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Abstract. Objective: Patients suffering from heavy paralysis or Locked-in-Syndrome
can regain communication using a Brain-Computer Interface (BCI). Visual event-
related potential (ERP) based BCI paradigms exploit visuospatial attention (VSA)
to targets laid out on a screen. However, performance drops if the user does not
direct their eye gaze at the intended target, harming the utility of this class of BCIs
for patients suffering from eye motor deficits. We aim to create an ERP decoder
that is less dependent on eye gaze. Methods: ERP component latency jitter plays a
role in covert visuospatial attention (VSA) decoding. We introduce a novel decoder
which compensates for these latency effects, termed Woody Classifier-based Latency
Estimation (WCBLE). We carried out a BCI experiment recording ERP data in overt
and covert visuospatial attention (VSA), and introduce a novel special case of covert
VSA termed split VSA, simulating the experience of patients with severely impaired
eye motor control. We evaluate WCBLE on this dataset and the BNCI2014-009
dataset, within and across VSA conditions to study the dependency on eye gaze
and the variation thereof during the experiment. Results & discussion: WCBLE
outperforms state-of-the-art methods in the VSA conditions of interest in gaze-
independent decoding, without reducing overt VSA performance. Results from across-
condition evaluation show that WCBLE is more robust to varying VSA conditions
throughout a BCI operation session. Together, these results point towards a pathway
to achieving gaze independence through suited ERP decoding. Our proposed gaze-
independent solution enhances decoding performance in those cases where performing
overt VSA is not possible.

Keywords brain-computer interface, event-related potential, jitter, gaze-independence,
covert attention, split attention
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1. Introduction

Brain-Computer Interfaces (BCIs) decode brain activity to establish a communication
channel that does not rely on speech or muscular activity (Naci et al., 2012; Chaudhary
et al., 2016), which in turn can provide solutions to paralyzed individuals. The
quest for performant and affordable solutions is most evident in visual BCIs using the
electroencephalogram (EEG), where it has led to a gamut of increasingly sophisticated
decoders, tailored to the needs of specific stimulation paradigms and usage contexts.

Traditional visual BCI scenarios require the user to overtly direct their visuospatial
attention (VSA) and gaze toward the screen target they intend to select. In most
settings, screen targets are overlaid with non-overlapping, transient stimuli that evoke
event-related EEG potentials (ERPs). The selected target can be decoded from these
ERPs, as is the case for the oddball paradigm where observing a rare but attended
stimulus evokes a P3 ERP component. However, a critical challenge arises when users
rely solely or in part on covert VSA, which involves directing visuospatial attention
without corresponding eye gaze. In these cases, classical solutions often fall short of
the widely accepted 80% target selection accuracy threshold deemed necessary for a
comfortable user experience (Brunner et al., 2010; Frenzel et al., 2011; Treder and
Blankertz, 2010; Ron-Angevin et al., 2019; de Neeling and Van Hulle, 2019), calling
for alternative, gaze-independent solutions.

In this work, we will use the term gaze-independent meaning ‘dealing explicitly
with the fact that a user cannot control their gaze.’ In the context of a visual BCI, this
means that the user’s visuospatial attention and their gaze do not necessarily coincide.
Gaze-independent paradigms are particularly promising for individuals with impaired
eye motor control, such as those suffering from specific types or stages of Amyotrophic
Lateral Sclerosis (ALS), Multiple Sclerosis (MS), stroke, or brain stem stroke. For these
patients, gazing directly at a screen target may be uncomfortable, impractical, or even
impossible. Hence, assistive devices that rely on eye tracking are often inefficient for
them. Consequently, while BCIs hold great promise for these individuals, conventional
gaze-dependent BCI solutions do not meet their needs due to the absence of gaze control.
Therefore, the development of decoding strategies that account for covert VSA becomes
crucial in the pursuit of high-performance gaze independent BCIs.

