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Abstract

In this article, the one-step estimation procedure is presented for generalized
linear models. In these models, the maximum likelihood estimator, which is
asymptotically efficient, has no closed-form and gradient-descent methods are
generally used for its numerical computation. Nevertheless, when the amount
of data is large and/or the number of explanatory variables is high, then the
computations can be very consuming. To overcome this difficulty, the one-step
estimation procedure is used, which is based on an initial (inefficient) guess
estimator and a single step of the Fisher scoring. The main advantage of this
procedure is that only one iterative step is required to achieve the asymptotic
efficiency. The results are validated numerically by means of Monte-Carlo simula-
tions.The estimation procedure is used to fit generalized linear models for climate
risk insurance data.

Keywords: Asymptotic efficiency, maximum likelihood estimator, Fisher scoring,
Monte-Carlo simulations, insurance data.

1 Introduction

Since their introduction in [24, 26], generalized linear models (GLMs) have been very
popular as they provide a unified approach to many statistical models applied in dif-
ferent scientific fields. In the GLMs regression setting, the distribution of the response
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variable is of exponential type. The exponential family of probability distributions
include the most popular distributions such as Gaussian, Poisson, Binomial, Gamma
and Inverse Gaussian.

The default method to estimate the parameters of GLMs from a finite number of
observations n is the maximum likelihood estimation method. In the case of incomplete
data due to partially missing explanatory variables on some observations, the maxi-
mum likelihood estimators are obtained by means of the Expectation-Maximization
(EM) algorithm [14]. The main idea of this algorithm is the maximization of the
expectation of the complete log-likelihood (instead of the likelihood that depends on
unoberved explanatory variables), conditionally on the observations and a current
parameter vector. The MLEs are obtained under the assumption that the missing
variables follow a discrete distribution with a finite support. An EM algorithm for max-
imum likelihood estimation in GLMs with overdispersion was presented in [1]. Later
on, an EM algorithm was presented to estimate mixtures of Poisson regressions when
the dataset is sizeable and the number of components can be greater than 10 [27].
Compared to their frequentist counterparts, fewer articles have focused on Bayesian
inference in generalized linear models. An efficient computational algorithm that works
for an arbitrary set of linear inequality constraints for GLMs was introduced in [16]
and shown to converge. The maximum likelihood estimators (MLE) of the parameters
and their asymptotic properties in the large sample setting (n → ∞) were studied
in [12, 13]. In particular, the authors presented mild general conditions to assure the
weak and the strong consistency of the estimators as well as their asymptotic nor-
mality. Moreover, they established the asymptotic efficiency of the MLE using the
normalisation by the square root of the information matrix rather than any normed
linear functional of the MLE.

From a numerical point of view, the MLE can be approximated by using the gradi-
ent descent methods, such as the Newton or the Fisher scoring. The MLE are generally
obtained by means of the iterative weighted least square algorithm (IWLS, [11]). How-
ever, when the datasets are large or the number of predictors is high, the calculation of
MLE can be time consuming and different computational issues arise. These difficul-
ties can be overcome by using the one-step estimation procedure [22]. The main idea
of this procedure is the construction of an optimal estimator based on an initial, fast-
computable guess estimator (which is not asymptotically efficient) and its correction
with one single step of the Fisher scoring algorithm to reach efficiency.

This procedure has been used to estimate the parameters of several stochastic mod-
els. In a high-frequency setting, the procedure was described for the fractional Gaussian
noise model in [6], where an initial sequence of quadratic generalized variations-based
estimators was employed. In the same setting, efficient estimation of a non-Gaussian
stable Lévy process with drift and symmetric jumps observed at high frequency was
considered in [5]. On the other side, in a large sample setting, the procedure has been
studied for Markov processes and inhomogeneous Poisson processes in [20] and [10],
respectively. More recently, an asymptotically efficient estimator was obtained for a
first-order fractional autoregressive model in [7]. The method was also applied for
Hawkes processes in [9]. Concerning multi-step estimator processes for ergodic diffu-
sion processes and backward stochastic differential equations in the Markovian case,
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we refer the interested reader to [18] and [19], respectively. From a computation point
of view, the procedure is available in the i.i.d. setting, in the R package [4].

