers the number of features that are shared between two molecules.  

 

In addition to the observations made above, it is important to note that a minor difference 

between two molecules can have a major impact on properties such as melting temperature. 

For instance, the anion associated with tetrabutylammonium has a strong influence: while 

tetrabutylammonium chloride has a melting temperature of 72.85°C, tetrabutylammonium 

bromide melts at 121.85°C.67,68 This is further evidence that molecular similarity calculations 

are a limited technique for addressing our problem. 

Experimental Findings 

From these selected descriptors and the starting dataset, the models will learn trends and 

behaviors. Correlations between the viscosity of eutectic mixtures and certain parameters are 

easily observable and known in the literature; some are studied in this article.   

The general tendency for EM in our dataset is the decrease of viscosity when temperature rises. 

Examples of eutectic mixtures with different compositions but the same water content and ratio 

are shown in Figure 7a.  
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Figure 7: (a) Viscosity η (mPa.s) of several EM. The water content is 30% by mass for 

each and the ratio is 1:1. Values are reported in Table S8-S1 (ESI); (b) Viscosity η (mPa.s) 

of Malic acid-Proline EM at different ratios. The water content is 30% by mass for each. 

Values are reported in Table S8-S2 (ESI); (c) Viscosity η (mPa.s) of OC-07-AO (Lactic 

acid-Glycerol 1:1) EM at different water contents. Values are reported in Table S8-S3 

(ESI) 

Eutectic mixture OC-03-AO composed of Citric acid-Glycerol (red line in Figure 7a) has a 

high viscosity at 25°C (1020.0 mPa.s) but it drops drastically as temperature rises to 75°C (68.8 

mPa.s). Some EM are less viscous at working temperature, like OC-07-AO (Lactic acid-

Glycerol) which has a viscosity of 19.3 mPa.s at 25°C. The decrease in viscosity with 

increasing temperature can also be observed for other types of EM, based on quaternary 

ammonium salts:  at 25°C, the viscosity of OC-228-MO (ChCl-Lactic acid) was 26.9 mPa.s, 

while it was 7.3 mPa.s at 75°C. This observation is not unknown in the literature; previous 

studies have demonstrated a direct correlation between temperature and viscosity. Adeyemi et 

al. report decreased viscosities with rising temperature, attributing this observation to the 

enhanced mobility of the molecules induced by increasing temperature, resulting in weakened 

binding energies.69 Similar observations have been reported in numerous studies such as those 

by Zuo et al., Yadav et al. and Gajardo-Parra et al.39,70,71 
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Additionally, the molar ratio of DES components has been shown to impact the viscosities. For 

instance, Adeyemi et al. report increasing viscosities of ChCl-Monoethanolamine DES with 

increasing ChCl molar ratio, however little to no influence of the molar ratio was observed for 

ChCl-Diethanolamine DES.69 The authors attribute these findings to internal changes of the 

hydrogen bonding network between the components of the DES. Mjalli and Naser, and Shah 

et al. also report increase in viscosity with increasing salt mole fraction in ChCl based 

solvents.47,72 In this work, the case of the Malic acid-Proline mixture was studied at different 

molar ratios (Figure 7b). 

 Although increasing the ratio of malic acid to proline seems to have a downward impact on 

viscosity, there is no observable trend when the proline ratio is increased. 

Furthermore, the viscosities of EM are remarkably affected by the water content (Figure 7c).  

Although the definition of a eutectic mixture becomes questionable when the water content 

exceeds 40–50%, this does not prevent us from observing that the more water present in the 

mixture, the lower the viscosity.73 At 25°C, OC-07-AO, composed of lactic acid and glycerol 

in a 1:1 ratio, has a viscosity of 48.9 mPa.s with a water content of 20%, while at 80% water 

its viscosity is 4.1 mPa.s. This significant decrease in viscosity has been widely reported when 

the water content of a DES is increased; for instance, Sarmad et al. report decrease in viscosity 

from 716.6 to 20.4 mPa.s at 25°C upon addition of 0.11 mol of water to 

Benzyltrimethylammonium chloride-Glycerol (1:2).74  

Finally, the logP of the mixture components were compared with respect to their viscosities. 