Concept Definition

VSA Visuospatial attention, attention directed at a stimulus visible in the field of view
Overt VSA VSA and gaze are directed at the same stimulus
Covert VSA VSA is directed at a stimulus while the gaze is directed at an empty region
Split VSA VSA is directed at a stimulus while the gaze is directed at a different stimulus
Distractor The stimulus to which gaze is directed in split VSA
Gaze-independent Coping with the dissociation between the locus of VSA and the gaze
Jitter Variability of single-trial latencies relative to stimulus onset

Table 1: Definitions of some concepts presented in this work.
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The novelty of our work consists of the following elements. Firstly, we introduce
an ERP decoding algorithm designed to perform well in gaze-independent settings by
explicitly addressing the increased variability of single-trial peak latencies (jitter) of the
P3 ERP component relative to stimulus onset (Aricò et al., 2014). Secondly, we evaluate
our algorithm in a range of settings that are of interest in gaze-independent decoding,
including a special case of covert VSA termed split VSA. In split VSA, participants
direct their visuospatial attention to one target while looking at a different one, called
the distractor. Split VSA mimics the involuntary gaze drift of patients with limited
eye motor control, as they might unintentionally fixate on an unrelated target. Despite
its potential significance, split VSA remains an underexplored area in the visual BCI
literature. With the proposed algorithm, we introduce a method to allow split attention
in gaze-independent BCI operation.

2. Related work

2.1. Gaze-independent BCIs

Gaze-independent ERP-based BCIs (Riccio et al., 2012) can be realized in three ways.
Firstly, non-visual stimulation paradigms such as auditory and somatosensory paradigms
do not rely on gaze redirection but often result in lower information transfer rates,
increased mental effort and user-dependent variability (Reichert et al., 2020b). Secondly,
visual stimulation can be optimized, e.g. such that the stimuli are always present in
the field of view (Treder and Blankertz, 2010; Pires et al., 2011; Lees et al., 2018).
Non-spatial visual attention (feature attention) can also be exploited, such as attention
to stimulus color, shape or symbol (Zhang et al., 2010; Treder et al., 2011; Hwang
et al., 2015). Alternative visual stimulation paradigms can modulate specific ERP
components that are more sensitive to stimulation in the visual periphery (Schaeff
et al., 2012; Xu et al., 2022). However, they still rely to some extent on eye motor
control, often necessitating central gaze fixation.

Thirdly, stimuli can be presented in a standard BCI paradigm, but visuospatial
attention can be decoded separately from gaze direction. Aloise et al. (2012b) aimed
to bridge the performance gap between covert and overt VSA decoding performance.
They compared classical linear and non-linear ERP classifiers on a covert attention P3
ERP component dataset. The results revealed no significant performance improvement
in covert VSA decoding for any of the investigated decoders. Aricò et al. (2014)
observed higher variability in single-trial P3 peak latencies relative to stimulus onset
during covert VSA compared to overt VSA. This latency variability contributes to
reduced covert VSA decoding performance. While they proposed an analysis and
performance prediction method, they did not provide a decoding solution. They
suggested that compensating for latency jitter could enhance covert VSA decoding, but
did not actually verify this hypothesis directly. Additionally, Hardiansyah et al. (2020)
developed a classifier for covert VSA ERPs, exploiting single-trial latency features in
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combination with amplitude features for classification with a support vector machine.
They demonstrated the positive influence of single-trial ERP component latency features
on covert VSA inference yet did not attempt to correct the amplitude features for these
latencies. Frenzel et al. (2011) introduced a similar protocol to our split VSA setting.
They showed that it is possible to perform split VSA and that, in this case, visuospatial
attention and gaze direction can separately be decoded using classical ERP techniques.
To the best of our knowledge, this is the sole study that investigated split attention
in ERP-based BCIs. However, Frenzel et al. (2011) considered their interface only
for the case where the user actively intends to select both targets determined by the
gaze and the VSA. In the split VSA setting considered in our work, we rather instruct
the participant to ignore the distractor and only attend the cued target, since we are
interested in decoding the visuospatial attention only.