It is worth mentioning that the one-step method was first introduced for GLMs
in [23]. The first main assumption is that the second moments of the second and
third partial derivatives of the log-likelihood are uniformly bounded on a compact
neighborhood of the parameter. The second assumption is that the covariates matrix
X satisfies XXT /n −→ C as n → ∞. In the case that the explanatory variables
are categorical, explicit fast-computable initial guess estimators were defined and a
one-step procedure was introduced recently (see [3] and the reference therein).

The objective of this paper is to present the procedure in the case of GLMs with
non-categorical response variables in a more general setting than [23]. In this work,
we consider as initial guess estimator the MLE obtained in a subsample and then
a correction is made with a single step of Fisher scoring. This procedure leads to
an asymptotically efficient estimator. Numerical examples are used to validate the
theoretical results. A real-world application to drought risk is also presented.

The paper is organized as follows: Section 2 contains the description of GLMs
and the MLE method along with the corresponding regularity conditions. Section 3
includes the extended one-step procedure. Section 4 describes the estimation of the
dispersion parameter. Numerical examples are available in Section 5 along with a
drought risk insurance application.

2 Notation and preliminaries

2.1 Generalized Linear Model

Let us denote by Y (n) = (Y1, . . . , Yn)
∗ the response vector composed by n independent

but not identically distributed R-valued random variables. We further denote by X =
(x1,x2, . . . ,xn)

∗ the set of deterministic explanatory variables valued in Rp (or design
matrix), where xi = (xi,1, xi,2, . . . , xi,p) for i ∈ {1, . . . , n}. The random variable Yi,
i ∈ {1, . . . , n}, is supposed to belong to the exponential family of distributions, which
means that the probability density function has the form

fYi

(
yi, (ϑ, ϕ)

)
=

{
exp

(
yiλi(ϑ)−b(λi(ϑ))

ϕ + c(yi, ϕ)
)
, if yi ∈ Y ⊂ R,

0, elsewhere,
(1)

where ϑ ∈ Θ ⊂ Rp and ϕ are unknown parameters, b : Λ → R and c : R×R→ R are
known functions. We consider that Λ is a convex set of R, and in the interior Λ0 of
Λ (Λ0 ̸= ∅), all derivatives of b(·) and all moments of Yi exist for any i ∈ {1, . . . , n}.
We can easily note that E

(
Yi
)
= b′(λi(ϑ)) = µ(ϑ) and Var

(
Yi
)
= ϕb′′(λi(ϑ)) (see

Appendix A), which is supposed to be positive in Λ0.
Moreover, λi(·), i ∈ {1, . . . , n}, is a function of an unknown parameter ϑ ∈ Θ ⊂ Rp

defined by
λi = λi(ϑ) = h(⟨xi, ϑ⟩),
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where h is properly fixed and ⟨·, ·⟩ represents the standard scalar product in Rp.
Consequently, for i ∈ {1, . . . , n}, we have

g
(
E(Yi)

)
= ⟨xi, ϑ⟩,

where g = h−1 ◦ µ−1. The function g is called the link function.
Here we focus on the canonical case where h is the identity function. We further

denote by M the image µ(Λ0) of Λ0. In the sequel, we make some necessary regularity
conditions:
1. Θ is open in Rp and convex,
2. ⟨xi, ϑ⟩ ∈ g(M), i ∈ {1, . . . , n}, for all ϑ ∈ Θ,
3. The function g is twice continuously differentiable,
4. The matrix X∗X has full rank for n ≥ n0.
It is worth mentioning that for one parameter distributions such as the distributions

of Bernoulli and Poisson, the dispersion parameter ϕ is assumed to be known and equal
to 1. However, for the Normal and Gamma distributions, ϕ needs to be estimated (see
Table 1).

Table 1: Table of distributions of the exponential family.
Distribution b(λ) c(y, ϕ) Link function name Canonical link
Poisson exp(λ) − log(!y) Log g(m) = log(m)
Bernoulli log(1 + exp(λ)) 0 Logit g(m) = log(m/(1 − m))
Normal λ2/2 −

(
y2/ϕ + log(2πϕ)

)
/2 Identity g(m) = m

Gamma − log(−λ) log(y/ϕ)/ϕ − log(y) − log(Γ(1/ϕ)) Inverse g(m) = −m−1

2.2 Maximum likelihood estimation

Given a realisation of Y (n), the log-likelihood function associated to the statistical
experiment is given by

Ln

(
ϑ, ϕ

)
=

n∑
i=1

log fYi

(
Yi, (ϑ, ϕ)

)
=

1

ϕ

n∑
i=1

(
Yiλi(ϑ)− b(λi(ϑ))

)
+

n∑
i=1

c(Yi, ϕ).

