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SHIVA-CMB: a deep-learning-
based robust cerebral microbleed 
segmentation tool trained 
on multi-source T2*GRE- and 
susceptibility-weighted MRI
Ami Tsuchida1,2, Martin Goubet3, Philippe Boutinaud4, Iana Astafeva1,2, Victor Nozais4, 
Pierre-Yves Hervé4, Thomas Tourdias5,6, Stéphanie Debette2 & Marc Joliot1

Cerebral microbleeds (CMB) represent a feature of cerebral small vessel disease (cSVD), a prominent 
vascular contributor to age-related cognitive decline, dementia, and stroke. They are visible as 
spherical hypointense signals on T2*- or susceptibility-weighted magnetic resonance imaging (MRI) 
sequences. An increasing number of automated CMB detection methods being proposed are based 
on supervised deep learning (DL). Yet, the lack of open sharing of pre-trained models hampers the 
practical application and evaluation of these methods beyond specific data sources used in each study. 
Here, we present the SHIVA-CMB detector, a 3D Unet-based tool trained on 450 scans taken from 
seven acquisitions in six different cohort studies that included both T2*- and susceptibility-weighted 
MRI. In a held-out test set of 96 scans, it achieved the sensitivity, precision, and F1 (or Dice similarity 
coefficient) score of 0.67, 0.82, and 0.74, with less than one false positive detection per image 
(FPavg = 0.6) and per CMB (FPcmb = 0.15). It achieved a similar level of performance in a separate, 
evaluation-only dataset with acquisitions never seen during the training (0.67, 0.91, 0.77, 0.5, 0.07 
for the sensitivity, precision, F1 score, FPavg, and FPcmb). Further demonstrating its generalizability, 
it showed a high correlation (Pearson’s R = 0.89, p < 0.0001) with a visual count by expert raters 
in another independent set of 1992 T2*-weighted scans from a large, multi-center cohort study. 
Importantly, we publicly share both the pipeline (https://github.com/pboutinaud/SHiVAi/) and ​p​r​e​-​t​r​
a​i​n​e​d models (https://github.com/pboutinaud/SHIVA-CMB/) to the research community to promote 
the active application and evaluation of our tool. We believe this effort will help accelerate research on 
the pathophysiology and functional consequences of CMB by enabling rapid characterization of CMB in 
large-scale studies.

Cerebral microbleeds (CMB) result from hemosiderin breakdown products left after microscopic hemorrhages1. 
They are one of the cardinal features of cerebral small vessel disease (cSVD), together with other markers such 
as white matter hyperintensities of presumed vascular origin (WMH), perivascular spaces (PVS), and lacunes2. 
CMB can be encountered in cSVD related to vascular risk factors with a typical central, deep location (basal 
ganglia, thalamus, brain stem, and cerebellum) and can be even more prominent in cSVD related to cerebral 
amyloid angiopathy (CAA), predominantly in lobar regions3. They are associated with a higher risk of both 
hemorrhagic and ischemic stroke4, cognitive decline, and dementia3. CMB has also been recognized as one of 
the main MRI abnormalities that can emerge in association with the use of anti-amyloid beta (Aβ) treatment for 
Alzheimer’s disease5, coined amyloid-related imaging abnormalities or ARIA6. More specifically, it is one feature 
of ARIA-associated hemorrhage, or ARIA-H. With the recent approval of anti-Aβ antibodies by the US Food 
and Drug Administration, there is an increasing need for monitoring the presence and emergence of CMB to 
aid clinical decision-making for such treatments7. While their visual detection is reasonably reliable8, this task 
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can be very time-consuming and dependent on the reader’s expertise and would thus greatly benefit from an 
advanced automatic detection tool.

Historically, CMB were often detected on two-dimensional T2*-weighted gradient echo sequences (2D 
T2*GRE), in which CMB appear as a small area of signal loss. More modern sequences are typically based 
on higher-resolution 3D acquisition and include vendor-specific processing to enhance the susceptibility 
effects, thus increasing the sensitivity to CMB. The term susceptibility-weighted imaging (SWI) is often used 
broadly to denote these high-spatial-resolution sequences with enhanced susceptibility contrasts, usually by 
combining the phase information with the magnitude. Although technically it is a specific processing method 
implemented on Siemens and other scanner vendors, colloquially it is applied more generally to include similar 
susceptibility-weighted sequences, such as susceptibility-weighted angiography (SWAN) by GE Healthcare 
and SWI with phase enhancement (SWIp) by Philips9. Since the imaging appearance of T2*GRE sequences 
and the scanner-reconstructed susceptibility-enhanced derivatives of these sequences depend strongly on the 
acquisition parameters and techniques, the resulting diversity of input images poses a particular challenge for 
developing an automated method for CMB detection. While the past decade has seen an increasing number 
of studies proposing automated or semi-automated CMB detection methods, a recent comprehensive review 
indicates that the majority base the development and evaluation of the method on a single dataset or two, with 
unknown generalizability in independent samples10.

Another significant roadblock to the application of automated CMB detection methods is the scarcity 
of publicly available tools that a third-party user can easily deploy. With the increasing number of studies 
incorporating supervised deep-learning (DL)-based methods10–14, the performance of the methods largely 
depends on the quality of the training datasets. Without the open sharing of the training datasets or the pre-
trained model, the robustness of the methods across diverse acquisition types is difficult to test, even if the 
authors publicly shared code repositories for their model architecture, which in itself is still relatively rare. It 
hinders the comparison of methods across studies and datasets, and limits their application in both research and 
clinical settings.

In the present work, we describe a fully automated DL-based CMB detection tool that we call “SHIVA-CMB” 
detector. It has a 3D Unet-based architecture15 similar to our previously described detectors for other cSVD 
markers16,17, and takes the entire 3D volume of T2*GRE or SWI-like input image to generate a predicted map 
of CMB. It has been trained on diverse datasets from 6 different studies and seven acquisitions that include 
2D and 3D T2*GRE acquisitions with or without susceptibility effects enhancement from different scanner 
manufacturers. We demonstrate the robustness of our tool on two independent datasets not seen during the 
training. Crucially, we make the pre-trained model described in this work ​(​​​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​p​b​o​u​t​i​n​a​u​d​/​S​H​I​
V​A​_​C​M​B​/​​​​​) as well as the entire pipeline of our tool openly available ​(​​​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​p​b​o​u​t​i​n​a​u​d​/​S​H​i​V​A​i​/​​​​​) 
to allow the application of our tool on new datasets without a need for retraining or preprocessing.

Methods
Participants and MRI Data description
Datasets from six independent studies with varying population characteristics were used to develop the SHIVA-
CMB model, and two additional datasets were used for evaluation only (Table 1). Each dataset comes from 
cohort studies for which local ethical approval had already been described elsewhere, except for the SHIVA study 
used in the evaluation, whose details are given in the cohort description below.

