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Measuring natural source dependence

Cédric Gutierrez and Emmanuel Kemel∗

Abstract

The consequences of most economic decisions are uncertain; they are conditional on events

with unknown probabilities that decision makers evaluate based on their beliefs. In addition

to consequences and beliefs, the context that generates events—the source of uncertainty—can

also impact preferences, a pattern called source dependence. Despite its importance, there is

currently no definition of source dependence that allows for comparisons across individuals and

sources.

This paper presents a tractable definition of source dependence by introducing a function

that matches the subjective probabilities of events generated by two sources. It also presents

methods for estimating such functions from a limited number of observations that are com-

patible with commonly-used choice-based approaches for separating attitudes from beliefs. As

an illustration, we implement these methods on three datasets, including two original experi-

ments, and show that they consistently capture clear, albeit heterogeneous, patterns of source

dependence between natural sources. Our approach provides a framework for future research to

explore how source dependence varies across individuals and situations.
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1 Introduction

Economic decisions often involve choosing between uncertain options,1 where the probability dis-

tributions of the outcomes are unknown and generated by different contexts. Examples include

a recruiter selecting between candidates with different profiles, a firm deciding which market to

enter or which technology to adopt, a patient choosing between different treatments, or an investor

considering several stocks. In such cases, in addition to beliefs about possible outcomes, the context

itself, the “source of uncertainty”, may impact preferences. For instance, an investor may choose

to bet on the rise of a domestic stock over the rise of a foreign stock. This choice can be explained

by the belief that the domestic stock price is more likely to rise. However, the same investor may

also prefer to bet on the fall of the domestic stock over the fall of the foreign stock. These two

choices cannot be explained by beliefs alone (as the investor cannot believe that the domestic stock

is more likely to rise and fall than the foreign stock), risk attitudes, or even ambiguity attitudes

(preference for known over unknown probabilities). These choices reveal a preference for betting

on one source of uncertainty (domestic stock) over another (foreign stock).

This example illustrates a pattern called source dependence, which refers to the fact that deci-

sions depend not only on the decision maker’s beliefs about events, which can vary between sources,

but also on their attitude toward the source of uncertainty.2 A growing body of literature shows

that attitudes differ across sources depending on factors such as perceived expertise (de Lara Re-

sende and Wu 2010), emotions (Li et al. 2017), familiarity (Chew et al. 2012), or the distinction

between epistemic and aleatory uncertainty (Fox and Ülkümen 2011). Source-specific attitudes

have been observed in a variety of contexts, such as investment decisions (Kilka and Weber 2001),

strategic interactions (Bruttel et al. 2022, Li et al. 2020), and self-evaluation (Abdellaoui et al.

2023). The domain of uncertainty is rich (Li et al. 2017), and understanding how attitudes vary

across situations and individuals is essential (Baillon et al. 2018). While several methods have been

proposed to define and measure ambiguity attitudes toward a given source, there is currently no way

to interpret differences in attitudes across sources in terms of source dependence. This paper in-

troduces a tractable definition of source dependence—the preference between different sources with

1Following Wakker (2004), we refer to situations of uncertainty without (with) objective probabilities as ambiguous
(risky).

2We define a source of uncertainty as a family of events generated by a similar mechanism of uncertainty (Tversky
and Fox 1995, Abdellaoui et al. 2011).
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unknown probabilities—and proposes methods to measure it, enabling comparisons of attitudes

across sources and individuals.

Prior studies have investigated source dependence by comparing ambiguity attitudes across

different sources of uncertainty (e.g., Baillon and Bleichrodt 2015, de Lara Resende and Wu 2010,

Li et al. 2017). Converting ambiguity attitudes toward different sources into source dependence

is not straightforward for two reasons. First, ambiguity attitudes are measured on scales that

are not independent of risk preferences or are not directly interpretable, making it difficult to

compare attitudes across individuals. Methods using certainty equivalents (Fox and Tversky 1995)

or matching probabilities (Baillon et al. 2018, Dimmock et al. 2016b) measure ambiguity premia

in terms of money and willingness to bet, which do not have the same values for individuals with

different risk attitudes. Approaches that use weighting functions, like in Abdellaoui et al. (2011),

define source dependence as differences in weights that are not easily interpretable. Therefore,

these approaches preclude the direct comparison of source dependence across individuals or (pairs

of) sources. Second, when attitudes are modeled using non-linear parametric specifications (e.g.,

Abdellaoui et al. 2021, Li et al. 2019), differences in parameters across sources are also hardly

interpretable because of non-linearity. In Section 2.3, we present three detailed scenarios illustrating

these difficulties quantitatively.

To overcome these difficulties, we introduce a function ϕ that characterizes source preference

between natural sources of uncertainty, independently of risk and ambiguity attitudes. The function

ϕ is a transformation function that maps beliefs about one source of uncertainty to beliefs about

another source.3 Deviations from identity of the function ϕ are directly interpreted as source premia

and characterize source preferences. Our approach provides an easy way to quantify and interpret

source dependence. It is expressed on the probability scale and allows for a direct comparison of

source dependence between individuals without the confound of risk attitudes (utility or probability

weighting). Unlike existing methods that compare (the parameters of) ambiguity attitudes toward

different sources, the function ϕ directly captures the degree of relative preference and relative

sensitivity (Tversky and Fox 1995) between two sources. In subsequent work, Baillon et al. (2023)

present theoretical arguments on the relevance of our approach to using transformation functions

3Transformation functions have been used throughout decision theory to capture differences in utility functions
(Kreps and Porteus 1978, Klibanoff et al. 2005, DeJarnette et al. 2020).
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to directly characterize source dependence, and refer to the transformation function we introduce

in this paper as a p(robability)matcher.

Our definition and measurement of source dependence can be applied to a wide range of fields

involving multiple sources of ambiguity, such as consumer behavior (Muthukrishnan et al. 2009),

technology adoption (Barham et al. 2014), climate change (Millner et al. 2013), health (Berger

et al. 2013, Hoy et al. 2014), finance (Dimmock et al. 2016a, Easley and O’ Hara 2009), and

regulatory policies (Viscusi and Zeckhauser 2015). Empirical evidence in this literature typically

relies on measuring ambiguity attitudes using Ellsberg urns (Anantanasuwong et al. 2019, Barham

et al. 2014, Dimmock et al. 2016a, Muthukrishnan et al. 2009), while more recent applied work has

started incorporating attitudes toward natural sources of uncertainty (Attema et al. 2018, Li et al.

2019, Gaudecker et al. 2022). Studying natural sources requires disentangling beliefs from attitudes.

This can be achieved by the events-exchangeability method (Abdellaoui et al. 2011, Baillon 2008),

which measures beliefs separately from attitudes, or the belief-hedging method (Baillon et al. 2018),

which allows controlling for beliefs when measuring attitudes.4

In this paper, we show how these two approaches can be adapted in order to directly quantify

source dependence. Our definition of source dependence is tractable, and the method we propose

can be used by researchers who study attitudes toward several sources (using one of the previously

mentioned methods) and want to compare them. For instance, Barham et al. (2014) found that

ambiguity aversion (for an Ellsberg-urn task) plays an important role in technology adoption, but

only for certain technologies. However, the authors argue that “the impact of ambiguity aversion

may have more to do with the underlying characteristics of the new technology,” which cannot be

captured using Ellsberg urns and may vary across countries (p. 216). Our method can address

this question by directly quantifying source dependence between different types of technologies and

enabling cross-country comparisons. We further discuss possible applications of the method in the

discussion.

To demonstrate the tractability of our approach, we estimated our transformation function

(pmatcher), on three datasets, including one existing dataset and two original experiments. We

deliberately chose these datasets to represent the diversity of treatments of beliefs, which were either

4The stimuli proposed by the belief-hedging method can be used to either neutralize the role of beliefs (e.g., Baillon
et al. 2018) or to measure beliefs jointly with attitudes (e.g., Gaudecker et al. 2022, Li et al. 2019).

4



measured with the events-exchangeability method or neutralized with the belief-hedging method,

as well as measurement methods, which were either certainty equivalents or matching probabilities.

In all three datasets, we considered one local and one foreign source of uncertainty.

Rather than introducing a new method to differentiate attitudes from beliefs, our contribution is

to introduce a tractable definition of source dependence and demonstrate how existing approaches

(exchangeability and belief-hedging) can be adapted to measure source dependence directly. Fur-

thermore, we show that source dependence can be measured using either certainty equivalents or

matching probabilities. When using certainty equivalents, our method does not require the mea-

surement of utility or source (or probability-weighting) functions, which reduces error propagation

and the number of required choices compared to indirect methods.

Our empirical analyses employ structural-equation econometrics, which allows us to account

for stochastic choices (e.g., Gaudecker et al. 2022). To account for heterogeneity in preferences, we

estimated the sample distributions of parameters using a random-coefficient model (e.g., Abdellaoui

et al. 2021). This demonstrates that the methods we propose for estimating pmatchers are com-

patible with modern econometric techniques (Train 2009). In the discussion, we show that under

the assumption of deterministic choices and neo-additive preferences, it is possible to compute the

parameters of pmatchers without relying on econometrics.

Overall, we found evidence of source dependence in our experimental studies. We also observed

that source dependence must be described by two dimensions that capture the relative preference

and relative sensitivity between two sources. Finally, our analyses revealed very heterogeneous

patterns of source dependence in our samples. On average, individuals in our datasets showed a

preference for the “familiar” source. However, a substantial proportion of the subjects exhibited

the opposite pattern of preferences.