In the sequel, we denote by ϑ0 and ϕ0 the true, unknown parameters. The
Maximum Likelihood Estimator (MLE) (ϑ̂n, ϕ̂n) is defined by

(ϑ̂n, ϕ̂n) = arg max
(ϕ,ϑ)∈Φ×Θ

Ln

(
ϑ, ϕ

)
.
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The MLE satisfies the score equations

∂

∂ϑ
Ln

(
ϑ̂n, ϕ̂n

)
= 0 and

∂

∂ϕ
Ln

(
ϑ̂n, ϕ̂n

)
= 0.

The first equation also writes
∂

∂ϑ
ℓn(ϑ̂n) = 0

where

ℓn(ϑ) =

n∑
i=1

(
Yiλi(ϑ)− b (λi(ϑ))

)
. (2)

which does not depend on ϕ. When the parameter ϕ has also to be estimated it can
be infer with the MLE procedure by solving the second equation that writes

− 1

ϕ̂2n
ℓn(ϑ̂n) +

n∑
i=1

∂

∂ϕ
c(Yi, ϕ̂n) = 0. (3)

In the following, we consider the estimation of θ. The estimation of ϕ is considered in
Section 4.

2.3 Asymptotic properties of the MLE of ϑ

Direct computations of the score function, denoted Sn
ϑ , lead to

Sn
ϑ,j =

∂

∂ϑj
ℓn(ϑ) =

n∑
i=1

∂λi(ϑ)

∂ϑj

(
Yi − b′ (λi(ϑ))

)
,

for j = 1, . . . , p. In the canonical case, we have

∂λi(ϑ)

∂ϑj
= xi,j , j = 1, . . . , p,

which does not depend on the parameter ϑ. Direct calculations on the Hessian matrix
lead to

Hn,ϑ
i,j =

∂2

∂ϑj∂ϑk
ℓn(ϑ)

=

n∑
i=1

∂2λi(ϑ)

∂ϑj∂ϑk

(
Yi − b′ (λi(ϑ))

)
−

n∑
i=1

∂λi(ϑ)

∂ϑj

∂λi(ϑ)

∂ϑk
b′′ (λi(ϑ)) .

It can be noticed that

E
(
Hn,ϑ

i,j

)
= −

n∑
i=1

∂λi(ϑ)

∂ϑj

∂λi(ϑ)

∂ϑk
b′′ (λi(ϑ)) .
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In the canonical case

E
(
Hn,ϑ

i,j

)
= −

n∑
i=1

xi,jxi,kb
′′(λi(ϑ)).

Then the symmetric Fisher information matrix In(ϑ) is defined by

In(ϑ)i,j := −E
(
Hn,ϑ

i,j

)
. (4)

The sequence of maximum likelihood estimators ϑ̂n has been shown to be consistent
and asymptotically normal in [12, 13]. To obtain these asymptotic properties, some
additional assumptions are necessary. In the following, we denote by A

1
2 (respectively

A
∗
2 ) a left (respectively a right) square root matrix of the positive definite matrix

A, i.e. A
1
2A

∗
2 = A. Then we define, for ϑ0 ∈ Θ, δ > 0 and n ≥ 1, a subset of the

parameter space Θ

Nn(δ) =
{
ϑ ∈ Θ | ∥In(ϑ0)

∗
2 (ϑ− ϑ0) ∥2 ≤ δ

}
.

We denote by λnmin(ϑ) (λ
n
max(ϑ)) the smallest (largest) eigenvalue of In(ϑ).

In addition, we suppose that:
1.

lim
n→∞

λnmin(ϑ0) = ∞.

2. For all δ > 0, the matrix In(ϑ)−cIn(ϑ0) is positive semi-definite for all ϑ ∈ Nn(δ)
and all n ≥ n1 for some constants n1(δ) and c > 0 independent of δ.