Cohort type N (scans) Scanner Acquisition TR (msec)/TE (msec)/FA (°) Resolution (mm)

Training/testing

 SABRE-MICCAI2021 Normal aging 11 3T Philips Achieva 2D T2*GRE 1288/21/18 0.45 × 0.45 × 3.0

 RSS-MICCAI2021 Normal aging 34 1.5T GE 3D T2*GRE 45/31/13 0.49 × 0.49 × 0.8

 ALFA-MICCAI2021 AD risk and normal aging 27 3T GE Discovery 2D T2*GRE 1300/23/15 1.0 × 1.0 × 3.0

 DOU Stroke and normal aging 20 3T Philips SWIp 17/24/NA 0.45 × 0.45 × 2.0 1 mm slice spacing

 BBS First-time stroke
162

3T GE Discovery
SWAN 60/24.3/15 0.43 × 0.43 × 1.6

159 2D T2*GRE 775/21.7/20 0.47 × 0.47 × 4.5

 AIBL-Real
AD, at risk, and normal aging

57 (30)
3T Siemens Trio Trim SWI 27/20/20 0.93 × 0.93 × 1.75

 AIBL-Synthetic 76 (56)

Testing only

 SHIVA cSVD and normal aging 14 3T Siemens Prisma
SWI 24/17.1/15 0.8 × 0.8 × 3.0

T2*GRE 872/20/20 1.0 × 1.0 × 2.5

 MEMENTO Memory clinic 1992 3T/1.5T multicentre 2D T2*GRE 650/20/20 1.0 × 1.0 × 2.5

Table 1.  Summary of datasets used for the development and evaluation of SHIVA-CMB. For each dataset, 
the type of cohort (Alzheimer’s disease, AD; cerebral small vessel disease, cSVD), the total number of scans 
used in the present study, scanner vendor (and model when this information is available), type of acquisition, 
basic sequence parameters (Repetiton time, TR; echo time, TE; flip angle, FA), and image resolution are 
summarized. For the AIBL dataset, some longitudinal acquisitions were included, and the number in the 
bracket indicates the number of unique participants. For all other datasets, the number of scans also represents 
the number of participants.

 

Scientific Reports |        (2024) 14:30901 2| https://doi.org/10.1038/s41598-024-81870-5

www.nature.com/scientificreports/

https://github.com/pboutinaud/SHIVA_CMB/
https://github.com/pboutinaud/SHIVA_CMB/
https://github.com/pboutinaud/SHiVAi/
http://www.nature.com/scientificreports


Most of the training datasets were SWI-like acquisitions on 3T scanners from three major vendors (Siemens, 
Philips, and GE), with the exception of the MICCAI2021 datasets, which were T2*GRE acquisitions on 1.5T 
or 3T scanners. Each dataset was divided into training/validation and separate, held-out evaluation test sets, as 
summarized in Table 2. The separation between the training/validation and the held-out test set was made after 
stratifying the data on the available CMB count (when only visual CMB count or coordinate information was 
available) or voxel count (when the ground truth CMB label was available) information per dataset, depending on 
the initial label availability, to roughly balance the frequency of CMB in each set. For each dataset, approximately 
80–85% of the data were used for the training/validation, and the remaining for the held-out test.

To further evaluate our tool’s generalizability and practical utility, we used two other independent datasets 
not included in the training and thus unseen by our model. In the first dataset (SHIVA) both SWI and T2*GRE 
acquisitions were available from the same subjects, with manual labels of CMB in each modality. Thus, it was 
possible to assess the segmentation accuracy in each modality in this dataset. While no manual CMB labels were 
available from the second dataset (MEMENTO), we used the expert visual rating of CMB in a large number of 
subjects with T2*GRE acquisitions from a multicenter study to assess the transferability of our tool in a clinical 
setting.

SABRE (part of MICCAI2021 Task2 training dataset18)
The Southall and Brent Revisited (SABRE) study is a prospective population cohort of residents in Southall 
and Brent, UK19. Participants were invited to participate in a brain MRI session on a 3T Philips scanner during 
their third clinical visit between 2014 and 2018. Ethical approval had been obtained from the National Research 
Ethics Service Committee, London-Fulham (14/LO/0108)18. All methods were performed in accordance with 
the relevant guidelines and regulations defined for SHIVA study (see SHIVA description). As the cohort was 
recruited initially to investigate metabolic and cardiovascular disease across ethnicities, participants were 
composed of three ethnic backgrounds. The mean age at the time of MRI acquisition was 72 years, ranging from 
39 to 92 years. The present study used T2* GRE scans from 11 subjects released publicly as part of the training 
dataset for the Vascular Lesions Detection and Segmentation (VALDO) challenge ​(​​​h​t​t​p​s​:​/​/​v​a​l​d​o​.​g​r​a​n​d​-​c​h​a​l​l​e​n​g​
e​.​o​r​g​​​​​​)​ organized as part of MICCAI 202118.

RSS (part of MICCAI2021 Task2 training dataset18)
The Rotterdam Scan Study20 is part of a larger prospective cohort of the Rotterdam Study21 in Rotterdam, the 
Netherlands. Participants of the Rotterdam Study aged 45 years and over, free of dementia, were randomly 
selected and invited to participate in the RSS with a brain MRI session on a 1.5T GE scanner. Ethical approval 
had been obtained from the Ministry of Health for Research Act18. All methods were performed in accordance 
with the relevant guidelines and regulations defined for SHIVA study (see SHIVA description). The present work 
uses T2*GRE scans from 34 subjects released publicly as part of the MICCAI2021 VALDO challenge.

Dataset

Training set Test set

Ground truth label generationNumber of scans
Number of CMB 
(median [range]) Number of scans

Number of CMB (median 
[range])

SABRE-
MICCAI2021 8 86 (3 [0, 62]) 3 6 (3 [0, 3])

Provided by MICCAI2021 (Sudre et 
al., 2022)RSS-MICCAI2021 28 85 (0 [0, 26]) 6 9 (0 [0, 8])

ALFA-
MICCAI2021 24 30 (1 [1, 3]) 3 4 (1 [1, 2])

DOU 17 59 (2 [1, 11]) 3 15 (1 [1, 13]) Region growing based on coordinates 
provided by (Dou et al., 2016)

BBS-SWAN 136 560 (1 [0, 47]) 26 79 (1 [0, 28])
Iterative and semi-automated (training) 
or manual (test) annotation by TT 
and MG

BBS-T2*GRE 133 555 (1 [0, 47]) 26 79 (2 [0, 28])
Labels defined on SWAN projected to 
T2*GRE (training & test) then reviewed 
by TT et MG (test)

AIBL-Real 44 (24)* 91 (1 [1, 7]) 13 (8)* 57 (2 [1, 17]) Region growing based on coordinates 
provided by (Momeni et al., 2021) and 
reviewing by TT and MGAIBL-Synthetic 60 (48)* 634 (10 [8, 19]) 16 (16)* 175 (10.5 [9, 15])

SHIVA-SWI - - 14 112 (3 [1, 63]) Semi-automated annotation by TT 
and MGSHIVA-T2*GRE - - 14 108 (3 [0, 62])

MEMENTO - - 1992 1503 (0 [0, 50]) -

Table 2.  Summary of total number of scans and number of ground truth CMB in training versus test set. The 
number of scans used for training the model (including validation) and reserved for the test set is summarized, 
together with the median and range of ground truth CMB labeled by expert raters in each set. For each dataset, 
generation of these ground truth labels are also described briefly (see text for more details). * Numbers inside 
the brackets indicate the number of unique subjects.
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ALFA (part of MICCAI2021 Task2 training dataset18)
The Alzheimer’s and Families (ALFA) cohort is a Spanish cohort of family and relatives of Alzheimer’s Disease, 
and thus enriched for genetic predisposition to AD, but the participants were cognitively normal and aged 45 
to 74 years (mean age ± standard deviation: 55.8 ± 6.7 years)22. The study was conducted in Barcelona, Spain, 
and T2*GRE scans acquired on a 3T GE Discovery scanner from 27 subjects were available as part of the 
MICCAI2021 VALDO challenge. Ethical approval had been obtained from the Independent Ethics Committee 
Parc de Salut Mar Barcelona and registered at Clinicaltrials.gov (NCT01835717)18. All methods were performed 
in accordance with the relevant guidelines and regulations defined for SHIVA study (see SHIVA description).