P3 latency generally falls between 350ms and 600ms (Luck, 2014), but this value is
heavily dependent on the subject and the task, and can vary from trial to trial (Ouyang
et al., 2017). The work of Aricò et al. (2014) illustrates that the variation in single-trial
P3 latencies is important in gaze-independent decoding and has been hampering covert
VSA decoding performance. In this work we aim to reprise their hypothesis stating
that jitter compensation improves covert VSA performance and extend it by developing
a decoder and evaluating it in a broader range of gaze-independent settings, including
split VSA.

2.2. Latency estimation

Single-trial ERP latency jitter introduces a problem in ERP analysis: the smearing
effect occurs when aggregating over multiple identical signals with different latencies. A
familiar example of this happens when averaging over jittered epochs for ERP analysis.
In the presence of jitter, the shape and amplitude of the average do not reflect the
properties of the original signal. As the smearing effect reduces the amplitude of the
average, it negatively impacts the signal-to-noise ratio (SNR). The smearing effect
equally impacts the SNR of information captured by a classifier’s parameters when
training with a procedure that does not account for this jitter, and thus also affects
its performance (Thompson et al., 2012). Hence, effective latency estimation and jitter
compensation can contribute to higher decoding performance.

The most straightforward latency estimation method is peak picking. Peak picking
determines the latency of an ERP as the time point of its maximum (or minimum for
negative components) amplitude relative to stimulus onset. While easy to implement,
this method does not perform well in low or negative SNR conditions because of the risk
of picking a noise-related peak, unless combined with strong filtering in the space, time or
frequency domains (D’Avanzo et al., 2011; Aricò et al., 2014; Treder et al., 2016; Ouyang
et al., 2017). Due to the risk of picking noise peaks, template matching is generally
preferred. Woody’s algorithm (Woody, 1967) is a simple and performant latency
estimation method that is considered to be among the most performant ones (Ouyang
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et al., 2017). Woody’s scheme starts with a template that approximates the expected
response, e.g. the average target ERP, and iteratively enhances the SNR of this template
by determining at each iteration the time point of maximum cross-correlation of the
template with all single-trial ERPs, and aligning them based on these latencies to form
the template for the next iteration. The final, enhanced template can then be cross-
correlated again to retrieve an accurate estimation of single-trial latencies. Similar to
peak-picking, cross-correlation template matching can be combined with a spatial filter
such as XDAWN (Souloumiac and Rivet, 2013) or a spatiotemporal filter (Iturrate
et al., 2014). More recent work achieves good performance in latency estimation
using residue iteration (Ouyang et al., 2017), genetic algorithms (Pelo et al., 2018),
a hidden process model (Kim et al., 2020) or graph-based network analysis (Dimitriadis
et al., 2018).

Most of these methods suffer from a common drawback: they cannot be used in
a decoding scheme to improve performance for incoming epochs with unknown class
labels that contain either a target or non-target ERP response. They can be used
offline on a set of labeled epochs for testing hypotheses concerning latency and jitter,
for aligning templates, or for BCI performance prediction, but not for ERP classification.
While some of the aforementioned methods could be adapted to perform classification
tasks, few studies investigate how to exploit this latency estimation for jitter-resistant
decoding. Hardiansyah et al. (2020) incorporated single-trial latencies in classification by
peak-picking within a given ERP time window, unaware of the class of the epoch under
investigation. The Classifier-Based Latency Estimation (CBLE) algorithm introduced
by Thompson et al. (2012) also explicitly applies latency estimation in a decoding
setting. Thompson et al. (2012) initially formulated CBLE as an off-line performance
prediction method. Later, its output was successfully adapted to compensate for jitter
to improve decoder performance (Mowla et al., 2017; Zisk et al., 2022).