The logP is the partition coefficient between octanol and water; it indicates the hydrophobicity 

of a compound. The higher the logP, the more hydrophobic the compound. LogP values of part 

of the components involved in our classification and regression datasets are available in ESI 

(Figure S6-S1). A study of three hydrophobic EM based on decanoic acid revealed that the 
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lower the logP of the associated compound, the lower the viscosity (Figure 8). Conversely, for 

the two hydrophilic proline-based EM studied, an increase in viscosity implied a lower logP 

for the associated compound. A trend that can be observed, however, is that blends with 

compounds having a very low logP have a very high viscosity, even with a higher percentage 

of water. For example, the mixture OC-228-MO (Proline-Glycerol 17.5% water) has a viscosity 

of 246.0 mPa.s, while OC-37-AO (Thymol-Decanoic acid 0.8% water) has a viscosity of 79.4 

mPa.s.  

 

Figure 8: Comparison of the viscosities of eutectic mixtures as a function of the logP of 

their components. Yellow, hydrophobic EM: compounds associated with decanoic acid 

(logP = 3.21); Blue, Hydrophilic EM: compounds associated with proline (logP = -0.18). 

Values are reported in Figure S1-S6 and Table S7-S3 (ESI) 

Data analysis and observation of experimental results from viscosity measurements were used 

to understand the trends and correlations that the models will learn from. It is important to note 

that limited experimental viscosities are available for some mixtures. Surfaces in Figure 9 

show the range of temperatures and water contents explored experimentally in the cases of 
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Malic acid-Adonitol and Lactic acid-Glycerol. For Malic acid-Adonitol (Figure 9a) viscosities 

were measured only at water contents of 24.1% and 31.3%, while for Lactic acid-Glycerol 

(Figure 9b), water content ranges from 10.0% to 80.0%. As a result, the model must be able 

to learn enough from EM for which a wide range of data is available (a wide range of water 

contents or temperatures, for example) to be able to determine a trend; it will, then, be able to 

extrapolate and predict viscosities for EM with a limited range of data, such as Malic Acid-

Adonitol. The new models developed on this basis for the prediction of the formation of 

eutectic mixtures and their viscosity are presented below. 

 

Figure 9: Three-dimensional surface plots illustrating experimental viscosities as a 

function of temperature and water content for EM: (a) Malic acid-Adonitol (DIV-861-

AO); (b) Lactic acid-Glycerol (OC-07-AO). Surface plots were obtained by cubic 

interpolation 
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Classification between EM and non-EM 

Several classification models have been compared in order to define which one is the best at 

predicting which mixture of compounds can give rise to a eutectic or a non-eutectic mixture. 

The accuracies of the three algorithms employing each of the three sets of descriptors with and 

without PCA dimensionality reduction, on the same test set, are reported in Figure 10a. In the 

case of PCA, the final dataset after dimensionality reduction comprises 80 columns for the 

BAT structural descriptor instead of the initial 6718 columns (see section S12 in ESI for 

Cumulative explained variance ratio by principal components).  
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Figure 10: (a) Accuracies achieved on the same test set for the different classification 

models with and without PCA. The model with the highest accuracy is considered the top-

performing classifier for a given dataset; (b) Cross-validation test set mean accuracies for 

the different classification models with and without PCA. Cross-validation is used to 

determine the generalizability and robustness of the models.  (NN: neural network, SVM: 

support vector machine, RF: random forest) 

All models show accuracy of at least 85%. As the differences are small, only the best and least 

accurate models are studied in greater detail. SVM-BAT-PCA model demonstrates the highest 

accuracy, achieving 92%, whereas RF-Morgan exhibits the lowest, although satisfactory, 

accuracy of 85% on the same test set. The mean cross-validation accuracies for all classification 

models have been calculated to assess the generalizability of the models. The corresponding 

values are reported in Figure 10b.  

Here again SVM-BAT-PCA yields the highest mean cross-validation accuracy (89%). Neural 

networks exhibit the least satisfactory cross-validation mean accuracies with NN-BoB-PCA 

displaying the lowest accuracy of 82%. Models trained on BAT descriptors result in higher 

overall cross-validation performance compared to BoB and Morgan descriptors. Such behavior 

may be due to a better representation of molecular structures when BAT is employed, as it 

takes into account more structural parameters than BoB, while bit collision (section S10 in 

ESI) in Morgan fingerprints may reduce model performance due to inconsistencies in the 

encoded information. Model evaluation on the same test set suggests that PCA dimensionality 

reduction results in small overall improvement in accuracy, with SVM-BoB and RF-BoB being 

the only exceptions. To quantify the statistical significance of those differences we performed 

a paired t-test in terms of cross-validation accuracies. To be consistent, we compared the three 

algorithms (NN, SVM, RF) with the same descriptor upon PCA, this means we compared 

SVM-BAT-PCA (mean CV accuracy=89%), RF-BAT-PCA (mean CV accuracy=87%) and 
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NN-BAT-PCA (mean CV accuracy=85%). The differences in accuracy between the two top 

performing models are statistically insignificant (p-value>0.05). In contrast the differences in 

accuracy between the most and the least accurate models are statistically significant (p-

value<0.05). 