2 Beliefs and ambiguity attitudes toward sources of uncertainty

In this section, we introduce the theoretical framework to define attitudes toward a given source. We

then present the two common choice-based methods to separate ambiguity attitudes from beliefs, a

necessary step to estimate attitudes toward natural sources. Using three scenarios, we illustrate the

challenges of accurately measuring source dependence through the comparison of attitudes toward
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multiple sources.

2.1 Source attitudes defined

Expected utility (EU) is the benchmark model of rational choice for decisions under uncertainty

(Savage 1954). Under this model, preferences are captured by two components: a utility function

U and a probability distribution µ over events. The value assigned to a binary prospect (x,E, y),

with x ≥ y ≥ 0, the object of choice studied in this paper, that yields x if event E occurs and y

otherwise, is

µ(E)U(x) + (1− µ(E))U(y). (1)

We assume non-negative monetary outcomes and strictly increasing utility throughout. In the

case of risk, objective probabilities are available, and the value of a (risky) prospect (x, p, y), which

gives x with probability p and y otherwise, is

pU(x) + (1− p)U(y). (2)

Despite its normative appeal, this model does not capture two major psychological aspects of

decision-making under uncertainty: probability weighting and (non-neutral) ambiguity attitudes.

Probability weighting refers to the observation that decision makers do not treat probabilities

linearly (Kahneman and Tversky 1979). Under risk, this bias can be accommodated by a strictly

increasing probability-weighting function w mapping [0, 1] to [0, 1] and by assuming that a prospect

(x, p, y) is evaluated by

w(p)U(x) + (1− w(p))U(y). (3)

Non-neutral ambiguity attitudes, the other well-documented deviation from EU, refers to the

observation that decision makers may exhibit a preference between known and unknown probability

distributions over events; in other words, they behave as if they treat known and unknown prob-

abilities differently. In a famous illustration of this behavior, Ellsberg (1961) intuited that people

would prefer to bet on an urn with known composition (i.e., risky) rather than on an urn with un-

known composition (i.e., ambiguous), even if there were no reason to believe that one composition

would be more favorable than the other. Under Equation 3, such preference entails sub-additive
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probabilities, which violates probabilistic sophistication (the assumption that beliefs can be repre-

sented by a single probability distribution). It is possible to reconcile probabilistic sophistication

(at least locally, i.e. within a given source) and ambiguity attitudes by the introduction of a specific

weighting function wa and by assuming that an ambiguous prospect (x,E, y) is evaluated by

wa(µ(E))U(x) + (1− wa(µ(E)))U(y). (4)

Local (or within-source) probabilistic sophistication assumes that probabilistic sophistication

holds within source, i.e., for choices between prospects involving the same source.5 Ambiguity

attitudes in this model are captured by the difference between the weighting functions wa, when

probability distributions over events are unknown, and w, when probability distributions over events

are known. This model allows us to account for ambiguity aversion while assuming the existence

of a unique distribution of probabilities µ. This probability is called a-neutral, as it corresponds

to the willingness to bet that would be observed for an ambiguity-neutral decision maker. In this

paper, unknown probabilities are considered a-neutral and are referred to as probabilities for the

sake of simplicity.6 Abdellaoui et al. (2011) developed an approach assuming that the weighting

function can be different for each source, calling this function a source function. Using the source

function wS , an ambiguous prospect (x,E, y) with event E generated by a source S is evaluated by

wS(µ(E))U(x) + (1− wS(µ(E)))U(y). (5)

Comparing wS to w characterizes the ambiguity attitude toward a given source S. The differ-

ence between source functions wA and wB of two distinct sources A and B characterizes source

dependence, i.e., the fact that ambiguity attitudes differ across sources.7

Most empirical studies on ambiguity attitudes have focused on the unknown “Ellsberg” urn

as a source of uncertainty (for a review, see Trautmann and van de Kuilen 2015). This source

5For example, Ellsberg’s two urns example can be accommodated by this model, assuming that probabilistic
sophistication holds within each urn.

6Following Dimmock et al. (2016b), we use the notation a-neutral probabilities instead of subjective probabilities.
A-neutral probabilities “can be interpreted as the beliefs of the ambiguity neutral twin of the agent” (Baillon et al.
2021).

7Several authors have proposed considering risk as a specific source of uncertainty. Under this convention, am-
biguity aversion (wa ̸= w) is a specific case of source dependence: a preference for sources with known probabilities
over sources with unknown probabilities.
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offers the advantage that probability distributions µ can be inferred from symmetry arguments

and consequently do not need to be measured. Fewer studies have measured attitudes toward one

or several natural sources of uncertainty. Most of these studies compare attitudes toward a given

source to attitudes toward risk (i.e., wS versus w), revealing ambiguity attitudes (van de Kuilen

and Wakker 2011). In the present paper, we compare behavior toward natural sources A and B

and, hence, assess source dependence.

2.2 Separating attitudes from beliefs

Assessing source dependence requires measuring attitudes toward different sources of uncertainty,

for which the decision maker can hold different beliefs. It is thus necessary to control for decision

makers’ beliefs about each source. This paper does not introduce a new method to separate attitudes

from beliefs. Instead, we propose a method to directly estimate source dependence using existing

methods to measure attitudes toward natural sources of uncertainty.

Early studies on source dependence controlled for beliefs by directly asking subjects to state

their beliefs about a series of events generated by a given source (e.g., Fox and Tversky 1995).

However, this approach has several limitations. For instance, these measures are often not choice-

based or incentivized, and judged probabilities may be non-additive, which could reflect attitudes

toward ambiguity (Wakker 2004). Scoring rules are popular choice-based methods for measuring

beliefs, but they generally rely on the assumptions of risk and ambiguity neutrality, making them

inconsistent for analyzing source preferences (for a discussion on biases introduced by scoring rules,

see Armantier and Treich 2013). To overcome these limitations, two popular choice-based methods

have been introduced to distinguish ambiguity attitudes from beliefs: the exchangeable-events

method and the belief-hedging method. We briefly introduce these methods before showing in

Section 3 how they can be adapted to directly estimate source dependence.

Measuring beliefs separately from attitudes using the exchangeable-events method.

One method for measuring beliefs without making restrictive assumptions about risk or ambiguity

attitudes is the exchangeable-events method proposed by Baillon (2008). This choice-based method

uses the concept of exchangeability of events to construct a series of events Ek with a known a-

neutral probability λk. Two events E1 and E2 are exchangeable if (x,E1, y) ∼ (x,E2, y), which
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implies that µ(E1) = µ(E2).

To apply the method, the researchers first split the universal event Ω into two exchangeable

events, E1 and E2, such that µ(E1) = µ(E2) = 1/2. They then proceed iteratively by splitting E1

and E2 into exchangeable events until a given level of precision in beliefs is attained. Abdellaoui

et al. (2011) applied this method to several sources, and a non-chained version of the method was

developed and implemented by Abdellaoui et al. (2021).

Measuring beliefs jointly with attitudes using the belief-hedging method. Baillon et al.

(2018) proposed a different approach to separate beliefs from attitudes under ambiguity. Their

method, called the belief-hedging method, is based on bets on events and their complementary

events. This enables the separate identification of beliefs and ambiguity attitudes toward a given

source without the need to dedicate specific tasks to the measurement of beliefs (see also Baillon

et al. 2021 for the theoretical foundations).

The researcher first splits the universal event Ω into three mutually exclusive and exhaustive

events, denoted as E1, E2, and E3. For each event, the complementary event is defined as the

union of the other two events, for example, Ec
1 =E2 ∪ E3. The researchers then measure the

matching probabilities of six events, namely, E1, E
c
1, E2, E

c
2, E3, and Ec

3. Baillon et al. (2018)

showed that these six matching probabilities could be easily combined to compute two indexes

that capture ambiguity aversion and a(mbiguity-generated)-insensitivity. Gaudecker et al. (2022)

implemented structural econometric estimations on these six matching probabilities in order to

jointly estimate beliefs and attitudes. Using certainty equivalents and additional tasks to measure

the utility function, Baillon et al. (2017) structurally estimated beliefs and attitudes.

Overall, studying natural sources requires separating beliefs and attitudes. Beliefs can be con-

trolled for using either the exchangeable-events or belief-hedging methods. Meanwhile, attitudes

can be studied either through ambiguity functions, w−1
r ◦ ws (e.g., Baillon and Bleichrodt 2015,

Baillon et al. 2018, Li 2017, Li et al. 2017) or through source functions ws (e.g., Abdellaoui et al.

2011, Abdellaoui et al. 2021, Baillon et al. 2017). One advantage of ambiguity functions is that

they can be estimated using matching probabilities, which avoids the need to measure utility.
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2.3 From ambiguity attitudes to source dependence

The previous section highlighted that methods exist for measuring attitudes toward a given source.

Analysts can thus measure attitudes toward a series of sources with the objective of comparing them.

This section provides detailed examples that illustrate the difficulties in interpreting differences in

source attitudes as source dependence. The examples demonstrate that these difficulties apply to

both the comparison of ambiguity functions and the comparison of source functions.

Consider two American investors, one with expertise in the telecommunications industry and

the other in the food industry, who are considering investing in the stocks of AT&T and British

Telecom. Each stock represents a source of uncertainty. According to the home bias (Lau et al.

2010)—the tendency to favor domestic stocks—both investors may prefer AT&T over British Tele-

com. However, it is unclear whether the preference for the domestic stock is weaker for the first

investor due to their expertise in the telecommunications industry. Answering this question requires

comparing the magnitude of source dependence between individuals.