Time series classification algorithms (Abanda et al., 2019) that are robust to
jitter can be used in a decoding setting, but, in general, have scarcely been applied
to ERP decoding. Data augmentation involving jittering the training data (Krell
et al., 2018; Zisk et al., 2022) and Riemannian Geometry methods using spatial
covariances as features (Aydarkhanov et al., 2020) have both been shown to perform
well in the presence of ERP jitter. In this work, we opted to apply CBLE because it has
successfully been applied to classify jittered ERPs. We adapt the CBLE to an iterative
method akin to Woody’s scheme that can better compensate for jitter, to improve covert
VSA decoding performance.

3. Materials and Methods

3.1. Decoders

3.1.1. Classifier-based Latency Estimation Consider a training set of N EEG epochs
with C channels of S samples {Xtrain

n ∈ RC×S}Nn=1 with corresponding training labels
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ltrain ∈ {target, non-target}Nn=1, and a similar testing set of M epochs {Xtest
m ∈

RC×S}Mm=1. We assume that the sampling period is T , i.e. that the sample with index
s is sampled at time sT . In the following, we use the matrix slicing notation to denote
row or column intervals extracted from a matrix. For instance, X[:, s1 : s2] denotes all
columns of X with indices between s1 (included) and s2 (excluded).

CBLE, summarized in Algorithm 1, works by training a first-stage classifier C(θ, f)
defined within a time period [s1 : s2] with a set of parameters θ and a decision function
f(X[:, s1 : s2], θ)→ y outputting a classification score y ∈ R for a given epoch X, such
that

θ = trainC({Xtrain
n [:, s1 : s2]}Nn=1, l

train) (1)

Then, f can be applied to all (possibly overlapping) slices of length s2 − s1 of an epoch
X, resulting in a vector of score values y = [y1 . . . yR]

T ∈ RR such that

ys = f(X[:, s : s+ (s2 − s1)], θ) ∀s ∈ 1, . . . , R (2)

with R = S − (s2 − s1). To leverage CBLE for ERP classification, the score vectors y

can be arranged in matrices Ytrain ∈ RN×R and Ytest ∈ RM×R. These can be further
classified by training a second-stage classifier on Ytrain and class labels ltrain. However,
the resulting score-over-time vectors per epoch still suffer from jitter. For classification,
we follow the approach of Mowla et al. (2017), using a maximum-level hierarchical
Daubechies-4 wavelet transform to reduce dimensionality before classification with the
second-stage classifier. In the CBLE-decoder, it is this wavelet transform that decreases
the sensitivity to latency differences, actively compensating for ERP latency jitter.

When using a simple spatiotemporal linear classifier as first-stage classifier, CBLE is
equivalent to the first iteration of Woody’s algorithm with the spatiotemporal classifier
weights as template. Thompson et al. (2012), Mowla et al. (2017) and Mowla et al.
(2020) show that CBLE is relatively independent of the first-stage classifier for BCI
accuracy prediction and for ERP classification. Therefore, we opt to use the variant of
Linear Discriminant Analysis with block-Toeplitz regularized covariance matrix (tLDA)
proposed by Sosulski and Tangermann (2022), as the first-stage classifier and logistic
regression as second stage.

3.1.2. Robust CBLE latency features The ERP decoding method based on CBLE
introduced by Mowla et al. (2017) does not make use of the extracted latencies, only
passing score matrix Y on to the second-stage classifier. We noticed that, while CBLE
performance was unaffected, the classification performance of our proposed method can
be improved if the estimated latencies are also made available as features to the second-
stage classifier, after a square transform for linear separability (Thompson et al., 2012).

These latency features give rise to the following issue when classifying unseen data.
The CBLE latency estimate is defined only for target epochs as starget = argmaxs ys.
This is the point in time where the target class reaches largest separation from the
background noise and non-target class, indicating the target ERP is most likely to
occur here. However, in a classifier test phase, it is not known a priori whether an
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unseen epoch is a target or a non-target epoch. This problem is solved by defining an
estimated latency per class starget and snon−target for every epoch, regardless of its actual
class. The estimated class latencies can then be used as features for training and testing
the second-stage classifier. This way, the latencies of the testing data can be presented
to the second-stage classifier without knowledge of the testing data class labels, making
them useful in decoding.