DOU11

This is a publicly available dataset (http://www.cse.cuhk.edu.hk/~qdou/cmb-3dcnn/cmb-3dcnn.html) for 20 
subjects from Dou et al. (2016) study11. The study authors selected the subjects for a public release from a larger 
dataset of 320 subjects, 126 of whom had a stroke (mean age ± standard deviation: 67.4 ± 11.3 years) and 194 
subjects of normal aging (mean age ± standard deviation: 71.2 ± 5.0 years). These participants were recruited 
and underwent an MRI session in Hong Kong, China. The SWI acquisition was performed with a 3D spoiled 
gradient-echo sequence using venous blood oxygen level-dependent series on a 3T Philips scanner. All methods 
were performed in accordance with the relevant guidelines and regulations defined for SHIVA study (see SHIVA 
description).

BBS23

This dataset is from a sub-sample of 162 subjects in the “brain before stroke (BBS)” cohort acquired at Bordeaux 
University Hospital, France23. As stated in Coutureau et al. (2021)23, the study was approved by ethical standards 
research committees on human experimentation and all patients or legal representatives provided written 
informed consent. All methods were performed in accordance with the relevant guidelines and regulations 
defined for SHIVA study (see SHIVA description). The BBS cohort consisted of 428 patients > 18 years of age 
with a first-ever diagnosis of minor to severe supratentorial cerebral infarct (mean age ± standard deviation: 
67.5 ± 14.1 years, 63.5% male). The selection was based on the amount of CMB visual counts made by two 
experts on the SWAN acquired from a 3T GE scanner. Out of 361 subjects with SWAN scans with corresponding 
visual CMB rating, all 92 subjects with at least one CMB identified were included. Additionally, 70 subjects 
without any CMB identified in the initial CMB rating were randomly selected and included in the study. In 
addition to the SWAN acquisition, 2D multi-echo fast T2*GRE acquisitions were also available from 159 out of 
the 162 participants. We extracted the T2*GRE at the TE = 21.7ms in these participants to be included in the 
training and test dataset.

AIBL24,25

This dataset is derived from the Australian Imaging Biomarkers & Lifestyle (AIBL) study26, in which 288 
participants out of > 1000 in the cohort participated in the MRI component of the study and were extensively 
followed up, with longitudinal acquisitions of brain MRI scans for up to 7 times after the baseline scan27. As stated 
in Momeni et al. (2021)25 approval for the study was obtained from the Austin Health Human Research Ethics 
Committee and St Vincent’s Health Research Ethics Committee, and written informed consent was obtained. 
All methods were performed in accordance with the relevant guidelines and regulations defined for SHIVA 
study (see SHIVA description). At baseline, all participants were > 60 years of age; 53 had been classified as mild 
Alzheimer’s disease and 57 as mild cognitive impairment. The remaining subjects were cognitively normal but 
were selected to include approximately 50% participants with subjective memory complaints and 50% carrying 
at least one ApoE ε4 allele28. The data used in the present work consists of 57 SWI scans from 30 subjects 
acquired on a 3T Siemens TRIM TRIO scanner with at least one definite CMB in each scan, as described in25. 
Momeni et al. (2021) also described and publicly released synthetic CMB data generated from scans of subjects 
with and without CMB. The synthetic CMB data in subjects without real CMB were available as ten different 
versions of synthetically-generated CMB in 313 SWI scans from 100 subjects. However, so as not to make the 
model overlearn from the synthetically-generated CMB dataset with a pre-specified number of CMB in each 
image, we only used the first version and randomly selected 76 SWI scans from 56 subjects from this batch to be 
used in the training and test data.

SHIVA
This is an ongoing prospective cohort study dedicated to deriving extensive circulating and imaging biomarkers 
of cSVD as part of the RHU-SHIVA project (https://rhu-shiva.com/). This study was approved by the French 
central ethics committee (Comité de Protection des personnes: 2022-A00493-40), informed consent was 
obtained from all the subjects and all methods were performed in accordance with the relevant guidelines and 
regulations. All participants were > 60 years old, and either had extensive WMH (with a Fazekas score29 of 2 
or 3) or very little of them (Fazekas score of 0–1). As of March 2024, 150 participants have been enrolled and 
underwent an MRI session that included a T2*GRE and an optional SWI acquisition with 3T Siemens Prisma 
scanners in Bordeaux or Paris, France. The present work included 14 participants, eight of whom had extensive 
WMH and the remaining without, with both types of acquisitions available.

MEMENTO30

MEMENTO is a French nationwide cohort study aimed at improving the understanding of the natural trajectory 
of Alzheimer’s disease and related disorders30. This study was performed in accordance with the guidelines of 
the Declaration of Helsinki. The MEMENTO study protocol has been approved by the local ethics committee 
(“Comité de Protection des Personnes Sud-Ouest et Outre Mer III”; approval number 2010-A01394-35). All 
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participants provided written informed consent and all methods were performed in accordance with the 
relevant guidelines and regulations. A total of 2323 participants > 60 years of age (mean age ± standard deviation: 
70.9 ± 8.7, 62% female) were recruited across the 26 French university-based memory clinics with access to MRI 
and biobank facilities. Participants had either very mild to mild cognitive impairments or isolated subjective 
cognitive impairments, but none had been diagnosed with dementia at baseline. The neuroimaging protocol was 
harmonized across the centers, with 86% of participants scanned with a 3T MRI scanner and the remaining with 
a 1.5T scanner, and included a 2D T2*GRE sequence31. The present work included 1992 participants with experts 
visual counting of CMB and the complete set of anatomical scans, including the T2*GRE from the baseline 
measurement. CMB counting was performed by a trained rater according to the guidelines in Greenberg et al. 
(2009)3 and using the Microbleed Anatomical Rating Scale (MARS)32, which was verified by an experienced 
neuroradiologist, as described in Kaaouana et al. (2015)31.

Generation of CMB ground truth labels
Table 2 includes a brief summary of how the ground truth labels were generated for each dataset. Of all the 
datasets used to train the SHIVA-CMB model, manually-traced CMB ground truth labels were originally 
available only in the three datasets from MICCAI 2021 challenge datasets (SABRE, RSS, and ALFA). The study 
authors provided coordinate information for CMB location for two publicly available datasets (DOU and AIBL). 
We used the combination of a region-growing algorithm and manual modification by expert raters (TT and 
MG) with 3D Slicer to prepare CMB ground truth labels for these datasets. The CMB labels for BBS and SHIVA 
cohorts were created semi-automatically, in which the same expert raters reviewed the potential CMB clusters 
generated by the precursors of the SHIVA-CMB model and modified them. The CMB labels for BBS and SHIVA 
cohorts were created semi-automatically, in which the same expert raters reviewed the potential CMB clusters 
generated by the precursors of the SHIVA-CMB model and modified them. However, this process was repeated 
several times for BBS during the iterative learning, in which a batch of around 20 images were reviewed by 
the experts, modified, and fed back to the model as the training data in each iteration, and ended when all the 
images were reviewed and the experts were satisfied with the CMB labels. For SHIVA, the candidate CMB labels 
were generated as the last iteration of the overall training process: only one round of training and reviewing was 
necessary to create the final ground truth CMB labels on the 14 images each from SWI and T2*GRE scans. The 
definition of CMB in all datasets followed the STandards for ReportIng Vascular on nEuroimaging (STRIVE) 
guideline2,33. A more detailed description of the ground truth CMB label generation in each dataset can be found 
in the Supplemental Material, Sect. 1.