3. For all δ > 0,
lim

n→∞
max

ϑ∈Nn(δ)
|Vn(ϑ)− Ip| = 0,

where
Vn(ϑ) = φn(ϑ0)

∗In(ϑ)φn(ϑ0) (5)

is the normed information matrix with

φn(ϑ) = In(ϑ)−
∗
2 (6)

and Ip is the identity matrix of order p.

4. There is a neighborhood U ⊂ Θ of ϑ0 such that, for all n ≥ n1,

λnmin(ϑ) ≥ c(λnmax(ϑ))
1
2+δ,

for some constants c > 0 and δ > 0.
Under the previous assumptions, the sequence of maximum likelihood estimators

(ϑ̂n, n ≥ 1) is consistent and asymptotically normal [12, 13], that is

In(ϑ0)
∗
2

(
ϑ̂n − ϑ0

)
L−→

n→+∞
N (0, ϕIp). (7)
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3 One-step procedure

According to [17], the one-step procedure can be adapted to a non-rate efficient
sequence of estimators if the Fisher information presents more regularity (see for
instance [20] for recursive Markov chains).

The one-step procedure is based on the following idea: Given a consistent but
possibly inefficient initial estimator, ϑ̃n, we first form the Fisher scoring one-step
estimator defined by

ϑn = ϑ̃n + In(ϑ̃n)−1 ∂

∂ϑ
ℓn(ϑ̃n). (8)

Second, under regularity conditions, we show that this estimators have the same
asymptotic properties as the MLE.

In our context, we choose as initial guess estimator, the MLE computed on a small
sample of size N = ⌊nδ⌋ (with 1

2 < δ ≤ 1), namely

ϑ̃n = ϑ̂N . (9)

Let us denote ηn(ϑ) = φ⌊nδ⌋(ϑ) = φN (ϑ). From (7), the estimator is φN (ϑ0)-
consistent, more precisely

ηn(ϑ0)
(
ϑ̃n − ϑ0

)
L−→

n→+∞
N (0, ϕIp). (10)

We further assume that:
(i) the function Vn(ϑ) defined in (5) is Lipschitz continuous,
(ii) the quantity

∥η∗n(ϑ0)φn(ϑ0)
−1ηn(ϑ0)∥ −→ 0 as n→ ∞.

Theorem 1. Under all previous assumptions, the sequence of one-step estimator
(ϑn, n ≥ 1) defined in (8) and (9) is consistent and asymptotically normal, i.e., as
n −→ ∞,

In(ϑ0)
∗
2

(
ϑn − ϑ0

)
−→ N (0, ϕIp)) in law.

Proof. First, starting from the one-step estimator

ϑn = ϑ̃n + In(ϑ̃n)−1 ∂

∂ϑ
ℓn(ϑ̃n)

= ϑ̃n + φn(ϑ0) · φn(ϑ0)
−1In(ϑ̃n)−1φn(ϑ0)

−∗ · φn(ϑ0)
∗ ∂

∂ϑ
ℓn(ϑ̃n)

= ϑ̃n + φn(ϑ0)Vn(ϑ̃n)
−1φn(ϑ0)

∗ ∂

∂ϑ
ℓn(ϑ̃n), n ≥ 1,
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where (ϑ̃n, n ≥ 1) is the initial guess estimator. The renormalized statistical error is
then

φn(ϑ0)
−1

(
ϑn − ϑ0

)
= φn(ϑ0)

−1(ϑ̃n − ϑ0) + Vn(ϑ̃n)
−1φn(ϑ0)

∗ ∂

∂ϑ
ℓn(ϑ̃n), n ≥ 1.

(11)
Second, according to the mean value theorem for the score, there exists v ∈ [0, 1]

such that

φn(ϑ0)
∗ ∂

∂ϑ
ℓn(ϑ̃n) = φn(ϑ0)

∗
∫ 1

0

∂2

∂ϑ2
ℓn

(
ϑ0 + v(ϑ̃n − ϑ0)

)
dv(ϑ̃n − ϑ0) + φn(ϑ0)

∗ ∂

∂ϑ
ℓn(ϑ0)

= φn(ϑ0)
∗
∫ 1

0

∂2

∂ϑ2
ℓn

(
ϑ0 + v(ϑ̃n − ϑ0)

)
dvφn(ϑ0) · φn(ϑ0)

−1(ϑ̃n − ϑ0)

+φn(ϑ0)
∗ ∂

∂ϑ
ℓn(ϑ0)

= −
∫ 1

0

Vn

(
ϑ0 + v(ϑ̃n − ϑ0)

)
dv · φn(ϑ0)

−1(ϑ̃n − ϑ0) + φn(ϑ0)
∗ ∂

∂ϑ
ℓn(ϑ0).