Furthermore, the magnitude of source dependence may also vary between sources for the same

individual. Suppose the investors are also considering investing in Coca-Cola and Danone. For the

investor with expertise in telecommunications, would the home bias be stronger between AT&T

and British Telecom or between Coca-Cola and Danone? In other words, does expertise mitigate

or amplify the home bias? Answering this question requires comparing differences between sources

within an individual.

Despite the availability of methods to measure attitudes for each source and investor separately,

there is currently no method to accurately answer these questions. We propose three simple sce-

narios that illustrate that source dependence cannot be derived from comparisons of ambiguity

attitudes. We base our examples on the Prelec specification because it has convenient properties

for the calculations. For simplicity, we refer to the four stocks by their first letter: A (AT&T), B

(British Telecom), C (Coca-Cola), and D (Danone).

Scenario 1: Differences in ambiguity functions between individuals. The scenario con-

siders that two investors, I and II, have the same source functions for stock A (wI
A = wII

A ) and

B (wI
B = wII

B ), and both exhibit a preference for A over B. However, investor I does not distort

objective probabilities, while investor II exhibits an inverse S-shaped probability weighting.
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Investor I Investor II

Risk
Source fn Ambiguity fn

Risk
Source fn Ambiguity fn

A B A B A B A B

wI
R wI

A wI
B w

I(−1)
R ◦ wI

A w
I(−1)
R ◦ wI

B wII
R wII

A wII
B w

II(−1)
R ◦ wII

A w
II(−1)
R ◦ wII

B

Pessimism 1 1.2 1.4 1.2 1.4 1.1 1.2 1.4 1.16 1.49

Insensitivity 1 0.5 0.5 0.5 0.5 0.6 0.5 0.5 0.83 0.83

Table 1: Scenario 1 Differences in ambiguity functions between individuals

Suppose that a researcher estimates the ambiguity attitudes of investors I and II toward stocks

A and B using matching probabilities. The values of the pessimism and insensitivity parameters

of these functions are reported in Table 1. The higher pessimism for stock B than for stock A

for both investors indicates a preference for A over B, which is consistent with the home bias.

The analyst wants to understand if expertise mitigates or amplifies the home bias. To do so, one

needs to compare the magnitude of source dependence for investor I to the magnitude of source

dependence for investor II.

The difference in the pessimism parameters of the ambiguity function between A and B is 0.2 for

investor I and 0.33 for investor II. It might be tempting to conclude that investor II exhibits more

source dependence than investor I, but this is not the case. The source functions for A and B are

the same for the two investors. This case illustrates that differences in the parameters of ambiguity

functions cannot be compared across individuals with different probability weighting functions for

risk. The reason is that ambiguity functions are measured on the scale of known probabilities

(willingness to bet), and this scale is different for two individuals who weigh risk differently.

Source functions
A B C D
wII
A wII

B wII
C wII

D

Pessimism 1.2 1.4 1.2 1.4

Insensitivity 0.5 0.5 0.7 0.7

Table 2: Scenario 2 Differences in source functions within individual

Scenario 2: Differences in source functions between sources for a given individual.

In this scenario, we examine investor II, who is an expert in the food industry. The researcher

has elicited the investor’s source functions, as shown in Table 2. The parameters for sources A

and B are the same as in the previous scenario. For sources C and D, the investor also exhibits

a home bias, with a preference for C over D, but exhibits less insensitivity toward these sources
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than toward A and B, possibly due to their expertise in the food industry. The analyst questions

whether the magnitude of the home bias is the same between A and B as between C and D. The

difference in the pessimism parameters is the same (0.2) between A and B as between C and D.

The difference in the insensitivity parameters is also the same (0) between A and B as between C

and D. Thus, looking at “differences of differences” leads to the conclusion that the magnitude of

the home bias is the same between A and B as between C and D.

However, investor II is willing to give up on more gain probabilities for betting on A rather

than B than for betting on C rather than D (see Figure 1 in Section 3.2). In other words, the

source premium is larger between A and B than between C and D. This is because the investor is

less sensitive to probability changes for A than for C, thus requiring a larger ambiguity premium

to compensate for the same difference in weight. This example illustrates that differences in source

function parameters cannot be compared across pairs of sources, even within an individual, since

differences in source functions correspond to differences in “weight,” which have different values

depending on the sensitivity toward the sources being considered.

Source functions
A B D
wI
A wI

B wI
D

Pessimism 1.2 1.4 1.6

Insensitivity 0.5 0.5 0.5

Table 3: Scenario 3 Differences in parameters of non-linear specifications

Scenario 3: Comparing differences in parameters of non-linear specifications.

We now focus on investor I and consider sources A, B, and D (see Table 3). The analyst wants

to compare the preference between A and B (local vs. foreign in the investor’s domain of expertise)

to the difference between B and D (expertise vs. non-expertise for foreign sources). In this case,

the differences in the pessimism parameters between A and B and between B and D are the same

(0.2). Here again, one should not conclude that the source premium that investor II is willing to

pay for betting on A rather than B is the same as the premium that the investor is willing to

pay for betting on B rather than D. In fact, the premium is larger for the former than for the

latter. The reason for this is the nonlinearity of the source functions. A difference in the pessimism

parameters of 0.2 does not have the same effect between 1.2 and 1.4 as it does between 1.4 and

1.6. This scenario illustrates how difference-in-differences in parameters of non-linear specifications
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cannot be easily used to analyze differences in source dependence.

3 A function for measuring source dependence

In this section, we introduce a function ϕ, referred to as a p(robability)matcher, which enables

direct measurement of the source dependence of preferences between two natural sources. We then

show that such functions can be estimated using either matching probabilities (MP), which assess

attitudes toward a source on the scale of probabilities, or certainty equivalents (CE), which assess

attitudes toward a source on the scale of outcomes.

3.1 A direct measure of source dependence

We introduce a function ϕ that enables the quantification of source dependence and allows for

comparisons between individuals and (pairs of) sources. We consider two natural sources, A and

B, and their functions wA and wB. The function ϕAB is defined such that wB = wA ◦ ϕAB

(i.e., ϕAB = w−1
A ◦ wB). It is strictly increasing, satisfies ϕAB(0) = 0 and ϕAB(1) = 1, and maps

probabilities µB of events EB generated by the source B to probabilities µA of events EA generated

by the source A as follows: for any event EB generated by source B with a subjective probability

µB, all the events EA generated by source A with a subjective probability µA = ϕAB(µB) are such

that the decision maker is indifferent between betting on EB and EA.

The comparison of µB and µA characterizes source preference between the two sources. Devia-

tions of ϕAB from identity directly characterize source dependence: A is strictly preferred to B if

ϕAB(µ) < µ. In turn, µ−ϕAB(µ) represents the source premium of source A over source B, i.e., the

decrease in likelihood the decision maker is willing to accept in order to bet on source A instead

of source B. Because the source premium is measured on the scale of “a-neutral” probabilities, it

is independent of risk and ambiguity attitudes. Therefore, the transformation function ϕAB offers

a direct measure of source preference for A over B that can be compared across individuals and

(pairs of) sources. Inversely, the source preference for B over A is captured by ϕBA = ϕ−1
AB.

We now illustrate how the shape of the function ϕ relates to choice patterns revealing source

dependence. We call A-event an event generated by source A and B-event an event generated by

source B. Suppose there exists a probability µ such that ϕAB(µ) < µ and ϕAB(1 − µ) < (1 − µ).
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Then, for all events EA with a subjective probability µ′ such that µ > µ′ > ϕAB(µ), we will observe

that xEA
y ≻ xEB

y. This is because µ′ > ϕAB(µ) implies that wA(µ
′) > wB(µ). Moreover, we will

also observe that xEc
A
y ≻ xEc

B
y, since ϕAB(1−µ) < 1−µ < 1−µ′ implies that wA(1−µ′) > wB(1−µ).

In other words, it is possible to find A-events such that, for all B-events with probability µ, the

decision maker prefers to bet on A-events instead of B-events and also prefers to bet against A-

events instead of against B-events.

Another key dimension of source preference is comparative sensitivity (Tversky and Fox 1995),

which can be illustrated by the following example. Suppose there are two disjoint events EA and

E′
A generated by A, and two disjoint events EB and E′

B generated by B such that xEB
y ∼ xEA

y

and xE′
B
y ∼ xE′

A
y for all x > y. If we also observe that xEB∪EB′y ≺ xEA∪EA′y, then the decision

maker is less sensitive to probability changes for B than for A. We say the decision maker exhibits

less relative sensitivity toward B than toward A. This pattern is captured by the curvature of the

function ϕ. Indeed, xEB
y ∼ xEA

y and xE′
B
y ∼ xE′

A
y imply that µA = ϕAB(µB) and µ′

A = ϕAB(µ
′
B),

respectively. Thus, xEB∪EB′y ≺ xEA∪EA′y implies that ϕAB(µB)+ϕAB(µ
′
B) > ϕAB(µB +µ′

B). The

function exhibits subadditivity for some probabilities.

Overall, the two dimensions of the function ϕ can be interpreted as follows: the elevation

captures relative preference (“more or less preference for B than for A”), and the slope captures

relative sensitivity (“more or less sensitivity for B than for A”). For example, an inverse S-shaped

ϕAB function can generate both a relative preference for A and a relative insensitivity toward B.

3.2 Comparing attitudes across sources and individuals using ϕ

We illustrate the pmatcher ϕ using the three scenarios described in section 2.3.