 

Highest overall feature contributions to SVM-BAT-PCA EM probability predictions are 

illustrated in Figure 11. SHAP, the XAI method used in the present article, suggests that higher 

values of total molecular weight, and of descriptors 1 and 3 tend to decrease the probability of 

EM formation, whereas higher values for descriptors 6 and 7 tend to increase this probability. 

Descriptors 1, 3, 6 and 7 result from PCA dimensionality reduction and correspond to the 

structure contributions in Figure 12. 

 

 

Figure 11: Contributions of the most influential descriptors to EM formation for the 

classification model SVM-BAT-PCA. 1, 3, 7, 6, 4, 17, 8 and 11 are resulting structural 

descriptors from PCA dimensionality reduction. SHAP value > 0, in favor of EM 
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formation; SHAP value < 0, against EM formation. In red, high value of the descriptor; 

In blue, low value of the descriptor 

 

 

Figure 12: Contribution of original features to BAT-PCA components 1, 3, 7 and 6 (order 

given by Shapley values reported in Figure 11). Weights were calculated as the sum of the 

squares of the initial feature contributions associated to similar molecular substructures 

 

The higher molecular weight may be linked to a longer alkyl chain and, in systems where 

components contain alkyl chains, it has been observed upstream that a longer alkyl chain can 

hinder the formation of a eutectic mixture. This is in line with the other two of the three most 
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influential descriptors (1 and 3), where the majority contribution comes from CCH and CCC 

groups, that usually describe alkyl chains. On the other hand, the favorable impact of 

descriptors 7 and 6 is due to the significant contribution of the H-bond donor HCO and H-bond 

acceptor CCO groups. The latter describes hydrophilic interactions, while the presence of alkyl 

chains can only give rise to hydrophobic interactions.  

 

(a) (b)  

Figure 13: Confusion matrices for the same test set. (a) RF-Morgan; (b) SVM-BAT-PCA. 

The color represents the number of mixtures in each true/false positive/negative square 

(also indicated in numbers) 

 

Next, we focus on the performance of the RF-Morgan model. It misclassifies 18 out of 121 

samples within the test set (Figure 13a). Of these misclassifications, SVM-BAT-PCA correctly 

classifies 11. It is worth noting that both models misclassify the same 7 samples, among others. 

They are listed in Table 2 and thanks to the feature contributions given by the XAI-SHAP 

algorithm, it is possible to evaluate the origin of such misclassification (Figure 14).  

 

Table 2: EM and non-EM misclassified by both RF-Morgan and SVM-BAT-PCA 

classification models 
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Mixture 

number 

Mol_A Mol_B Ratio Real Predicted 

OC-177-AO Hexadecanol Dodecanoic 

acid 

1:1 non-EM EM 

OC-196-OO Decanol Panthenol 1:1 EM non-EM 

DIV-360-MM Glutamine Arginine 4:1 non-EM EM 

DIV-671-MO Proline Sorbitol 1:2 non-EM EM 

DIV-792-AA Pyroglutamic 

acid 

Malic acid 9:1 EM non-EM 

DIV-874-AO Malic acid Arabitol 1:9 non-EM EM 

DIV-955-MA Proline Citric acid 1:2 non-EM EM 

 

 

 

Figure 14: SHAP force plots on feature contributions to the classification of two mixtures: 

sample A (OC-177-AO) and sample B (OC-196-OO). The standardized values of 

totalMW are reported in the figure. Numbers in bold correspond to the probability of 

formation of an EM assigned by the classifiers to each sample; probabilities < 0.5 indicate 
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prediction of formation of a non-EM, while probabilities > 0.5 indicate prediction of 

formation of an EM. One should refer to the SHAP force plot documentation for an in-

depth understanding of these plots. As an example, B_786=0 means that the absence of 

the corresponding group in sample A increases the EM probability. 