The last equality is valid since we consider natural link functions. By substituting in
(11) and reorganizing the terms, we obtain that

φn(ϑ0)
−1

(
ϑn − ϑ0

)
= A+B,

where

A := Vn(ϑ̃n)
−1

(
Vn(ϑ̃n)−

∫ 1

0

Vn

(
ϑ0 + v(ϑ̃n − ϑ0)

)
dv

)
φn(ϑ0)

−1(ϑ̃n − ϑ0)

and

B := Vn(ϑ̃n)
−1φn(ϑ0)

∗ ∂

∂ϑ
ℓn(ϑ0).

Following Lemma 1 in [13] (under conditions (2),(4)) we have that

B
L−→

n→+∞
N (0, ϕIp).

As for the first term, we have that

A =

(
I− Vn(ϑ̃n)

−1

∫ 1

0

Vn

(
ϑ0 + v(ϑ̃n − ϑ0)

)
dv

)
η−∗
n (ϑ0)︸ ︷︷ ︸

A.1

× η∗n(ϑ0)φn(ϑ0)
−1ηn(ϑ0)︸ ︷︷ ︸

A.2

· η−1
n (ϑ0)(ϑ̃n − ϑ)︸ ︷︷ ︸

A.3

,

where ηn(ϑ) = φnδ(ϑ).
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To prove that the term A.1 is bounded in probability, first we notice that∫ 1

0

Vn

(
ϑ0 + v(ϑ̃n − ϑ0)

)
dv

p→ Ip,

according to the proof of Theorem 3 in [13]. Second, we consider the ηn consistency

of ϑ̃n, and assume that Vn is Lipschitz.
The term A.3 is bounded in probability due to the ηn consistency of ϑ̃n. The second

term A.2 tends to zero by assumption.
Then by means of Slutsky’s theorem we conclude that the term A tends to zero in

probability, which leads to the final result.

Remark 1. The condition

∥η∗n(ϑ0)φn(ϑ0)
−1ηn(ϑ0)∥ −→ 0 as n→ ∞

is fulfilled for regular design matrices (see for instance [25, 28]) and δ > 1/2. Indeed,
the design matrix X is called regular if

XXT

nα
−→ C, α > 0, as n→ ∞,

where C is a symmetric positive definite matrix. Consequently, we can show that

In(ϑ0)
nα

−→ C ′,

where C ′ is a symmetric positive definite matrix. In this case, since

η∗n(ϑ0)φn(ϑ0)
−1ηn(ϑ0) ∼ (C ′)−1/2n(1−2δ)α/2,

the norm of the matrix tends to zero for δ > 1/2.

4 Estimation of ϕ

In several GLM models, for instance Bernoulli and Poisson, the dispersion parameter
ϕ is equal to 1 and does not require estimation. When the parameter ϕ needs to be
estimated, it can be obtained by solving the equation

− 1

ϕ̂2n
ℓn(ϑ̂n) +

n∑
i=1

∂

∂ϕ
c(Yi, ϕ̂n) = 0. (12)

In the Gaussian and Inverse Gaussian cases, the equation(12) has a closed-form
solution. In particular, in the case of Gaussian model, we have c(y, ϕ) = −y2/(2ϕ) −
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log(2πϕ)/2. Hence the MLE of ϕ is defined by

ϕ̂n =
−2ℓn(ϑ̂n) +

∑n
i=1 Y

2
i

n
. (13)

On the other side, in the case of Inverse Gaussian model, b(x) = −
√
−2x and

c(y, ϕ) = − log(2πϕy3)/2− 1/(2ϕy). Then the MLE of ϕ is defined by

ϕ̂n =
−2ℓn(ϑ̂n) +

∑n
i=1 1/Y

2
i

n
. (14)

In the two previous examples, the MLE ϑ̂n could be replaced by the one-step
estimator θn in (13) and (14) respectively, leading to faster and asymptotically optimal
estimation.