SHIVA-CMB detector
SHIVA-CMB pipeline overview
Figure 1 shows the summary of the SHIVA-CMB detection pipeline. As with our previously published SHIVA 
tools16,17, the following preprocessing steps are applied to each 3D scan (source T2*GRE or SWI-like image) and 
CMB label image.

Fig. 1.  SHIVA-CMB pipeline summary. (a) The raw input image (T2*GRE or SWI) is first reoriented, 
resampled to 1 mm isotropic, and the brain mask is generated to get the center of mass for cropping. (b) The 
image is cropped to 160 × 216 × 176 and intensity-normalized between values of 0 and 1. (c) The preprocessed 
image is used as the input for the SHIVA-CMB model. When training, CMB label in the same cropped space 
is used as the ground truth. (d) The raw output of the model has values between 0 and 1. (e) Thresholding is 
applied to binarize the image to produce the final segmentation of the predicted CMB.
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	1.	� Reorientation to match either LAS or RAS (left or right/anterior/superior) orientation using fslreorient2std 
tool from the FMRIB Software Library (FSL: https://fsl.fmrib.ox.ac.uk/fsl).

	2.	� Resampling to 1 mm isotropic using flirt from the FSL34, with -applyisoxfm and -noresampblur options.
	3.	� A brain mask created based on the source T2*GRE/SWI-like scan is used to obtain the brain mass center, and 

a bounding box is used to crop all images to a uniform dimension of 160 × 216 × 176 voxels.
	4.	� Voxel intensity values inside the brain mask are linearly rescaled to values between 0 and 1 by setting the 99th 

percentile value as the maximum and any higher intensity values as 1.

Following these preprocessing steps, the input image is then fed to the SHIVA-CMB model either for training 
or for inference in new data. When training the model, the ground truth CMB label image of the corresponding 
image was used to minimize the loss function as detailed below. The raw output of the trained model is the 
prediction map of CMB, valued between 0 and 1. During the semi-automated generation of CMB labels for BBS 
and SHIVA datasets (see Supplemental Material, Sect. 1), a low threshold (0.05) was applied when binarizing 
the final map so that as many potential candidate CMB clusters were reviewed by the experts and rejected if 
deemed false positive. For the evaluation of the final model, a chosen threshold of 0.4 was applied to binarize the 
predicted CMB, as described in Supplemental Material, Sect. 3.

Model architecture and implementation
The SHIVA-CMB detector is a modified Unet35 that takes a 3D input array representing the whole brain to 
perform CMB segmentation on each input scan. It shares the same basic architecture as the previously published 
SHIVA tools16,17, and is directly derived from the latest version of SHIVA-PVS (T1.PVS/v1, ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​
m​/​p​b​o​u​t​i​n​a​u​d​/​S​H​I​V​A​_​P​V​S​/​​​​​​)​ that had been trained to segment perivascular spaces from a single 3D image 
input (individual T1w scan) and had the following architectural features: the number of initial kernels (feature 
maps) = 10, the number of stages (depths) = 7, the number of 3D convolutions at each stage = 2, the multiplication 
factor applied at the first convolution layer of each stage = 1.8 (see Fig. 1 in Tsuchida et al., (2023) for a schematic 
overview of the network architecture).

For every iteration of model training, the following set of data augmentations were applied: (i) randomly 
flipping on the midsagittal plane, (ii) random voxel translations (up to plus or minus 10 voxels in each orthogonal 
axis), (iii) random rotations (plus or minus 10 degrees around all orthogonal axis) (iv) non-linear voxel intensity 
value transformation using a Bézier curve, similarly as in Zhou et al. (2021)36, with two endpoints set to [0, 0] 
and [1, 1] and two control points within this range generated randomly.

The network was implemented in Python 3.9, using Tensorflow 2.10 with the included Keras version, scikit-
learn (1.0.1), and scikit-image (0.18.3), and was trained on a computer (Ubuntu 22.04) with a Xeon ES2640, 40 
cores, 256 Gb RAM, and a Tesla A100 GPU with 80Gb RAM. The training was performed iteratively as described 
in the section below, with each iteration of training using a 3-fold cross-validation scheme on the training/
validation set stratified on the CMB load per dataset used at any given iteration. Every iteration used the Adam 
optimizer with the default parameters of beta1 = 0.9, beta2 = 0.999, epsilon = 1e–7. It used a cyclical learning rate 
with exponential decay, with the initial and maximum learning rates set to 1e-6 and 0.001, respectively. As with 
other SHIVA tools, the loss function for training the model was a Dice loss function computed at the voxel-level 
per input scan (Eq. 1):

	
Dice loss = 1 −

(
2 ×

∑
voxels

(ytrue ∗ ypred) + ϵ∑
voxels

ytrue +
∑

voxels
ypred + ϵ

)
� (1)

where ytrue and ypred represent the image arrays for the ground truth CMB label and predicted CMB, respectively, 
and (ytrue * ypred) represents the intersection between the two images. The smoothing constant  of 1e-6 was used 
to prevent the division by 0. To generate CMB prediction in the test set data, the output from each of the 3 folds 
valued between 0 and 1 was averaged to create the CMB prediction map, also valued between 0 and 1.

The final trained models described in the present study are publicly available as H5 files that can be used to 
detect CMB in any new T2*GRE or SWI-like scans as part of the SHIVA-CMB detector package ​(​​​h​t​t​p​s​:​/​/​g​i​t​h​u​b​
.​c​o​m​/​p​b​o​u​t​i​n​a​u​d​/​S​H​I​V​A​_​C​M​B​​​​​​)​.​ A NVIDIA GPU with at least 9Go of RAM is required to apply the ​S​H​I​V​A​-​C​
M​B detector.

Incremental and iterative training
Since MICCAI2021 challenge datasets were the only images with manually delineated CMB labels at the outset, 
we implemented incremental and iterative training of our model to generate or refine the training dataset like 
those described in Lutnick et al. (2019)37. In this process, predictions of early generations of our model were 
thresholded and binarized to be reviewed and manually modified when necessary by two neuroradiologists 
experienced in cSVD marker evaluation (MG and TT), then fed back as new training data. The threshold was set 
to a very low value of 0.05 to produce as many predicted CMB clusters as possible since it is easier to review and 
reject false positive clusters than to find unmarked false negative CMB. At each iteration of training, the model 
inherited the initial weights from the previous model to speed up the training.

The details of the successive steps taken to train the current model are provided in the Supplemental Material. 
Briefly, we initially tried using all MICCAI2021 challenge data (all T2*GRE) to train the first generation of our 
model and predict CMB in SWIp acquisitions of DOU dataset, from which the coordinate information of the 
CMB was available. However, likely due to specific acquisition parameters in each of MICCAI2021 datasets, 
only a model trained with RSS was able to produce a reasonable prediction on DOU dataset. Subsequently, 
a model trained on the combined RSS and DOU were used to generate predictions of CMB on BBS SWAN 
datasets, which underwent several iterations of generated CMB reviewing by neuroradiologists, adding the 
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reviewed CMB label to the training data to generate improved predictions of CMB. This process was repeated 
for real and synthetic CMB data on AIBL SWI images. Finally, in order to make the model robust to prediction 
on T2*GRE, the remaining datasets from MICCAI2021 (SABRE and ALFA), as well as T2*GRE scans from the 
same participants in BBS were added to the training dataset of the final model.