 

In the case of RF-Morgan, the labeling of Sample A (Hexadecanol-Dodecanoic acid 1:1), a 

non-EM, and the Sample B (Decanol-Panthenol 1:1), an EM, are positively influenced by the 

787th bit (descriptor B_786) and the 1259th bit (descriptor A_1258) for samples A and B 

(Figure 14, Figure 18). The model indicates that the absence of these chemical structures 

featuring an amine group as an HBA site, would favor the formation of an EM. This result is 

not in line with previous observations and could be at the origin of the lower accuracy of the 

RF-Morgan model. Both mixtures exhibit a totalMW descriptor in the upper quartile of the 

boxplots reported in Figure 5. Together with the SHAP summary plot reported in Figure 11, 

this explains why this descriptor lowers the probability of EM formation for both mixtures. 

Unfortunately, no other descriptors counterbalance this effect for Sample B, thus yielding a 

wrong probability.  

Even when both classifiers fail to label Sample A correctly, the SVM-BAT-PCA model 

exhibits a lesser degree of error by assigning a lower probability (0.63) to the wrong label 

compared to RF-Morgan (0.78) for Sample A. Likewise, SVM-BAT-PCA demonstrates lower 

confidence (0.34) in the wrong label in the case of Sample B compared to RF-Morgan (0.10).  

Having determined SVM-BAT-PCA as the top-performing classifier and highlighted the 

molecular weight, HBA/HBD sites and CCH, CCC groups as the most impactful descriptors, 

we now focus on regression algorithms developed for viscosity prediction.  
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Regression 

The second challenge is to be able to anticipate whether EM physico-chemical properties are 

suitable for the desired application, in particular viscosity. To this end, new models employing 

neural networks were developed and two structural descriptors were compared: Morgan 

fingerprints, Morgan fingerprints upon PCA dimensionality reduction, BAT upon PCA 

dimensionality reduction; in case of PCA, the dataset comprises 50 columns for the Morgan 

fingerprints after dimensionality reduction instead of the initial 4096 columns (see section S12 

in ESI for Cumulative explained variance ratio by principal components). Utilization of 

the complete set of Morgan fingerprints (Morgan-Full), yields a MAE of 2.2 mPa.s and a R2 of 

0.99 in predicting the viscosity values of the test set, whereas employing PCA for 

dimensionality reduction on the Morgan fingerprint descriptors (Morgan-PCA) yields a MAE 

of 3.5 mPa.s and R2 of 0.99. Additionally, employing PCA on the BAT descriptor (BAT-PCA) 

slightly decreases the test set accuracy, achieving a MAE of 4.1 and an R2 of 0.99 on the test 

set. Cross-validation was performed to assess the performance and generalizability of the 

predictive models (see section S14 in ESI).  

We further assessed the generalizability of the regressors by evaluating their predictive 

performance on a separate dataset consisting of previously unseen data, hereafter named 

Challenging set.  

Morgan-Full yields predictions with MAE of 6.5 mPa.s and R2 of 0.99, Morgan-PCA achieves 

MAE of 5.3 mPa.s and R2 of 0.99 and BAT-PCA achieves MAE of 6.8 mPa.s and R2 of 0.99, 

on this new dataset. PCA dimensionality reduction of Morgan fingerprints improved the 

predictive accuracy of the regression model by 1.2 mPa.s on the challenging set compared to 

the full descriptor. No improvement was achieved when PCA was employed on the BAT 

descriptor, although the results remained satisfactory. Figure 15 depicts the models’ 

predictions plotted against the experimental viscosities. 
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Figure 15: Predicted versus experimental viscosities. (a) Morgan-Full; (b) Morgan-PCA; 

(c) BAT-PCA. TS, Test set; CS, Challenging set. R²=0.99 for the 3 different models, for 

the test set (randomly selected) and the challenging set (same challenging set). The cross 

validation reported in the ESI (section S14) has been performed with the same random 

seed. 

By looking at Figure 15 we notice an abundance of data at low viscosities, while data are 

relatively scarce at high viscosities. To ensure that this data imbalance is not impacting neither 

leading to an overestimation of the model’s performance, we calculated the test set MAE of 

each of the three regressors for viscosities greater than 1000 mPa.s: 95.4 mPa.s (Morgan-Full), 

32.3 mPa.s (Morgan-PCA) and 95.7 mPa (BAT-PCA). The corresponding test set mean 

relative errors are 6.5%, 2.1% and 6.2% respectively. These values are satisfactory, and they 

suggest that the regressors learn trends from data-rich regions and output good predictions at 

regions where data are scarce. This evaluation is necessary to monitor the reliability of the 

models when data are disproportionately distributed. 