For several other models, the equation (12) has no closed-form solution. For

instance, in the case of Gamma model, the MLE ϕ̂n of ϕ is the solution of the equation

ℓn(ϑ̂n) + n
(
1− ψ(1)(1/ϕ̂n)− log(ϕ̂n)

)
+

n∑
i=1

log(Yi) = 0

with ψ(1)(α) = d
dα log Γ(α) is the digamma function.

5 Numerical examples

5.1 Simulated data

5.1.1 Gamma distribution

In the following we present a numerical example to illustrate the theoretical results. In
particular, we consider a generalized linear model with a bi-dimensional explanatory
variable (p = 2) and a response variable that follows the Gamma distribution with
dispersion parameter equal to ϕ = 0.1. To illustrate the asymptotic normality of the
estimators, we make 1000 Monte-Carlo simulations. Each simulation corresponds to a
realization of random variables of length n = 2000.

For a generic estimator ϑ∗n, the renormalized statistical error is defined by

In(ϑ0)
∗
2 (ϑ∗n − ϑ0) .

The Figure 1 presents the asymptotic distribution of the renormalized statistical errors
for the maximum likelihood estimator ϑ̂n (MLE), the initial estimator ϑn (subMLE
with δ = 0.8) as well as the one-step maximum likelihood estimator ϑn (OSMLE).

We observe that contrary to the initial estimator, the one-step maximum likelihood
estimator is asymptotically efficient.

Moreover, if we compare the times to compute the estimators, we notice that the
calculation of the MLE necessitates 2.520 mins, whereas the calculation of the OSMLE
needs 12.479 secs. The calculations have been made in R (version 4.0.5), the PC used
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Fig. 1: Renormalized statistical errors of MLE, subMLE and OSMLE for a GLM
with a Gamma-distributed response variable. Red and blue lines correspond to the
theoretical asymptotic densities of the MLE and the subMLE, respectively.

is an HP ZBook 15u G3, with a memory of 16 Go and processor Intel(R) Core(TM)
i7-6500U CPU . 2.50 GHz.

We further present in Figure 2 the mean time (in secs) needed to compute the MLE
and the OSMLE (for a sample size n = 500) as a function of the number of predictors
p for different values of δ. In order to calculate these mean times, 200 Monte-Carlo
simulations were made for every number of predictors.

5.1.2 Poisson distribution

In the following we present a numerical example where the respose variable is discrete
and in particular follows the Poisson distribution, whereas the explanatory variable is
bi-dimensional (p = 2). To illustrate the asymptotic normality of the estimators, we
make 1000 Monte-Carlo simulations, where each simulation includes the generation of
random variables of length n = 2000 (Fig. 3).
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Fig. 2: Computation time of MLE and OSMLE versus number of predictors for dif-
ferent values of δ.

5.2 Real data

In this section, we present a comparative analysis between the One-Step Maximum
Likelihood Estimator and the traditional Maximum Likelihood Estimator using a real-
world dataset coming from the insurance sector. The response variables concern the
claim amounts in a portfolio of drought insurance policies and the connection of inci-
dents with the french regime of natural hazards. Indeed, if an incident belongs to this
regime, it may be refunded.

The dataset includes p = 22 variables, 18 of them are quantitative, and com-
prises no missing data. Categorical variables and identifiers are excluded, whereas the
quantitative variables are observed for n = 10, 884 claims from 2006 to 2023. The
dataset comes from the insurance company Groupama and the consolidation work of
the Institute of Risk and Insurance in Le Mans.
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Fig. 3: Renormalized statistical errors of MLE, subMLE and OSMLE for a GLM
with a Poisson-distributed response variable. Red and blue lines correspond to the
theoretical asymptotic densities of the MLE and the subMLE, respectively.

5.3 Modeling the activation of a claim

Our objective is to explain the insurance claim variable Yi (i = 1, . . . , n) defined by

Yi =

{
1, if the i−th insurance claim is active,
0, otherwise,

by means of the aforementioned explanatory variables. This categorical variable cap-
tures the ongoing status of claims, offering insights into the factors affecting the
duration or resolution of insurance claims.