Performance evaluation
Performance evaluation metrics to evaluate data with ground truth manual labels
We used the standard spatial similarity metrics at the lesion cluster level to quantify the similarity of the ground 
truth and predicted lesion labels. Specifically, we count the number of true positive (TP), false negative (FN), 
and false positive (FP) clusters, with each individual lesion cluster defined as a 3D connected component using a 
voxel connectivity of 26. The TP cluster was defined as the predicted CMB cluster that overlaps with the ground 
truth CMB cluster at least by one voxel, while the predicted cluster without any overlap was counted as the FP. 
The total numbers of TP, FN, and FP were used to compute the following performance metrics.

•	 Sensitivity (or true positive rate) : T P
T P + F N

•	 P recision (or positive predictive value) : T P
T P + F P

•	 F1 score (or Dice coefficient): 
(

2× T P
(2× T P )+F N+F P

)

As with our previous work, we compute these metrics on a per input scan (i.e., single 3D input image volume) 
basis. However, this method would weigh each input image equally regardless of the amount of CMB present 
in a given image. Since some of the images may contain no or very few CMB, we define the edge cases where 
the denominators of sensitivity (TP + FN, or the number of ground truth CMB) or precision (TP + FP, or the 
number of detected CMB) are zeros as follows:

•	  If TP + FN = 0 (no ground truth CMB to be detected)

Sensitivity = 0 if FP > 0, otherwise 1.

•	 If TP + FP = 0 (no detected CMB).

Precision = 0 if FN > 0, otherwise 1.

While the definition of these edge cases allows numerical computations of metrics in images with no true or 
detected CMB, it results in a large fluctuation of metrics with a small number of misdetections (FN or FP) in 
images with no or only a few CMB (e.g., a single FP detection in an image with no CMB would result in the F1 
score of 0 instead of 1 in the case of no FP). Alternatively, these metrics can be computed across input scans for 
any given dataset by counting TP, FN, and FP clusters across multiple scans. This effectively avoids the edge cases 
and also has the effect of weighing every CMB cluster in the dataset equally. This way of computing the metric 
across scans is implicitly adopted in most prior work on CMB detection algorithms that are 2D or 3D patch-
based, where only a single value per metric per dataset is reported. Nonetheless, given that the real use case in a 
clinical setting would involve the evaluation of a single input image from a patient, we report both the average of 
metrics computed per scan and the summary metric computed across scans of a given dataset.

In addition, because the high number of false positives is a common problem in CMB detection task, we 
report the rate of FP per scan (FPavg) and per CMB (FPcmb) across scans, as recommended by Ferlin et al., 
(2023) in their review10. They are calculated as follows:

•	 F P avg = F P total
Nimg

•	 F P cmb = F P total
Ncmb

where FPtotal is the total number of FP clusters, Nimg is the number of scans, and Ncmb is the total number of 
ground truth CMB in a given test dataset.

Evaluation of performance on held-out test dataset
We first evaluate the performance of the SHIVA-CMB tool on the held-out test set of all the datasets used to train 
our model, using the expert-reviewed CMB labels as the ground truth. Collectively, they represent 7 different 
acquisitions from 6 different scanners. We evaluated the performance across different threshold values (from 0.1 
to 1.0, with a step size of 0.1) and cluster-size filters (from 1 to 10 voxels, with a step size of 1) to assess the best 
threshold and also check the effects of filtering out clusters based on their size, as described in the Supplemental 
Material. Based on the evaluation, we adopted a threshold of 0.4 for comparing scores across different test 
datasets. We also filter out clusters ≤ 2 voxels (equivalent to 2 mm3).

Evaluation of performance on the out-of-sample dataset with ground truth labels
We then evaluate the performance of SHIVA-CMB on the SWI and T2* GRE scans from 14 subjects in the 
SHIVA cohort, representing a dataset completely unseen by the model during the training. Hence, it provides 
a better indication of the generalizability of our tool in real-world clinical applications for the two major input 
acquisition types.
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Evaluation of performance on the out-of-sample dataset with visual rating
Lastly, we evaluate our tool in a larger, multi-center study MEMENTO dataset. No manually traced CMB labels 
can be used for this dataset to compute the spatial similarity with the predicted CMB, but a visual rating with the 
MARS scale is available. Therefore, we evaluate the performance by comparing the predicted CMB count against 
the visual count of expert raters using Pearson’s correlation. We also evaluate how well the patient classification 
based on the predicted CMB count aligns with that based on the expert visual count into four groups, highlighting 
two clinically relevant cutoffs, in the context of ARIA-H monitoring and stroke treatment38–40: those without 
CMB (CMB count = 0), those with a few (1–3), moderate (4), and severe (10 or more) CMB burden.

Results
Performance on held-out test-set data
SHIVA-CMB was trained on seven different 2D or 3D T2*GRE-based acquisitions taken from six cohort-based 
studies, of which two were population-based (SABRE, RSS) and the remaining targeting high-risk individuals 
(ALFA and AIBL for Alzheimer’s) and/or including clinical population (AIBL for Alzheimer’s, DOU and BBS 
for stroke). We present the performance evaluation after binarizing the CMB prediction map at the chosen 
threshold of 0.4, as described in the Supplemental Material. We use the standard spatial similarity metrics 
(sensitivity, precision, and F1) that compare the predicted CMB labels with the ground truth labels reviewed by 
expert raters. These metrics can be calculated either per scan and averaged across scans, or by pooling the true 
positive (TP), false negative(FN), and false positive (FP) clusters across scans on a given dataset to get a single 
value. We present both in Table 3, which summarizes each performance metric in each of the seven acquisition 
types separately and across all the held-out test sets (top row, ‘All’). Table 3 additionally presents the amount of 
FP, either per scan (FPavg) or per CMB cluster in a given dataset (FPcmb).

Overall, our model shows a good balance between sensitivity (mean score per scan of 0.68 and 0.67 across 
all 96 test set scans) and precision (mean score per scan of 0.72 and 0.82 across scans), with a global mean F1 
of 0.68 and across-scan F1 of 0.74. The performance metrics vary across different datasets and scan types, with 
generally better performance in SWI-like scans (DOU, BBS-SWAN, AIBL) compared to T2*GRE scans without 
susceptibility enhancement (MICCAI 2021 datasets and BBS-T2*GRE), except the RSS data, which shows a 
high mean F1 score per scan and across-scan F1 score of 0.96 and 0.82, respectively, on T2*GRE scans. Notably, 
the FP rates are very low across the datasets, with < 1 FP per image for all but AIBL with real CMB dataset, 
with the average of 2.3 FP per image, and < 0.6 FP per CMB for each dataset and across the datasets. The 
qualitative examination of successfully detected CMB clusters in each dataset, as presented in Fig. 2, highlights 
the remarkable robustness of the model to detect CMB across diverse input scans with very different tissue 
contrasts. Notably, the detector did not segment potential sources of CMB mimics, such as iron deposits in the 
basal ganglia (Fig. 2d) and hemorrhagic lesions (hematoma in Fig. 2f). Figure 3 presents examples of the failed 
detection (either falsely detected FP or missed FN clusters) in each dataset. It reveals that in some cases, these 
failures may not be, in fact, failures but rather likely indicate imperfect ground truth labels, representing true 
CMB missed or non-CMB mis-segmented by human raters. For example, the FP clusters in Fig. 3b and d appear 
to be true CMB missed by the expert raters, while clusters labeled as CMB in (a) and (h) appear questionable.