As the differences in model performance were not significant, the best-performing model on 

the test set, the Morgan-Full model, was chosen for extrapolation testing. The extrapolation 

capabilities of the model were evaluated for six mixtures. Its performance was examined on 
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temperatures and water contents beyond the range over which it was trained for these mixtures. 

The predictions are depicted in Figure 16. Values are reported in Table S11-S4 (ESI). 

 

Figure 16: Evaluation of the extrapolation performance of the Morgan-Full regression 

model on viscosity prediction. (a) Viscosities greater than 10 mPa.s; (b) Viscosities 

below 10 mPa.s. Solid curves: predicted values; Dashed curves: experimental values. 

Values are reported in Table S11-S4 (ESI) 

 

In the three cases with the lowest water content, the error increases with experimental viscosity. 

For the mixtures DIV-590-NO (Glycerol-Choline chloride 1:2, 15.9% water) at 24°C and DIV-

904-AM (Proline-DL-Malic acid 3:1, 37.4% water) at 20°C, the errors reach 17.4 and 21.0 

mPa.s respectively. For OC-07-AO (Lactic acid-Glycerol 1:1, 8.7% water, blue curve), the 

largest absolute error is 69.3 mPa.s. In the case of lower viscosity predictions, below 10 mPa.s, 

model predictions are much closer to reality, with smaller absolute errors, ranging from 0 to 

2.0 mPa.s. Overall, the regressor can be considered more reliable in cases of temperature and 

water content extrapolations that are expected to reduce the viscosity. 

(b) (a) 
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Figures 17a and 17b depict the 15 features that contribute the most to the predictions given 

by Morgan-Full and Morgan-PCA models, respectively.  

(a) (b)  

Figure 17: Contributions of the most influential descriptors to EM viscosity for the 

regression models a, Morgan-Full; b, Morgan PCA. 0, 3, 1, 7, 13, 8, and 4 are resulting 

structural descriptors from PCA dimensionality reduction. SHAP value > 0, in favor of 

increasing viscosity; SHAP value < 0, in favor of decreasing viscosity. In red, high value 

of the descriptor; In blue, low value of the descriptor 

As expected, SHAP reveals strong dependence of the predictions on water content and 

temperature conditions; lower water contents and temperatures have a positive impact on 

model output, which equals an increase in viscosity. Higher molecular weights and numbers of 

hydrogen bonding sites also exhibit a positive impact on the viscosity for the two models. This 

is in line with studies attributing high viscosities to a strong HB network decreasing the 

mobility of free species in the mixture. There is also an influence of the "ratio1". This descriptor 

corresponds to the fraction of the component with the highest logP. The higher a compound's 

logP, the more hydrophobic it is, and vice versa. Thus, to observe in Figures 17a and 17b that 

the lower the ratio1, the higher the viscosity means that the lower the fraction of the more 



36 

 

hydrophobic compound, the higher the viscosity. The main structural descriptors involved in 

each model’s output are shown in Figure 18.  

 

 
Figure 18: Morgan fingerprints substructures contributing to predictions as shown by 

SHAP for regression models. In the case of Morgan-PCA regressor, the substructures 

contributing the most to most influential principal components in order of importance 

are: A_362, A_1431, A_553 for component ‘0’; B_482, B_222, B_389 for component ‘1’; 

B_888, B_831, B_829 for component ‘3’. A_1057 is the same as B_1057. Blue: the central 

atom in the environment; yellow: aromatic atoms; gray: aliphatic ring atoms 
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Bit collision (see ESI) in some Morgan fingerprints, namely A_80, B_389, B_831, 

overshadows the true impact of specific features; however, this limitation does not seem to 

impede the overall accuracy of the regressors. It can be seen that the weaker the structural 

descriptors involved in Figure 17a, the higher the viscosity. This correlates with the fact that 

the more hydrophobic an EM is, the less viscous it is. In the Morgan-PCA model, higher values 

of structural descriptors 0 and 7 have an upward impact on viscosity. The major contribution 

to descriptor 0 comes from H-bonding structures (Figure 17b). Conversely, lower values of 

descriptors 1 and 3 tend to increase the viscosity of eutectic mixtures. Although the molecular 

structures contributing most to these two descriptors are composed of hydroxyl groups, these 

are linked to multi-carbon chains.  