In the first scenario, the two investors have the same source functions for stocks A and B, and

both exhibit a preference for A over B. The pmatchers ϕAB of the two investors are shown on

the left panel of Figure 1. When µA < µB, the decision maker exhibits a preference for source

A over source B and is willing to accept a reduction in the winning probability (µB − µA) to bet

on the event generated by source A instead of the one generated by source B with probability

µB.
8 For both investors, ϕAB(x) < x for all values of x, indicating a preference for source A over

8Similarly, this investor would require an increase in winning probability of (µB − µA) in order to bet on source
B instead of on source A with a winning event of probability µA.
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source B. Moreover, the magnitude of the source dependence between A and B, capturing the

home bias, is the same for the two investors. The pmatcher enables a direct comparison between

individuals. Although the two investors have different risk attitudes (investor I does not distort

objective probabilities, while investor II exhibits an inverse S-shaped probability weighting), the

figure correctly reports that they have the same function ϕAB.

The second scenario, shown in the middle panel of Figure 1, displays a stronger deviation from

linearity for ϕAB than for ϕCD, indicating a stronger source dependence for A over B than for C

over D. The pmatcher captures this larger magnitude of source dependence, which was not detected

by comparing the (differences in) source functions, as seen in Section 2.3.

In the third scenario, the deviation from linearity is stronger for ϕAB than for ϕBD, indicating a

stronger source preference for A over B than for B over D. As we saw in Section 2.3, comparisons of

(differences in) parameters between sources would fail to capture this effect due to the nonlinearity

of the source function specification.

These scenarios illustrate how the pmatcher helps overcome the difficulties faced when compar-

ing ambiguity attitudes toward different sources, allowing for comparison across individuals and

sources.
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Figure 1: Illustration of the pmatchers for the three scenarios of Section 2.3

3.3 Estimating ϕ from matching probabilities

As introduced earlier, the method developed by Dimmock et al. (2016b) consists of fixing an out-

come x > 0 and measuring a series of matching probabilities MS such that (x,MS , 0) ∼ (x,ES , 0),
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where ES are events generated by S for which the a-neutral probabilities µ(ES) = λS are known.

The analysis then consists of eliciting an ambiguity function mS that maps the probabilities

µ(ES) = λS onto the matching probabilities MS :

mS(λS) = MS . (6)

Under standard assumptions of monotonicity and continuity, the ambiguity function mS is

strictly increasing and satisfies mS(0) = 0 and mS(1) = 1. According to Equation (5), mS =

w−1 ◦wS . The function ϕAB between two sources A and B, with ambiguity functions mA and mB,

can be obtained as follows:

mB = w−1 ◦ wB = w−1 ◦ wA ◦ ϕAB = mA ◦ ϕAB,

hence,

ϕAB = m−1
A ◦mB.

The function ϕAB relies on a direct comparison of ambiguity functions mA and mB, with no

need to measure the weighting function for risk w or the source functions wA and wB.

3.4 Estimating ϕ from certainty equivalents

Suppose that we fix an outcome x > 0 and measure, for each source S, a series of certainty

equivalents CES such that CES ∼ (x,ES , 0), where ES are events generated by S, for which the

a-neutral probabilities µ(ES) = λS are known. The method then consists of estimating a function

cS that maps these probabilities µ(ES) = λS to the normalized certainty equivalents CES :

cS(λS) =
CES

x
. (7)

For parallelism with the ambiguity function, we refer to cS as an uncertainty function. Under

standard assumptions of monotonicity and continuity, the uncertainty function cS is strictly in-

creasing and satisfies cS(0) = 0 and cS(1) = 1. According to Equation (5), and after rescaling the
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utility such that U(0) = 0 and U(x) = 1, cS = U−1◦wS
x . Assuming that utility is source-independent

(an assumption generally made in applications of the source model and empirically supported by

Abdellaoui et al. 2011), differences in uncertainty functions cS across sources reveal differences in

source functions. The function ϕAB between two sources A and B, with uncertainty functions cA

and cB, can be obtained as follows:

cB =
U−1 ◦ wB

x
=

U−1 ◦ wA ◦ ϕAB

x
= cA ◦ ϕAB,

hence,

ϕAB = c−1
A ◦ cB.

Therefore, it is possible to estimate ϕAB from certainty equivalents with no need to control for

the utility function. In this paper, we do not interpret the uncertainty functions on their own. We

instead use them as a measurement tool for assessing source dependence.

3.5 Comments on ϕ

Overall, ϕAB can be estimated simply from either matching probabilities or certainty equivalents.

It does not require measuring or controlling for the utility, the weighting function for risk, or even

the source functions. Therefore, it can be estimated from a smaller number of choices and avoid

error propagation due to the measurement of utility and source (or risk) weighting functions.

The characterization of source dependence is independent of risk attitudes (related to u and

w) and ambiguity attitudes (related to the difference between wA and w or between wB and w).

Instead, it relates to the differences in attitudes across sources. A linear ϕ does not necessarily

mean that decision makers are risk neutral or ambiguity neutral for the two sources, only that they

exhibit the same attitude for the two sources. Conversely, there may be source dependence even

if decision makers are risk neutral or ambiguity neutral for one of the two sources. Therefore, the

introduction of source dependence, as measured by the function ϕ, enlarges the scope of analysis of

attitudes toward natural sources of uncertainty beyond the concept of risk and ambiguity attitudes.

Eventually, when A is a risky source (R), wB = w ◦ϕRB and ϕRB = w−1 ◦wB. In this case, the
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transformation function ϕRB corresponds to the ambiguity function proposed by Dimmock et al.

(2016b) for capturing ambiguity attitudes. To summarize, the function ϕ generalizes the approach

of Dimmock et al. (2016a) in two ways: it extends the approach for capturing source dependence

between natural sources, and it allows measurement using not only matching probabilities but also

certainty equivalents.

4 Empirical implementation

4.1 Data

We conducted three studies to empirically test our method, including one that used an existing

dataset (Study A) and two original experiments (Studies B and C). To test the generality of our

method, we selected experimental designs that employed various approaches to evaluating prospects

(certainty equivalents vs. matching probabilities) and identifying beliefs. As discussed in Section

2, studying attitudes toward natural sources requires accounting for beliefs that are not necessarily

uniform. We demonstrate that our method can be applied with two commonly used choice-based

methods to disentangle ambiguity attitudes and beliefs: the events-exchangeability method (Studies

A and B) and the belief-hedging method (Study C).

The studies used different experimental procedures, with individual interviews and random

incentives used in Studies A and B and an online experiment with hypothetical choices used in

Study C. In each study, one source was local and arguably more familiar to the subjects than the

other. We used this local source as the reference source. We summarize the characteristics of each

dataset in Table 4 and provide details for all three studies below. Instructions for experiments B

and C are included in Appendix D.

Study N Valuation method Elicitation of beliefs Sources

Study A 62 CE EE
Temperature in Paris

Temperature in a foreign city

Study B 94 MP EE
Approval rating of French president E. Macron

Approval rating of American president D. Trump

Study C 201 CE BH
Temperature in Paris

Temperature in Belgrade

Note: EE stands for events exchangeability and BH for belief hedging.

Table 4: Summary of the three datasets
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4.1.1 Study A

For this study, we used data from Abdellaoui et al. (2011) on two natural sources S, the temperature

in Paris (S = A) and the temperature in a foreign city (S = B). For each source, participants’

beliefs were measured prior to eliciting their attitudes toward ambiguity.

Measurement of beliefs: Participants’ beliefs about the sources were measured using the ap-

proach developed by Baillon (2008) based on exchangeable events (see Section 2). For each

source S, a sequential process was used to build a series of five events Ek,S with probabilities

µk ∈ (1/8, 1/4, 1/2, 3/4, 7/8). Abdellaoui et al. (2011) provide more details about the procedure.

Evaluation of prospects: With these events (for which the researchers knew the a-neutral prob-

ability) at hand, the certainty equivalents CEk,S of five prospects (1000, Ek,S , 0) were measured for

each source. These CEs allowed us to assess the uncertainty function cS since cs(µk,S) =
CEk,S

1000 .9

Procedure: 62 participants participated in individual computer-based interviews. Random in-

centives were implemented for half of the participants (real-incentive treatment), whereas the other

half made hypothetical choices (hypothetical treatment). For the real-incentive treatment, one of

the 31 participants was randomly selected at the end of the experiment, and one of their choices was

randomly selected to determine their monetary gain. The payment was made three months after

the experiment, once the uncertainty was resolved (Abdellaoui et al. 2011 provide more details).10

4.1.2 Study B

For this study, we followed a similar design to Study A, but with different sources and a distinct

valuation approach of ambiguous prospects. In contrast to Study A, we evaluated ambiguous

prospects using matching probabilities (MPs) instead of certainty equivalents (CEs). We used two

sources S, the approval ratings of French President Emmanuel Macron (S = A) and US President

Donald Trump (S = B).11 Each of these variables ranged between 0 and 100 percent and was

9In the present paper, we focus on this relationship, even though Abdellaoui et al. (2011) employed a different
approach. They used additional CEs to elicit the utility function and “correct” the function cs for the utility curvature
in order to assess the source function wS .

10As the data was from a published paper (Abdellaoui et al. 2011), we do not have access to the precise payment
made to the winning participants.

11We used the following two information sources for Donald Trump and Emmanuel Macron’s approval ratings:
https://elections.huffingtonpost.com and http://www.tns-sofres.com.
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revealed one month after the experiment.12

Measurement of beliefs: We used the exchangeable-events method, as in Abdellaoui et al. (2011)

and Study A, to elicit a series of events Ek,S = [0, vk,S ] generated by sources S, with a-neutral

probabilities µ(Ek,S) ∈ (1/8, 1/4, 1/2, 3/4, 7/8). Values vk,S represented the percentages of approval

ratings and were measured with a precision of one percentage point.