Performance on out-of-sample test-set from SHIVA cohort
Although the diverse training data in the model makes it less likely to overlearn any specific input features, it is 
critical to evaluate the detection performance in a completely new, unseen dataset to gauge its generalizability. 
Table  4 summarizes the performance evaluation of our tool in the SHIVA cohort, in which both SWI and 
T2*GRE acquisitions were available from 14 participants who had either no or extensive MRI features of cSVD. 
It indicates that the performance in this unseen cohort is very close to the overall performance in the in-sample 

Datasets Nimg Ncmb

Metric per scan (mean (SD)) Metric across scans

sensitivity precision F1 sensitivity precision F1 FPavg FPcmb

All 96 396 0.68 (0.37) 0.72 (0.39) 0.68 (0.36) 0.67 0.82 0.74 0.6 0.15

SABRE 3 6 0.56 (0.51) 0.67 (0.58) 0.60 (0.53) 0.33 1 0.5 0 0

RSS 6 9 0.96 (0.10) 0.97 (0.07) 0.96 (0.09) 0.78 0.88 0.82 0.17 0.11

ALFA 3 4 0.50 (0.50) 0.67 (0.58) 0.56 (0.51) 0.5 1 0.67 0 0

DOU 3 15 0.64 (0.56) 0.60 (0.53) 0.62 (0.54) 0.87 0.81 0.84 1 0.2

BBS-SWAN 26 76 0.75 (0.35) 0.78 (0.35) 0.75 (0.34) 0.58 0.77 0.66 0.5 0.17

BBS-
T2*GRE 26 76 0.48 (0.43) 0.58 (0.46) 0.51 (0.43) 0.41 0.84 0.55 0.23 0.08

AIBL-Real 13 57 0.75 (0.37) 0.52 (0.33) 0.58 (0.33) 0.77 0.59 0.67 2.31 0.53

AIBL-Synth 16 153 0.80 (0.11) 0.96 (0.07) 0.86 (0.07) 0.79 0.96 0.87 0.31 0.03

Table 3.  Summary of SHIVA-CMB cluster-level performance metrics on in-sample test-set scans at 
threshold = 0.4, with clusters < 2mm3 filtered out. Performance metrics computed per scan (sensitivity, 
precision, F1 score) or across scans of a given dataset (sensitivity, precision, F1 score, FPavg and FPcmb) 
at threshold = 0.4 are summarized. Mean and standard deviation (SD) are shown for performance metrics 
computed per scan. Nimg: the number of scans in a given dataset, Ncmb: the total number of the ground truth 
CMB clusters that are > 2mm3.
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test set, with the mean F1 per scan of 0.62 and 0.87, and across-scan F1 scores of 0.76 and 0.78 for SWI and 
T2*GRE inputs, respectively. Slightly better precision in this dataset (mean precision per scan of 0.72 and 0.90 
or 0.92 and 0.9 across-scan for SWI and T2*GRE inputs, respectively) is reflected in the even lower FP rates 
compared to those of the in-sample test sets (FPavg of 0.43 and 0.57 and FPcmb of 0.06 and 0.07 for SWI 
and T2*GRE). Figure 4 presents the examples of SWI (Fig. 4a,d) and T2*GRE (Fig. 4b,c,e,f) inputs and both 
successful and failed detections in each type of inputs from this cohort.

Comparison with CMB visual rating in MEMENTO cohort
Lastly, we evaluate the performance of the SHIVA-CMB detector on a large, multi-center study with T2*GRE 
scans acquired from almost 2000 participants in 26 university-based memory clinics across France, with MRI 
systems from different vendors, models, and field strengths. Figure 4c and f shows two examples of MEMENTO 
data and possible CMB clusters detected (and possibly missed) by our detector. Although it is not possible to 
assess the segmentation accuracy in the same manner as other datasets due to lack of manually traced CMB 
labels, we leveraged the visual rating of CMB by experts using the MARS scale in this dataset to assess how well 
our tool can emulate the quantification by human experts. Figure 5a shows the correlation between the CMB 
count in the whole brain detected by experts and the SHIVA-CMB in the 1992 T2*GRE scans of the MEMENTO 

Fig. 2.  Examples of CMB detections in test-set scans from each dataset used for model training. The 
heterogeneity of the input scans from different datasets is evident. For each example, the left-most panel shows 
a representative axial slice with at least one CMB cluster identified by human raters, and the middle panel 
shows a magnification of the region(s) indicated by the white box on the left panel. The right-most panel 
indicates the true positive clusters of the SHIVA-CMB (i.e. predicted CMB clusters in yellow that overlapped 
with ground truth labels) on the same magnified region, (a) T2*GRE from SABRE (part of MICCAI 2021 
VALDO challenge), (b) T2*GRE from RSS (part of MICCAI 2021 VALDO challenge), (c) T2*GRE from ALFA 
(part of MICCAI 2021 VALDO challenge), (d) SWip from DOU, (e) SWAN from BBS, (f) T2*GRE from BBS, 
(g) SWI with real CMB from ABL, (h) SWI with synthetic CMB from AIBL. For (b), note that a non-CMB 
lesion (hematoma, top box) is not detected by SHIVA-CMB.
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Datasets Nimg Ncmb

Metric per scan (mean (SD)) Metric across scans

sensitivity precision f1 sensitivity precision f1 FPavg FPcmb

All 28 210 0.73 (0.31) 0.81 (0.30) 0.74 (0.28) 0.67 0.91 0.77 0.5 0.07

SHIVA-SWI 14 103 0.58 (0.32) 0.72 (0.37) 0.62 (0.30) 0.65 0.92 0.76 0.43 0.06

SHIVA-
T2*GRE 14 107 0.88 (0.22) 0.90 (0.18) 0.87 (0.19) 0.69 0.9 0.78 0.57 0.07

Table 4.  Summary of SHIVA-CMB performance metrics on evaluation-only SHIVA dataset at threshold = 0.4. 
Performance metrics computed per scan (sensitivity, precision, f1 score) or across scans of a given dataset 
(sensitivity, precision, f1 score, FPavg and FPcmb) at threshold = 0.4 are summarized. Mean and standard 
deviation (SD) are shown for performance metrics computed per scan.