When applied on a subset of the test set containing only hydrophobic solvents, the SHAP 

explainer revealed contributions of hydrophobic substructures, such as 4- and 7-carbon alkyl 

chains, among HBA/HBD and logP descriptors (see section S15 in ESI). This analysis 

suggests that the model is able not only to capture trends for both hydrophobic and hydrophilic 

mixtures, but also to use the proper descriptors to make accurate predictions. 

Among the regressors developed, Morgan-Full and Morgan-PCA exhibited equal efficiency, 

while temperature and water content were identified among the most influential descriptors 

across both cases; Morgan-Full demonstrated satisfactory extrapolation capabilities, especially 

for low viscosities. SHAP analyses show that the models output accurate predictions for the 

right reasons.  

Conclusions  

A new experimental dataset including 219 EM and 384 non-EM, along with 1450 viscosity 

points, is reported in this work, and experimental findings are in agreement with the literature; 

as expected, the viscosity of EM depends on the temperature, molar ratio and water content of 
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the mixture. Data analysis based on structural similarity was not sufficient to predict whether 

an EM would form, nor to highlight a potential correlation between the molecular structure of 

EM and their viscosities.  

Nine classification models, based on 2D or 3D structural descriptors and ANN, SVM and RF 

ML algorithms, were developed to predict the potential formation of a eutectic mixture with 

and without PCA for dimensionality reduction. Classification models show better accuracy 

with the BAT 3D structural descriptor rather than with BoB or 2D Morgan fingerprints. 

Dimensionality reduction improved the accuracy of 7 out of the 9 models tested. The SVM-

BAT-PCA model exhibited the best generalization performance during cross-validation. 

Furthermore, to the best of our knowledge, the dataset presented and used in this study for 

classification is the largest of its kind in the existing literature used for this purpose.  

The regressors were evaluated on a test set and on a set of unseen data (challenging set). 

Morgan-Full, where “Full” implies the use of the complete set of the Morgan structural 

descriptor without PCA dimensionality reduction, was the top performing regressor on the test 

set, while Morgan-PCA performed best on the challenging set. Overall, all regressors yielded 

satisfactory predictions and can be reliable tools for viscosity predictions of new solvents. In 

several cases, the extrapolative capabilities of the Morgan-Full regressor were assessed on 

water contents and temperatures beyond the range of the training set data of those mixtures and 

yielded accurate predictions especially at low viscosities. Apart from their good performance, 

all models employ descriptors that are obtained easily and without significant computational 

cost. Moreover, the experimental viscosities we provide compose the largest dataset used for 

viscosity prediction, that includes data on the water content; the effect of this parameter on the 

viscosity is lacking in predictive models within the current literature.  
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The SHAP algorithm, employed to quantify the global and individual contributions of the input 

features to the models’ output for both classification and regression tasks, actually serves other 

critical purposes. It provides insights on model reliability and allows to draw meaningful 

correlations between features and the target property. It has shown that the molecular structure 

is not the only parameter influencing the formation of an EM and its viscosity, highlighting the 

key role of temperature and water content. It sometimes might seem to re-explain known 

information, but this provides evidence for the trustworthiness of the models. It can help 

evaluate the origin of errors, providing information about possible weaknesses of the model, 

which is crucial for improving model performance, as part of our machine learning workflow.   

It is important to note that the descriptor that demonstrated the poorest performance in 

regression, i.e. BAT, achieved the highest accuracy in classification, highlighting the interest 

of distinct evaluation of structural descriptors for each task. 

Finally, further improvements of the predictions are possible by incorporating even larger 

experimental datasets including a greater diversity of chemical compounds. This would 

enhance the accuracy and generalizability of our models. The replacement of the binary 

Morgan fingerprints used in the present study by count-based Morgan fingerprints, alongside 

optimizing the model’s hyperparameters, could be a worthwhile approach to slightly improve 

accuracy. Future research could also explore the potential benefits of combining several 

structural descriptors, as well as the impact of dimensionality reduction and feature selection 

within this combined framework. However, in their current state, the models developed in this 

work can be used as powerful tools for the design of new EM; prior to any experiment, the 

chemical space of possible mixtures can be narrowed down to potential EM candidates, whose 

viscosity can be predicted by the best regressor. 
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