In the logistic regression model, the link is considered to be canonical, which leads
to the equation
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log

(
E(Yi)

1−E(Yi)

)
=

p∑
j=1

ϑjxi,j , (15)

for i = 1, . . . , n.
Among the 22 explanatory variables, there are two variables that are statistically

significant (significance level α = 0.05):
• Year of claim opening (x1): year that the insurance claim was initiated. It
contributes to the identification of temporal trends or changes in claim processing.

• Duration of claim (x2): number of days from the opening to the closure of the
claim. It measures the active duration of the claim.

The OSMLE (δ = 0.9) and the MLE are presented in Table 2. First, we observe
that the values of MLE and OSMLE are close to each other, with a difference equal
to zero (approximated to 3 decimals).

ϑ1 × 103 ϑ2 × 103

MLE -2.5631 3.9239
subMLE -2.5637 3.9400
OSMLE -2.5630 3.9237

Table 2: OSMLE and MLE of the parameters of the logistic model.

Second, each parameter has the same sign for both MLE and OSMLE. The negative
sign of the estimated ϑ1 implies that as the year of the claim opening increases, it is
less likely that the claim is active. On the other side, the odds ratio associated to the
parameter ϑ2 is greater than 1, which means that as the duration of a claim increases,
it is more likely that the claim is active. The duration of a claim favors the probability
that it is still active.

5.4 Modeling the cost of a claim

In this section, we build a Gamma glm to explain the cost of insurance claims. The
link function is considered to be the canonical (i.e. inverse), and the model is described
by the equation

1

E(Yi)
=

p∑
j=1

ϑjxi,j ,

for i = 1, . . . , n.
It turns out that there are two statistically significant explanatory variables:

• Duration of claim (x1): number of days from the opening to the closure. It
measures the active duration of the claim.

• Land registry urbanization index (x2): urbanization index of the area where the
building is located. Values closer to 1 indicate higher levels of urbanization.

As shown in Table 3, the MLE and OSMLE (δ = 0.95) of the parameters are very
close to each other, which reflects the robustness of the estimation methods.
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ϑ1 × 106 ϑ2 × 106

MLE 0.018 4.056
subMLE 0.017 4.097
OSMLE 0.018 4.056

Table 3: OSMLE and MLE of the parameters of the Gamma GLM.

6 Concluding remarks

Over time, as more data becomes available, the development of statistical methods that
allow to handle complex and large-scale problems presents a growing interest. Here we
focus on GLMs and present the one-step estimation procedure. The procedure is based
on the construction of a new estimator of the parameters, the one-step MLE, which has
the same asymptotic properties as the MLE. This procedure presents computational
advantages, as demonstrated by Monte-Carlo simulations.

In this work we consider that the response variable is univariate. From a
methodological perspective, the extension of this work to the multivariate case and
multivariate models is of particular interest. Moreover, the situation where a non-
canonical form is considered, could be addressed in the future. Another type of
estimators that could be studied for GLMs are the multi-step estimators [17], where
the subsample is nδ with δ ≤ 1/2. Further work includes the development of the proce-
dure for generalized additive models which extend GLMs in the sense that the response
variable depends linearly on unknown smooth functions of some explanatory variables.
In a parametric context, these functions have a specified parametric form, and thus
the one-step procedure could be employed to estimate the corresponding parameters.

From application point of view, the one-step procedure could be further used to
other applications coming from the insurance industry. Since GLMs are widely used
in many scientific fields, the proposed method could have straightforward applications
in agriculture and biology.

A First two central moments for GLM

Since fYi
(·, (ϑ, ϕ)) is the density of Yi defined in (1), we have∫

Y

fYi
(u, (ϑ, ϕ))du = 1. (16)

By derivating (16) with respect to θ1, we get

∂λi(ϑ)

∂ϑ1

∫
Y

(u− b′(λi(ϑ))

ϕ
fYi(u, (ϑ, ϕ))dy = 0

and ∫
Y

(u− b′(λi(ϑ))fYi(u, (ϑ, ϕ))dy = 0, (17)
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which leads to E
(
Yi
)
= b′(λi(ϑ)). Moreover, derivating (17) with respect to θ1 gives

∂λi(ϑ)

∂ϑ1

∫
Y

(
(u− b′(λi(ϑ))

2

ϕ
− b′′(λi(ϑ))

)
fYi

(u, (ϑ, ϕ))dy = 0,

which results to Var
(
Yi
)
= ϕb′′(λi(ϑ)).
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