 

Fig. 3.  Examples of detection failures (false negative, in magenta) or false detections (false positives, in cyan) 
in test-set scans from each dataset used for model training. A similar set of examples as Fig. 2 are shown, but 
showing false negative or false positive clusters of SHIVA-CMB. For each example, the left- most panel shows 
a representative axial slice with or without CMB identified by human raters, and the middle panel shows a 
magnification of the region(s) indicated by the white box on the left panel. The right-most panel shows the 
false negative (magenta) or false positive (cyan) clusters on the same magnified region. (a) T2*GRE from 
SABRE (part of MICCAI 2021 VALDO challenge), (b) T2*GRE from RSS (part of MICCAI 2021 VALDO 
challenge), (c) T2*GRE from ALFA (part of MICCAI 2021 VALDO challenge), (d) SWlp from DOU, (e) 
SWAN from BBS, (f) T2*GRE from BBS, (g) SWI with real CMB from AIBL, (h) SWI with synthetic CMB 
from AIBL.
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Fig. 5.  Comparison of CMB count and patient classification performance in MEMENTO. (a) Scatterplot 
comparing the number of CMB in the visual count by expert human raters and the number of CMB clusters 
detected by the SHIVA-CMB. Pearson’s correlation R and the associated p value, as well as regression equation 
are indicated. (b) Confusion matrix of patient classification into those with no CMB, a small number (1–3 
CMB), moderate (4–9), and high (10 or more) burden of CMB. Blue cells show agreement between the human 
rater- and SHIVA-CMB-based classification, while red cells show disagreement.

 

Fig. 4.  Examples of CMB detections in scans from unseen dataset. Representative examples of CMB detections 
by the SHIVA-CMB are shown for SHIVA (a and d SWI scans, b and e T2*GRE scans) and MEMENTO (c and 
f) cohorts. For each example, the left-most panel shows a representative axial slice with at least one visible CMB 
cluster, and the middle panel shows a magnification of the region(s) indicated by the white box on the left 
panel. The right-most panel indicates true positive clusters (i.e. overlapping with ground truth labels: yellow) 
for (a) and (b), or false positive (cyan)/ negative (magenta) clusters for (d) and (e), on the same magnified 
region. For examples in MEMENTO shown in (c) and (f), the detected clusters cannot be classified as true 
or false since there are no ground truth CMB labels in this cohort. Thus, only detected clusters are shown 
(yellow), but possible false negative clusters are indicated by white arrows in (f).
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participants, demonstrating the highly significant correlation (Pearson’s R = 0.89, p < 0.0001) and a regression 
slope close to 1. We also converted the CMB count information into a clinically relevant classification task of 
patients into those (1) without any CMB, (2) with a small number (1–3), (3) moderate (4–9), and (4) high burden 
of CMB (10 or more) to assess the classification accuracy if the SHIVA-CMB tool was to replace an expert visual 
assessment. Figure 5b shows a confusion matrix of the four classes. The overall accuracy of the SHIVA-CMB in 
such a classification scheme was 73%. The misclassification of the remaining 27% was mostly between classifying 
subjects as having no CMB and having a small number of CMB, with a similar proportion of cases where the 
human rater detected a small number of CMB but not the SHIVA-CMB (274 cases, 13.8%) or vice versa (220, 
11.0%). In no cases was there a disagreement in classifying subjects with no CMB and a high burden of CMB.

Discussion
In the current work, we presented the SHIVA-CMB detector, a 3D Unet-based model trained on the diverse 
T2*GRE acquisitions with or without susceptibility-enhancement provided by different scanner vendors. We 
aimed to develop and share an openly accessible and automated tool that can robustly detect CMB across different 
datasets without a need for retraining. We demonstrated that the detector showed a good balance of sensitivity 
and precision in a heterogeneous held-out test dataset, with the average lesion cluster-level F1 score per scan of 
0.68, or across-scan score of 0.74 in the test set consisting of 96 images from seven different acquisition types. It 
showed a similar level of, or even nominally better, performance in a smaller but never-seen evaluation dataset, 
for both SWI (0.62 and 0.76 for mean F1 per scan and across-scan F1 scores, respectively) and T2*GRE (0.87 and 
0.78 for mean F1 per scan and across-scan F1 scores) scans, highlighting the generalizability of our tool to the 
new dataset. Across all the datasets used for evaluation, our detector also showed remarkably low FP rates (less 
than 1 FP per image and < 0.5 FP per CMB in most datasets). The high generalizability of our tool is reinforced 
by the high correlation of the number of CMB detected by our tool with a visual CMB count by human experts 
in a much larger evaluation dataset of T2*GRE scans collected in a large multi-center study, also unseen by the 
model during the training. In the same dataset, the accuracy for clinically relevant patient classification task was 
73%, with very little disagreements (~ 2%) in classifying those with moderate (4–9) or high (10 or more) burden 
of CMB from those with no or a small number (< 4) of CMB. In the context of ARIA-H monitoring, the high 
accordance with expert raters in distinguishing those with moderate or high burden of CMB from those with 
no or very few CMB attest to its clinical applicability to monitor those who should be excluded from continuing 
anti-Aβ treatments40.

At first glance, the F1 scores we report here may seem less impressive compared to prior works reporting 
a similar F1 score or accuracy score of 0.9 or higher: in a recent comprehensive review of automated CMB 
detection10, at least three studies reported F1 scores > 0.9 and a much higher number of studies reported accuracy 
scores of > 0.9. However, it should be noted that the many of the reviewed work is patch-based, in which the 
performance is evaluated on a set of fragmented 2D or 3D patches of original images, typically preselected on the 
basis of the presence or absence of CMB at the center to balance two classes of patches (note that the calculation 
of accuracy score itself is only possible with the patch-level classification, since the number of ‘true negatives’ 
at the lesion-cluster level per image cannot be meaningfully defined). Thus, it is hard to know how the reported 
metrics translate when the performance is evaluated at the original image level without selecting fragmented 
patches from these images. Another, perhaps even more critical point is that many of the reviewed work was 
trained and evaluated on a single data source or two, as summarized in Table 3 of Ferlin et al., (2023)10, in stark 
contrast with six different cohort studies used in the training of our model and additional two datasets included 
in the independent evaluation sets. The training and evaluation in a single or very limited data source can result 
in over-estimation of the method performance, and in the case of any supervised learning methods, overfitting 
to the specific dataset used in a given study. To underscore both of these points, a recently published result of 
the MICCAI2021 VALDO challenge in which the CMB segmentation performance of all the contestants was 
evaluated in 147 held-out test set images from three datasets that participating teams did not have access to, 
using the metrics computed on per-image basis, the best performing method reached a median F1 score of 
0.6818. It took an ensemble model that combined the top four methods in the competition to reach a median F1 
score above 0.7, at 0.76. Thus, although evaluated in different datasets (we did not participate in the challenge 
and therefore did not have access to the held-out test set), the performance level of the SHIVA-CMB detector is 
on par with the state-of-the-art methods submitted to the VALDO competition.

As with the best-performing method in the CMB task of the VALDO competition, the SHIVA-CMB detector 
is based on a single-stage, end-to-end learning using a 3D Unet architecture15 that takes the entire 3D brain 
volume as an input. This simple framework has the advantage over typical two-stage frameworks that have been 
proposed for many earlier CMB detection methods. Two-stage frameworks usually involve the first stage that 
detects CMB candidates using hand-crafted features, such as intensities, size, and shape, including complex 
2D or 3D radial symmetry41–44, or using DL-based approaches11,45, followed by the second stage that applies 
the classification to reduce false positive detections using classic machine learning41,46,47 or DL-methods11,43–45. 
Although such frameworks can reduce the computational cost by reducing the search space in the first stage, any 
failure to detect the true candidates at the first stage would propagate to the next stage. Such interdependence of 
the two stages can complicate retraining with different or larger datasets since both stages need to be optimized. 
In contrast, our detector can be easily retrained and its weights updated as new training data become available. 
It can also be repurposed to perform different segmentation tasks that use different input modalities through 
transfer learning: in fact, the SHIVA-CMB itself initially inherited the weights of our previously described 
detector for PVS16 (SHIVA-PVS, T1.PVS/v1 in https://github.com/pboutinaud/SHIVA_PVS/) to speed up the 
training of the CMB detection task.