Evaluation of prospects: We measured ambiguity attitudes using matching probabilities. For

each source, we measured the matching probabilities mpk,S of prospects (100, Ek,S , 0) with a pre-

cision of 0.01. This allowed us to assess the ambiguity function mS because ms(µk,S) = mpk,S .

Both beliefs and attitudes rely on the measurement of indifference values, which we elicited

using choice lists. We used a bisection procedure to complete these lists (see Abdellaoui et al.

2019). When a list was completed, the participants reviewed all the choices from the list and were

able to make changes if desired. Participants then had to confirm the whole list for the software to

move to the next choice list.

Procedure: We recruited 94 participants to take part in a one-hour individual computer-based

interview for a compensation of e10. Participants started by watching a 10-minute video describing

the experiment. Then they completed a survey with comprehension questions to identify those who

required additional clarifications from the research assistants. The experiment started with several

practice questions to familiarize participants with the software. Participants then completed the

belief task and the ambiguity task for one of the two sources before moving on to the second source.

For each source, the belief task always preceded the ambiguity task. The order of the questions in

the ambiguity task was randomized.

Real incentives were used, and the procedure was explained in the instructions (see Appendix

D). Each participant received an envelope and was informed that each envelope had a 10% chance

of containing a winning ticket. At the end of the session, participants opened the envelopes to see

if they had received the winning ticket, which would allow one of their choices to be played for

real. A computer program randomly selected one of the choices made by the selected participants.

During the instructions, participants were informed that all of their choices could be selected and

played for real. The selected participants could gain up to e100 extra. Eight participants were

12In the experiment, we used two periods of time (one month and nine months after the experiment). In this paper,
we report only the results obtained for the approval rating one month after the experiment.
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randomly selected for one of their choices to be played out for real. Three of them earned e100

extra, while the others did not earn an extra bonus. Overall, the average payment was e13.2 per

hour.

4.1.3 Study C

In this study, we measured beliefs and attitudes jointly using certainty equivalents and the belief-

hedging method (Baillon et al. 2017, Li et al. 2019).

Evaluation of prospects: We considered two sources S, the temperature, in celsius degrees, in a

local city, Paris, France (source S = A), and a foreign city, Belgrade, Serbia (source S = B). For

each source S, we created an exhaustive partition of mutually exclusive events E1,S , E2,S , E3,S and

measured CEs for all prospects (20, Ek,S , 0), where Ek,S ∈ {E1,S , E
c
1,S , E2,S , E

c
2,S , E3,S , E

c
3,S). The

three events were E1,S = (−∞, 18], E2,S =]18, 22], and E3,S =]22,+∞) and their complementary

events Ec
1,S =]18,+∞), Ec

2,S = (−∞, 18]∪]22,+∞), and Ec
3,S = (−∞, 22]. We elicited CEs using a

bisection method with a precision of e1.

Procedure: We recruited a sample of 201 participants from the INSEAD Behavioral Lab subject

pool and conducted the experiment online using hypothetical choices. To improve the quality of the

data despite the absence of incentives and online data collection, we used an application designed

specifically for this purpose. The app detected the size of the user’s screen to prevent completion of

the study on smartphones and froze the choice buttons for 2 seconds for each question to prevent

rushing completion.

4.2 Estimation strategy

4.2.1 Errors specification and likelihood function

We used a unified statistical approach to measure source dependence between two sources s ⊂

{A,B} in the available datasets. In the three experiments, our measurement followed an equation

of type

yi,k,s = fi(µi,k,s) if s = A
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= fi ◦ ϕi(µi,k,s) if s = B

where yi,k,s is the valuation (either a MP or a CE) by subject i of a prospect k involving event

Ei,k,s with probability µi,k,s, f is either an ambiguity or uncertainty function, and ϕ is a pmatcher.

We assumed that subjects made decision errors, such that the measured indifference y⋆i,k,s fol-

lowed y⋆i,k,s = yi,k,s + ϵi,s where ϵi,s ∼ N(0, σ2
i,s). Hence, we accounted for heteroscedasticity across

sources and individuals. Indifferences were measured with a precision η such that the likelihood of

each observation followed

π(yi,k,s|θi,, µi,k,s) = p(y⋆i,k,s −
η

2
< yi,k,s + ϵi,s < y⋆i,k,s +

η

2
)

= p(y⋆i,k,s −
η

2
− yi,k,s < ϵi,s < y⋆i,k,s +

η

2
− yi,k,s)

= Ψ(
y⋆i,k,s − yi,k,s +

η
2

σi,s
)−Ψ(

y⋆i,k,s − yi,k,s − η
2

σi,s
)

where θi is the vector of function parameters ai and bi (the parameters of fi for the domestic

source, taken as the reference source), αi and βi (the parameters of the function ϕi), and µi,k,s (the

beliefs). The cumulative function of the normal distribution is denoted Ψ. In Studies A and B,

beliefs were measured separately from (and before) attitudes. In contrast, Study C utilized belief

hedging, where beliefs were estimated jointly with other parameters (see the details in Appendix

B).

The likelihood for a given individual i is

l(θi) =
∏
s

∏
k

π(yi,k,s, θi,, µi,k,s).

This likelihood specification aims to elicit the parameters of the function f that captures atti-

tudes toward one of the two sources (taken as the reference) and, more importantly, the parameters

of the transformation function ϕ that captures source dependence.
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4.2.2 Parametric specifications

In our analyses, we used parametric specifications for the functions f and ϕ. We considered two

popular, non-linear, two-parameter specifications for the function f (see Table 5): the Goldstein

Einhorn (1987, hereafter GE) and the Prelec (1998). Parametric specifications have been commonly

used to model probability-weighting functions (Bruhin et al. 2010), ambiguity functions (Li et al.

2017), and even uncertainty functions (l’Haridon and Vieider 2019). In all these applications, the

two parameters, relating respectively to elevation and curvature, have behavioral interpretations.

The parameter capturing the global elevation of the function (denoted δ) is interpreted in terms

of optimism, and the one measuring the curvature of the function (denoted γ) is interpreted in

terms of sensitivity toward changes in probabilities. These non-linear specifications usually offer a

better goodness of fit than the neo-additive specification (e.g., Li et al. 2017). However, there are

limitations to their use. First, the interpretation of the parameters is different for each specification.

For example, Li et al. (2017, p. 10) have noted that “in Prelec’s family, the insensitivity parameter

[γ] overlaps partly with the aversion parameter [δ], also capturing some aversion.” Second, the

interpretation of differences in parameters varies across specifications. For example, the parameter

δ decreases with increasing elevation in the case of the Prelec specification, but it increases with

increasing elevation in the case of the GE specification. Third, the parameters of these specifications

take non-negative values. When random coefficient estimation methods are used, these parameters

are generally assumed to be log-normally distributed, which requires cumbersome transformations

for reporting their estimates and inferences on their mean and variance in a sample.

Expressing these two specifications with parameters that have the same range and interpre-

tation and can take both positive and negative values is therefore desirable. We propose such a

reparametrization of the GE and the Prelec specifications using two parameters β = 1 − 2ϕ(0.5)

and α = 1− ∂ϕ
∂µ(0.5). We use β to denote the global elevation parameter, which captures the overall

elevation of the plot, and α to denote the global sensitivity parameter, which governs curvature

(e.g., the inverse-S shape of the plot). Importantly, while simplifying the interpretation of the

results, this reparametrization does not create any loss of generality.

Applying this reparametrization to pmatchers, the first parameter β captures the relative pref-

erence for source A over source B. As shown in Figure 2, when β > 0 (blue curves), the subject
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exhibits a preference for source A over source B, whereas when β < 0 (red curves), the subject

exhibits a preference for source B over source A. In addition, the value β/2 represents the source

premium of source A over source B in the middle of the probability interval. It reflects the decrease

in likelihood the decision maker is willing to accept to bet on source A instead of source B. When

ϕ(0.5) = 0.5, β/2 = 0, which indicates no source premium. Regardless of the underlying reason for

the preference, it can be interpreted as a higher level of optimism toward one source compared to

the other. We will use the terms relative optimism and relative preference interchangeably: when

β > 0 (resp. β < 0), we say that there is a relative preference, or relative optimism, toward A

(resp. B).13

The second parameter α relates to the slope (i.e., the derivative) of the function ϕ at proba-

bility 0.5. It captures the rate of substitution between the probabilities generated by A and the

probabilities generated by B. Starting from 0.5, an increase of ϵ in probability generated by B has

the same effect as an increase of (1−α)ϵ in probability generated by A. Therefore, the parameter α

can be interpreted in terms of relative sensitivity. When α > 0, there is more insensitivity toward

B than toward A, and we say that there is relative insensitivity toward B. When α < 0, there is

more sensitivity toward B than toward A, and we say that there is relative insensitivity toward A.

An interesting and convenient property is that these parameters can be directly computed from

the original parameters of the two non-linear specifications considered in this paper (see Table 5 for

the mapping between these parameters and the original ones). Importantly, while the parameters

can be interpreted with reference to the value of the function or its derivative for probability 0.5,

they are not estimated from the behavior of the function in the middle of the probability interval

alone. Instead, they depend on the behavior of the function over the whole interval, like any other

parametric specification. In this regard, the function estimated using our parameters is one-to-one

related to the function estimated using the original parameters. However, the re-parametrization

allows for an easier interpretation of the function parameters and their heterogeneity. In particular,

the parameters have the same interpretation (regarding the elevation and the slope of the function),

regardless of the chosen specification.14

13We note that the Prelec and the GE specifications measure the global elevation for different probability levels
(p = 1/e for the Prelec specification and p = 0.5 for the GE). We propose expressing the global elevation and
sensitivity at probability 0.5, which is a natural benchmark for assessing the global shape characteristics.

14We note that this reparametrization can also be employed for modeling other functions for which the Prelec or
GE specifications are suitable. This is the case, for example, of probability-weighting functions, source functions,
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(a) α = 0.4 (b) α = −0.4 (c) α = 0

Figure 2: Illustration of the function ϕ

Prelec (1998) Goldstein Einhorn(1987)

Expression exp(−δ(−log(p))γ) δpγ

δpγ+(1−p)γ

Modified
parameters

α 1− 2δγexp(−δ(−log(0.5))γ)[−log(0.5)]γ−1 1− δγpγ−1(1−p)γ−1

(δpγ+(1−p)γ)2

β 1− 2exp(−δ(−log(0.5))γ) 1− 2 δ
δ+1

Original
parameters

γ log(0.5)(1−α)
(1−β)log(0.5(1−β))

1−α
(1+β)(1−β)

δ −log[0.5(1−β)]
[−log(0.5)]γ

1−β
1+β

Table 5: Specifications and their re-parametrization

4.2.3 Accounting for preference heterogeneity

At the aggregate level, all the subjects are assumed to have the same preferences, i.e., θi did not

depend on the index i. In particular, this means that the preferences of all the subjects are the

same for the reference source and reveal the same pattern of source dependence. However, this

assumption may be unrealistic, as individual-level parameters are likely to vary across subjects.

Estimating individual-level parameters requires a large amount of data and may not be of interest

to researchers, who are usually interested in the distribution of parameters in the sample rather

than the behavior of a specific individual. To measure the distribution of parameters in our samples,

we use a random-coefficient model where source dependence (captured by parameters αi and βi) is

ambiguity functions, or even uncertainty functions.
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randomly distributed across subjects. We assume that the parameters of ambiguity or uncertainty

functions for the reference source are randomly distributed.

The mean (standard deviation) of the distributions of relative insensitivity and relative optimism

parameters are denoted as ᾱ and β̄ (σα and σβ). The random coefficient models are estimated using

Hierarchical Bayes (HB) simulations, which have recently been shown to be suitable for estimating

risk models (e.g., Murphy and ten Brincke 2017, Baillon et al. 2020). To do so, we used the RSGHB

R package, with priors corresponding to linear uncertainty or ambiguity functions with virtually no

heterogeneity. Such priors correspond to rational representative agent models (ambiguity-neutral

or uncertainty-neutral attitudes) with no between-subject heterogeneity and no source dependence.

Our choice of priors based on rational-choice models reflects a conservative approach that plays

“against” our results, which revealed non-linear and heterogeneous functions with heterogeneous

patterns of source dependence.

5 Results

This section presents the results of the empirical implementation of our econometric set-up for the

three studies. For each study, we report the econometric estimations of the means and standard

deviations of the parameters of the function ϕAB (see Table 6). The descriptive statistics of studies

B and C are provided in Appendix A.15 We focus on the results obtained with the Prelec spec-

ification, as it is compatible with the parametric approaches used for modeling both uncertainty

and ambiguity functions.16 The results obtained with the Goldstein-Einhorn specification were

similar (see Appendix C). We report our results focusing on the two dimensions of the pmatcher

ϕ: elevation, which captures relative preference, and curvature, which captures relative sensitivity.

The pmatchers were estimated using a Hierarchical Bayes method that accounts for individual

heterogeneity of parameters. For each study, we display both the modal patterns and the hetero-

geneity (see Figures 3 to 5). The left-hand panel plots the median pmatcher and its interquartile

range. The other two panels show the outputs of Bayesian estimations for each of the two param-

15For the descriptive statistics of Study A, see the original paper: Abdellaoui et al. (2011).
16In the case of an uncertainty function cS = u−1 ◦ wS , if u follows a power specification (i.e., u(x) = xα) and

the source function wS follows a Prelec specification with parameters δ′ and γ′ then c also follows a Prelec with
parameters δ = δ′/α and γ = γ′. In the case of ambiguity function mS = w−1 ◦wS , if w and wS both follow a Prelec,
then mS also follows a Prelec.
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eters of the pmatcher. Specifically, we plot the cumulative distributions of individual parameters

and their precision (credible intervals). Like in most studies, there is no particular interest in

knowing the parameters of each specific individual. Instead, we are interested in the distribution

of individual parameters in the sample. We thus focus our analysis on the estimated mean and

variance of the parameters in our subject samples (Table 6).17 The distributions corresponding

to the estimated means and variances are plotted in plain lines on the middle and right panels of

Figures 3 to 5.18

Study A Study A Study B Study C
(only real incentives)

ᾱ 0.000 [-0.054; 0.055] -0.205 [-0.286; -0.096] 0.353 [0.251; 0.449] 0.051 [0.012; 0.091]
β̄ 0.028 [-0.071; 0.129] 0.104 [0.030; 0.176] 0.277 [0.171; 0.377] 0.059 [0.032; 0.085]

σα 0.163 [0.125; 0.212] 0.181 [0.115; 0.279] 0.319 [0.255; 0.396] 0.229 [0.200; 0.264]
σβ 0.335 [0.268; 0.416] 0.137 [0.086; 0.198] 0.360 [0.294; 0.436] 0.125 [0.101; 0.164]

LL -1817.354 -982.404 -3313.293 -3449.682

Note: 95% credible intervals between brackets.

Table 6: Summary of HB estimations - Studies A, B, and C

5.1 Study A

Study A compared attitudes toward temperature in a local city (Paris, France) and temperature

in a foreign city, which differed for each subject. The left panel of Figure 3 displays the quartile

behavior (median and interquartile range) of the estimated function ϕAB.

We found no average source dependence as the 95% credible interval (hereafter CI) of the two

parameters of the function ϕAB (ᾱ and β̄) included 0. However, the middle and right panels

of Figure 3 show large heterogeneity across individuals. The standard deviation of the elevation

parameter (σβ = 0.33) suggested that β was greater than 0.3, in absolute value, for one-third of

the sample.19 In other words, one-third of the subjects behaved as if they inflated or deflated a 0.5

winning event probability by at least 0.15, depending on their source preference. We also found

heterogeneity in the sensitivity dimension of source dependence, indicating that relative sensitivity

17Individual parameters and their standard error are taken respectively as the mean and the standard deviation
of individual posterior distributions. The 90% credible interval is computed as the mean more or less 1.64 standard
deviations.

18In the Bayesian framework, the precision of the estimates is given by their posterior distribution. We thus plot
the posterior distribution of the estimates of the mean parameters in the sample.

19This is because the mean value β̄ was almost equal to 0.
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(a) Whole sample
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(b) Real-incentive subsample
Note: the left panel plots the median ϕ (plain red line) and its IQR (grey area). The middle (resp. right) panel plots the
estimated distribution of α (resp. β) with plain lines, and individual estimates and their 90% CI in grey.

Figure 3: pmatcher ϕAB and estimated distributions of its two parameters (Study A)

to the sources was also heterogeneous in the sample. This illustrates the importance of addressing

heterogeneity in parameters, as average results can mask pronounced individual effects that cancel

out at the aggregate level.

Following the analyses performed in the original paper (Abdellaoui et al. 2011), we estimated

the distributions of parameters focusing on the group with real incentives. In this subsample,

estimated means show evidence of source dependence. The parameter β̄ was positive (95% CI =

[0.030; 0.176]), indicating that subjects exhibited a preference for the local source over the foreign

source on average. The re-parametrization offers an easy interpretation of this parameter. The

source premium in the middle of the likelihood interval was equal to 0.05 (i.e., β̄/2). In other

words, the average subject was willing to forego a 0.05 winning probability in order to bet on an

event generated by the local source rather than an event generated by the foreign source with a

probability of 0.5.

The average insensitivity parameter ᾱ for the group with real incentives was negative (95% CI =

[−0.286;−0.096]). This parameter can be interpreted in terms of relative sensitivity. Participants
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in the real incentives group were more sensitive to the foreign source than to the local source.

According to the mean sensitivity parameter ᾱ = −0.2, an increase in the probability of ϵ from

0.5 in source B has the same impact as an increase of 1.2ϵ points from 0.5 in source A.20 This

finding is somewhat surprising, given that a greater degree of likelihood insensitivity is typically

interpreted as indicating higher perceived ambiguity (Baillon et al. 2018). Notably, this observation

is in contrast to the results presented in Studies B and C.

Overall, Study A confirmed the source dependence of preferences. In the real-incentive sub-

sample, subjects exhibited a preference for the local source over the foreign source. Furthermore,

changes in probabilities did not have the same effect on the two sources; there was more sensitivity

to changes in the foreign source than in the local one. This study also revealed considerable hetero-

geneity in source dependence and provided evidence of pronounced source dependence for a sizable

part of the sample. Interestingly, despite considerable source dependence at the individual level in

the whole sample (i.e., when pooling incentivized and non-incentivized groups), the effects canceled

out at the aggregate level, resulting in no average source dependence. Therefore, this study showed

that an apparent absence of average source dependence might hide important effects, though in

opposite directions, at the individual level.