Another advantage of our framework is that by using the entire 3D volume of the brain as an input, it is able to 
use both local (e.g. intensity, 3D shape) and global (e.g. relative anatomical relationships of different structures) 
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features of CMB in the training data. The 3D contextual information is likely to be crucial for distinguishing the 
possible mimics from CMB: The most prominent source of these mimics are the flow voids from the vascular 
structures, most commonly pial vessels, which are difficult to differentiate from cortical CMB when only the 2D 
slice showing the cross-section is viewed3. We note, however, our approach does not completely resolve these 
difficult mimics, as these were still the most common source of false detection (an example in Fig. 4d). Another 
common source is the mineral deposits prevalent during aging48, such as calcifications and iron deposits 
frequently located in basal ganglia. Although calcifications in lobar locations may not be readily distinguished 
from CMB without additional source of information such as phase information or quantitative susceptibility 
maps (QSM) derived from multi-echo T2*GRE sequences12, typical bilateral deposits in basal ganglia (both 
iron and calcium) and occasional calcification in choroid plexus or in pineal gland can be distinguished based 
on their anatomical context and shapes, given enough examples of them in the training data (see Fig. 2d for an 
example of non-detection of mineral deposits in basal ganglia by the SHIVA-CMB, but also see Fig. 3c for a 
failure to detect a potential CMB). The advantage of using the 3D input with the whole-brain context over the 2D 
or partial 3D input is reinforced by the VALDO CMB task competition results, in which the winning team using 
the full-resolution 3D input out-performed other teams using partial 3D or 2D inputs18, despite the fact they all 
used the same basic Unet architecture included in the ‘nn (no-new)- Unet’ tool49.

We acknowledge some limitations of the current work. First, in addition to lobar calcifications, there are 
other potential mimics that our detector was not trained to disambiguate from CMB. They include small 
cavernous malformations, metastatic melanoma and diffuse axonal injury from head trauma, which however 
can usually be suspected based on the clinical context or would require multi-modal information (T1-, T2-
weighted and gadolinium injection in addition to the primary T2*GRE-based sequence) to be distinguished 
from CMB3. How critical these distinctions are would depend on the context in which our detector is used, i.e. 
clinical characteristics of the target population and specific research questions. Second, even though we used 
diverse data sources for training our model, there is always a possibility that they do not sufficiently represent 
CMB encountered in different medical conditions. Some false negatives in subjects exhibiting particularly high 
numbers of CMB in the evaluation-only SHIVA and MEMENTO datasets (Fig. 4d–f) may have resulted from the 
relatively few examples of images with very severe forms of CMB in the training dataset. Incorporating diverse 
examples of specific clinical conditions known to be associated with higher incidence and severity of CMB in 
the training dataset could further ameliorate the sensitivity in severe cases and improve generalizability. In the 
context of cSVD, the enhanced training set from patients with CAA or hereditary conditions related to cSVD like 
cerebral autosomal dominant arteriopathy50 could further improve the sensitivity of the SHIVA-CMB. Lastly, we 
made pragmatic choices during the ground truth CMB label generation across the multiple data sources that 
rendered the quality of these ground truth labels somewhat heterogeneous. In particular, those for T2*GRE 
scans in BBS used in the training were suboptimal since they were generated by simply aligning the ground 
truth labels created for SWAN scans from the same subject to the T2*GRE space, without independent reviewing 
of T2*GRE scans (although those used as held-out test sets were reviewed in the T2*GRE independently to 
accurately assess the quality of predicted CMB segmentations). Both the higher resolution and susceptibility-
enhancement processing of SWAN images are likely to result in some CMB only visible in these scans and not in 
the 2D T2*GRE images from the same subjects51. We note, however, even when using consistent protocols, there 
can be considerable uncertainties in whether any given hypointense objects in the T2*GRE-based images are 
judged to be a true CMB by human expert raters, and there is always the possibility that plausible CMB clusters 
are missed, as demonstrated by some examples of questionable false positive and negative cases in Fig. 3. Even 
though individual studies can strive to build the gold standard CMB labels in a given database as rigorously as 
possible, ultimately, we believe that it will be necessary for the field to collectively build an annotated image 
database of CMB from diverse data sources, possibly with voting from multiple experts, to establish a consensus 
gold standard, akin to the collectively created STRIVE guidelines2,33 but with actual images and annotations, that 
can be used to train and evaluate future generations of automated methods.

In summary, we presented an openly accessible SHIVA-CMB detector, a 3D Unet-based model with pre-
trained weights from diverse training data sources, that can be used out-of-the-box on new T2*GRE-based scans 
to detect CMB. To our knowledge, this is one of the few functional CMB detection tools that can be applied 
to new datasets without a need for retraining with an additional set of annotated images, although its flexible 
design allows further refinement of performance if new annotated images are available. As we have done so 
for our previously published tools that detect other markers of cSVD16,17, we plan to upgrade our models and 
make them available online continuously (https://github.com/pboutinaud/SHIVA_CMB/) as any new datasets 
become available to retrain and refine the performance. In the era of self-configuring DL tools like nn-Unet49, 
we believe that the field should shift away from achieving the highest possible performance metrics on a limited 
and study-specific dataset and instead focus on improving the practical applicability of the proposed methods 
through sharing of pre-trained models in the case of supervised methods. In addition, we provide a unified, end-
to-end tool that can segment all the principal cSVD markers from raw input MRI images by preprocessing them 
and applying the SHIVA-CMB and other models we have previously described (SHIVA-PVS16,SHIVA-WMH17) 
and generate anatomically-specific quantifications for each (https://github.com/pboutinaud/SHiVAi/). Together 
with the future refinement of our models, we believe this effort can accelerate the characterization of cSVD in 
both research and clinical settings. By allowing the automated and comprehensive quantification of cSVD brain 
lesions in large-scale studies, it should help elucidate its genetic and environmental risk factors, and ultimately 
aid with the intervention.

Data availability
The data from MICCAI 2021 VALDO challenge (SABRE, RSS, and ALFA) are available under a CC BY NC-SA 
license at the challenge website (https://valdo.grand-challenge.org, registration required). The DOU dataset is 
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available on the institutional homepage of Dr. Qui Dou ​(​h​t​t​p​:​/​/​w​w​w​.​c​s​e​.​c​u​h​k​.​e​d​u​.​h​k​/​~​q​d​o​u​/​c​m​b​-​3​d​c​n​n​/​c​m​b​-​3​
d​c​n​n​.​h​t​m​l​)​. AIBL CMB dataset used in the study is available at (https://doi.org/10.25919/aegy-ny12) under a 
CISRO data license. BBS, SHIVA and MEMENTO are not publicly available due to French regulations regarding 
the sharing of medical imaging data for protection of privacy. However, de-identified data may be available by 
request to the principal investigators in charge of respective studies (BBS: Thomas Tourdias; thomas.tourdi-
as@u-bordeaux.fr, SHIVA: Stephanie Debette, stephanie.debette@u-bordeaux.fr, MEMENTO: Carole Dufouil, 
carole.dufouil@inserm.fr). Source codes for the SHIVA-CMB detector and the links to pre-trained models are 
available on GitHub (https://github.com/pboutinaud/SHIVA_CMB/) under a CC BY-NC-SA license.
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