5.2 Study B

In Study B, we measured attitudes toward the approval ratings of a local (French, the reference

source) president and a foreign (US) president using matching probabilities with beliefs measured

independently using the events-exchangeability method.

Despite using a different method than Study A, which used certainty equivalents instead of

matching probabilities, the parameters of ϕAB can be interpreted in the same way as in Study A.

The results revealed an average source-dependence effect for the elevation parameter (β̄ = 0.277,

95% CI = [0.171; 0.377]), indicating a preference for the approval rating of the local president over

that of the foreign president. The source premium of source A over source B at probability 0.5 was

consequential: 0.14 (as β̄ = 0.277). On average, subjects were willing to give up a 0.14 winning

probability in order to bet on the local source rather than on a 0.5-probability event generated

20A consequence of the relative sensitivity is that subjects’ preference for the local source is stronger for low and
medium levels of likelihood. This is consistent with Abdellaoui et al. (2011), who found a preference for betting on
the temperature in Paris over the temperature in a foreign city for p < 0.5 in the real-incentive subsample.
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by the foreign source. In addition, we reported a positive average relative sensitivity parameter

(ᾱ = 0.353, 95% CI = [0.251; 0.449]). Therefore, subjects exhibited more sensitivity toward the

local source than the foreign one. Once again, our parametrization of source dependence allows us

to easily quantify this effect. An increase in probability of ϵ from 0.5 in source B has the same

impact as an increase of 1− 0.35 = 0.65ϵ from 0.5 in source A.
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Note: the left panel plots the median ϕ (plain red line) and its IQR (grey area). The middle (resp. right) panel plots the
estimated distribution of α (resp. β) with plain lines and individual estimates and their 90% CI in grey.

Figure 4: pmatcher ϕAB and estimated distributions of its two parameters (Study B)

Regarding the heterogeneity in the sample, we observed large between-subject differences in the

function ϕAB (see Figure 4, left panel). Regarding the optimism parameter (Figure 4, right panel),

on average, subjects exhibited a preference for the local source, and this preference was very strong

(β > 0.5) for approximately 25% of the sample. In contrast, around 20% of the sample exhibited

a preference for the foreign source (β < 0). There was also a high level of heterogeneity in terms

of the sensitivity parameter α, as illustrated by the estimated distribution plotted in the middle

panel of Figure 4. For instance, the parameter α was greater than 0.5 for about 30% of the sample,

indicating a strong relative insensitivity toward source B.

5.3 Study C

Study C used certainty equivalents to jointly measure beliefs and attitudes toward local (Paris,

France, the reference source) versus foreign (Belgrade, Serbia) temperatures.

Our estimations captured a significant mean effect for both the elevation and insensitivity

parameters of the function ϕAB. The average subject exhibited a preference for the local source

over the foreign source (β̄ = 0.059, 95% CI = [0.032; 0.085]). On average, subjects were willing to
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give up a β̄
2 = 0.03 winning probability in order to bet on the local source rather than on a 0.5-

probability event generated by the foreign source. The average insensitivity parameter indicated

slight relative insensitivity (ᾱ = 0.05, 95% CI = [0.012; 0.091]). Subjects were slightly less sensitive

to changes in probabilities for the foreign source than for the local one.
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Note: the left panel plots the median ϕ (plain red line) and its IQR (grey area). The middle (resp. right) panel plots the
estimated distribution of α (resp. β) with plain lines, and individual estimates and their 90% CI in grey.

Figure 5: pmatcher ϕAB and estimated distributions of its two parameters (Study C)

We also observed sizable heterogeneity in terms of source dependence for the parameter β

(Figure 5, right panel). For instance, while the average subject exhibited a preference for the

local over the foreign source, approximately 30% of the sample exhibited the opposite pattern.

Heterogeneity was even larger for the sensitivity parameter α (Figure 5, middle panel). Around

40% of the sample exhibited a pattern opposite to the average behavior, i.e., these subjects were

more sensitive to the foreign source than to the local one.

Study C revealed patterns similar to study B, even though it used different sources, measurement

methods (CE vs. MP), and experimental procedures (online with hypothetical choices vs. lab

experiment with real incentives). The results showed a consistent preference for the local source,

although this was not a universal pattern as some participants exhibited the opposite behavior.

Another important finding was that, similar to Study B, the average subject was more sensitive

to changes in probability for the local source than for the foreign source, indicating a difference in

sensitivity to probability changes between sources.

Comparing the results of this study with those of Study A reinforces the importance of ac-

counting for heterogeneity in attitudes. Although the average magnitude of source dependence was

greater in Study C than in Study A, subjects were more likely to exhibit pronounced preferences
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for one source over the other in Study A. Unlike Study C, which used the same foreign source for

all subjects, Study A used different foreign sources for different subjects. This difference in design

may explain why we observed more heterogeneity in source dependence in Study A than in Study

C.

The main objective of this empirical application is to demonstrate that source dependence and

its heterogeneity can be estimated using standard experimental and econometric procedures. Het-

erogeneity is finely captured by the random-coefficient approach, which focuses on the distribution

of parameters in the sample rather than aggregate-level or individual-level parameters. By using

Bayesian estimations, we can estimate individual parameters and their precision, which are often

overlooked in experimental studies, in addition to the distributions of parameters. We observe that

individual-level parameters have large standard errors, which could lead to type II errors if used

for inference. This highlights the advantage of random-coefficient estimations, as characteristics of

parameter distributions in the sample (such as mean and variance) can be precisely estimated even

when the number of observations per subject is too small to derive precise individual estimates.

Furthermore, our results reveal a consistent pattern across the three studies: individual standard

errors are larger for β than for α. This suggests that relative insensitivity is easier to detect at the

individual level than relative optimism.

6 Discussion

A simple and general method to measure source dependence. Economic decisions often

involve choosing between uncertain options with unknown probabilities. These decisions depend

not only on the decision maker’s beliefs about uncertain events but also on their attitude toward

different sources of uncertainty, a pattern called source dependence. To gain a deeper understanding

of such economic decisions, it is crucial to measure source dependence across different situations

and individuals.

While existing methods can capture attitudes toward specific sources, there is currently no sound

way to convert differences in ambiguity attitudes across sources into source dependence. This paper

addresses this limitation and introduces a function ϕ that characterizes source preference between

natural sources of uncertainty, independent of risk and ambiguity attitudes. The function maps
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beliefs about one source of uncertainty to beliefs about another, thereby providing a direct measure

of the preference for one source over another. Therefore, it acts as a p(robability) matcher (Baillon

et al. 2023).

We estimated pmatchers on three datasets and showed that source dependence could be effi-

ciently revealed using a limited number of choice-based data using either matching probabilities

or certainty equivalents. While using matching probabilities is efficient as it avoids measuring the

utility function (Dimmock et al. 2016b), it can be challenging for individuals who are not familiar

with probabilities (Bouchouicha et al. 2017). On the other hand, using certainty equivalents is cog-

nitively easier for decision makers but generally requires measuring the utility function (Abdellaoui

et al. 2011), which increases the number of choices to be collected. Our method provides a simple

way to measure source dependence using certainty equivalents without the need to measure utility

or weighting functions. As an illustration, we applied our method to a subset of choice tasks from

Abdellaoui et al. (2011) and found results that were similar to the original findings in terms of

source dependence. Notably, our method required fewer choices than the original study, as it did

not rely on the five additional certainty equivalents needed to measure utility.

Our estimation of pmatchers builds on existing methods for separating attitudes from beliefs:

the events-exchangeability method (Abdellaoui et al. 2011, Baillon 2008) and the belief-hedging

method (Baillon et al. 2018). While the events-exchangeability method requires a separate task

to independently measure beliefs, the belief-hedging method structurally identifies and jointly es-

timates beliefs and preferences. We extend the belief-hedging approach in three ways. First, our

extension of the belief-hedging method provides a direct estimation of source dependence that

avoids possible distortions due to the comparison of non-linear ambiguity (or source) functions.

Second, it offers an efficient way to quantify source dependence using the belief-hedging method

with certainty equivalents without the need to elicit the utility function (Baillon et al. 2017). This

is well suited for field or online studies (as shown in Study C), as it does not use (matching) prob-

abilities, which may be cognitively difficult for some individuals. However, this approach requires

the use of more advanced econometric methods for the joint estimation of beliefs and other param-

eters. Finally, we use non-linear functions for the structural estimations based on belief-hedging

data, whereas previous empirical applications have focused on the neo-additive specification.
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Measuring source dependence beyond two sources. Our method enables the study of source

dependence not only between two sources but also among multiple sources. While pmatchers

compare attitudes toward two sources, indirect comparisons of source dependence can be made

across any two pairs of sources, similar to the role of correlation coefficients when studying several

random variables. This is made possible because the source premium is measured on a cardinal

scale, making the estimates of different pmatchers comparable. Furthermore, the pmatcher ϕ has

properties that facilitate comparisons between more than two sources. The pmatchers between

any three sources, A, B, and C, are mathematically related using the composition rule ϕAC =

ϕAB ◦ ϕBC .
21 Consequently, for three sources, all six possible comparisons can be inferred from

only two pmatchers (e.g., ϕAB and ϕAC).

To illustrate, let’s consider the example from Section 2 of investors deciding whether to invest

in stocks A (AT&T), B (British Telecom), and C (Coca-Cola). These investors are experts in either

the telecommunications industry (sources A and B) or the food industry (source C). To study the

home bias, one could measure the certainty equivalents of six events for sources A and B using

the belief-hedging method to separate attitudes from beliefs. The parameters of the function ϕAB

are directly comparable across individuals and are independent of elements such as risk attitudes,

allowing researchers to study whether the home bias is affected by demographic characteristics.

Using the same method, one can measure an additional six certainty equivalents for source

C. With our method, it is easy to estimate the function ϕAC between AT&T and Coca-Cola,

capturing a possible effect of expertise on attitudes. The coefficients of the function ϕAC are not

only comparable across individuals but also comparable with those of the function ϕAB, enabling

direct comparison of the effects of home bias and expertise on attitudes.22

Measuring source dependence without structural econometric estimations. In our em-

pirical illustration of pmatchers, we used structural econometric estimations, which allow accounting

for non-deterministic choices (Gaudecker et al. 2022). We now show that, under additional assump-

tions, it is possible to estimate pmatchers without econometrics. Baillon et al. (2018) showed that

ambiguity attitudes toward a given source could be determined by two indexes, a and b, that can

21This example can be extended to other decompositions. For instance, the pmatcher between B and C can be
expressed as ϕBC = ϕBA ◦ ϕAC .

22We note that the pmatcher ϕBC between British Telecom and Coca-Cola can be computed without estimation
using the composition of the two other pmatchers.
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be easily computed using the belief-hedging method without relying on econometrics.23 These in-

dexes are general and can be interpreted under most models of ambiguity attitudes. Under the

source model (Abdellaoui et al. 2011), the two indexes can be interpreted as the parameters of a

neo-additive ambiguity function (e.g., Li et al. 2019): f(µ) = c + sµ with s = 1 − a and c = a−b
2 .

Researchers interested in source dependence can thus easily estimate the parameters of neo-additive

ambiguity functions toward each source using the matching probabilities of six belief-hedging events

for each source, without using econometrics. However, comparing the ambiguity functions of two

different sources is not straightforward, as illustrated in Section 2.3, and estimation of the pmatcher

remains necessary.

The assumption of neo-additivity greatly simplifies the calculation of the pmatcher. Specifically,

if aA, bA, aB, and bB are the ambiguity parameters of sources A and B, then ϕAB is also neo-additive

with an intercept of aB−bB−aA+bA
2(1−aA) and a slope of 1−aB

1−aA
. This means that the pmatcher can be easily

derived using the indexes of ambiguity attitudes for the two sources. Furthermore, using the

reparametrization that we proposed (see Section 4.2), we can easily obtain the two parameters of

relative insensitivity α and relative optimism β, such that

α =
aB − aA
1− aA

and β =
bB − bA
1− aA

(8)

The two parameters of the pmatcher can be computed from the original indexes of the ambiguity

functions without requiring any econometric estimations. Furthermore, Equation 8 holds even if

aA, bA, aB, and bB are indexes of neo-additive uncertainty functions, which is the case when certainty

equivalents are used instead of matching probabilities to assess belief-hedging events. Therefore,

our approach, when combined with the assumption of neo-additivity, allows for the estimation

of parameters of pmatchers using either matching probabilities or certainty equivalents without

requiring any econometrics.

Finally, we note that Equation 8 illustrates why differences in ambiguity-attitudes parameters

may fail to capture source dependence or allow for comparison across sources and individuals.

Indeed, the relative optimism parameter β corresponds to the difference in ambiguity aversion

23This comes at the cost that no standard error can be computed at the individual level, which prevents assessing
the precision of individual-level parameters.
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parameters between the two sources bB − bA adjusted by the sensitivity toward the “reference

source” (role of 1−aA). This parameter aA, which can vary between individuals and sources, must

be accounted for in quantifying source dependence.

Empirical results: source dependence and its heterogeneity. Our study analyzed pmatch-

ers across three datasets that varied in their elicitation methods and treatment of beliefs. We

observed source dependence in all three experiments. In studies B and C, in which the local and

foreign sources were identical for all participants, we observed a general preference for local sources

over foreign ones, consistent with previous research (Chew et al. 2012, Fox and Tversky 1995).

Additionally, we found more relative insensitivity toward foreign sources. These findings parallel

previous work on attitudes toward natural sources of uncertainty (Li et al. 2017) and suggest that

a two-parameter function is necessary to capture the complexity of source dependence.

Studies A and C both used local temperatures and temperatures in a foreign city as sources of

uncertainty. However, in Study A, the local source was the same for all participants, while the for-

eign source differed across participants. In contrast, in Study C, both the local and foreign sources

were the same for all participants. This difference in design could explain the difference in empir-

ical patterns between the two studies, particularly the higher heterogeneity in source dependence

observed in Study A compared to Study C.

Taking heterogeneity into account refines our understanding of specific economic mechanisms

and can generate different predictions from the ones produced by a representative agent (e.g.,

Croitoru and Lu 2014, Cutler et al. 2008). Influential empirical papers have revealed heterogeneity

of risk preferences (Bruhin et al. 2010, Falk et al. 2018, Gaudecker et al. 2011) and ambiguity

attitudes within a source of uncertainty, using either Ellsberg urns (Dimmock et al. 2016a) or

natural sources of uncertainty (Baillon et al. 2017, Abdellaoui et al. 2021). Our paper contributes

to this literature by showing evidence of heterogeneous patterns in terms of source dependence.

Accounting for heterogeneity in source dependence may be as important as accounting for

heterogeneity in beliefs or risk attitudes. As Li et al. (2017, p.1) note, “the domain of nonprob-

abilized uncertainties is rich just like the domain of non-monetary commodities, with many kinds

of informational and emotional configurations.” Source dependence can be explained by different

dimensions, including emotions (Li et al. 2017), perceived expertise (de Lara Resende and Wu
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2010), or familiarity (Abdellaoui et al. 2011, Chew et al. 2012). These dimensions can vary widely

from one individual to another, leading to high levels of heterogeneity, as seen in Study A (Abdel-

laoui et al. 2011), where foreign cities vary across subjects. Different cities may generate different

valence, memories, levels of expertise, or forecast difficulties, for instance. Our method provides

a framework for future research to explore how sources’ characteristics interact with individuals’

characteristics and how these interactions affect individuals’ attitudes.

Applications of source dependence: from individual decisions to strategic interactions.

This paper aims to contribute to the growing body of literature in economics that explores the

influence of attitudes toward uncertainty on behavior. Initially, this literature focused on the

impact of attitudes on individual decision making in various contexts, such as sports events (Heath

and Tversky 1991, de Lara Resende and Wu 2010), elections (Fox and Weber 2002), stock markets

(Kilka and Weber 2001, Baillon and Bleichrodt 2015), and insurance markets (Cabantous 2007).

In recent years, however, researchers have expanded their focus to study the role of uncertainty in

strategic interactions.

As Bohnet and Zeckhauser (2004, p. 474) note, “people care not only about the payoff outcome

but also about how the outcome came to be.” Early studies focused on the role of ambiguity

aversion in strategic interactions (Calford 2020, Di Mauro and Finocchiaro Castro 2011, Kelsey

and Le Roux 2015, Pulford and Colman 2007) and showed that aversion to strategic ambiguity

could explain inconsistencies between predictions and behavior in experimental games (Eichberger

and Kelsey 2011). Recent research has expanded to examine how attitudes toward different sources

affect behavior in strategic interactions, i.e., the effect of source dependence in strategic games. For

instance, Li et al. (2020) showed that integrating source dependence led to a different interpretation

of the role of betrayal aversion in the trust game. Other studies have shown that attitudes toward

strategic uncertainty depend on the nature of the setting. For instance, Bruttel et al. (2022)

observed that participants were more optimistic in games with strategic complementarity and more

pessimistic in games with strategic substitutability. Chark and Chew (2015) found evidence of

ambiguity aversion in competitive games and ambiguity seeking in coordination games. Attitudes

in games may also depend on the nature of the opponent; Eichberger et al. (2008) found that

ambiguity-averse behavior was more prevalent when the opponent was a novice, while Kelsey and
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Le Roux (2017) did not find a difference in ambiguity aversion depending on whether the opponent

was a local or foreigner.

These findings highlight the importance of source dependence in the context of strategic uncer-

tainty and illustrate that “a failure to incorporate source preference in modeling choice behavior in

[strategic interaction settings] will not likely perform well from a descriptive perspective” (Chark

and Chew 2015, p. 222). Existing experimental research on source dependence has mainly relied on

comparisons of willingness to bet on different games (Bruttel et al. 2022, Chark and Chew 2015),

the level of uncertainty of chosen actions (Eichberger et al. 2008), or comparisons of ambiguity

attitude indexes (Li et al. 2020). In contrast, our method enables a direct comparison of attitudes

toward uncertainty across individuals and games, allowing for a more comprehensive analysis of

how attitudes toward different types of contexts, such as competitive versus cooperative, or varying

conditions, such as individualized versus unknown opponents, differ based on demographic char-

acteristics like age, gender, or nationality. While previous studies have explored heterogeneity in

aversion toward strategic ambiguity (Ivanov 2011), investigating heterogeneity in source dependence

across individuals and situations in strategic interactions is a promising area for further research.

7 Conclusion

This paper presents a tractable definition of source dependence by introducing a transformation

function, that allows for comparisons between individuals and between (pairs of) sources. It further

shows how these functions can be estimated from a limited number of choices, adapting commonly

used methods to separate attitudes from beliefs. Our empirical analyses of three experimental

datasets reveal the presence of source dependence and highlight its heterogeneity across individu-

als. They further show that source dependence should be studied using two dimensions: relative

optimism and relative (in)sensitivity. Our approach provides a framework for future research to

examine the determinants of source dependence across individuals and situations.
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