In a similar manner to the target latency, the non-target latency could be defined
as snon−target = argmins ys. However, this is problematic since it is not evident how
to estimate latency of e.g. a P3 ERP component for a non-target epoch, since the
non-target class is characterized by the absence of this component. In fact, y can
have multiple local minima or entirely lack distinct peaks for non-targets, rendering the
minimum estimate meaningless.

Instead, we opt for a more robust, probabilistic definition of class latencies. This
robust estimation method yields latencies that (1) are more meaningful as input for the
second-stage classifier, and (2) lead to smoother convergence in our proposed iterative
alignment scheme for WCBLE, which heavily relies on exact latency estimation. Assume
classifier C(θ, f,Pr) now can also output a probability per class Pr(l|X[:, s1 : s2 :)], θ)

for a given epoch X, a feature of many common classifiers. Analogous to equation 2,
we can now write

Pr(X, θ, l, s) =
1

R
Pr(X[:, s : s+ (s2 − s1)], θ, l) ∀ s ∈ 1, . . . , R (3)

The latency features assuming the epoch belongs to a given class l ∈ {target, non-target}
are then defined as the median of the corresponding distributions

sl = median [Pr(s|X, θ, l)] (4)

Note that Pr(s|X, θ, non-target) = 1−Pr(s|X, θ, target). The median of the probability
distribution over time is more robust to outliers and noise than the maximum or
minimum score. For the non-target case, the median approach tends towards the center
of a near-uniform distribution, resulting in a more consistent latency estimate over trials
as compared to the minimum approach.

3.1.3. Classifier-based Latency Estimation with Woody Iterations To improve
performance over CBLE, we propose a new algorithm inspired both by CBLE and the
aforementioned Woody iteration scheme (WCBLE). Instead of using CBLE to estimate
the features of a second-stage classifier directly, CBLE latency estimation is used as a
step in a Woody iteration scheme. While the Woody algorithm iteratively enhances
the SNR of an ERP template to cross-correlate with the data, WCBLE iteratively
re-estimates the parameters of the first-stage classifier. To improve convergence and
perform well in a classification setting, WCBLE aligns both targets and non-targets to
their corresponding estimated latencies.

The WCBLE algorithm is presented in Algorithm 2. Its training phase is visualized
in figure 1. The initial training epochs {X(1)

n }Nn=1 are set to {Xtrain
n }Nn=1. At every
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iteration, classifier C is trained like in CBLE:

θ(i) = trainC({X(i−1)
n [:, s1 : s2]}Nn=1, l

train) (5)

Next, latency s
(i)
ln

is determined for every epoch X(i) corresponding to its class label
ln using equation 4. Finally, the training epochs X(i+1) for the next iteration are
determined by aligning each original training epoch to the latency s

(i)
ln

corresponding
to its respective class label.

X(i+1)
n = align(Xtrain

n , s
(i)
ln
) ∀ n = 1, . . . , N (6)

Aligning is performed by shifting and zero-padding the signal to the right if the latency
is negative relative to the time window onset, and to the left if positive, by the difference
between the latency and the window onset. The process halts after a fixed amount of
iterations or when the estimated set of latencies has been encountered before, indicating
it ended up in a loop. In the end, the procedure should result in enhanced classifier
parameters θ∗, closer to those when there would be no jitter between epochs. We can
then apply the classifier with enhanced parameters θ∗ in a CBLE manner to unseen
epochs as illustrated in figure 2 to obtain a vector of scores over time as in section 3.1.1
and the estimated latencies as in section 3.1.2.

3.1.4. Riemannian Geometry We will compare WCBLE, CBLE and tLDA to
Riemannian Geometry approaches that rely on spatial covariance as features.
Together with tLDA, Riemannian Geometry generally reaches state-of-the-art decoding
performance (Lotte et al., 2018). We implemented two Riemannian Geometry pipelines.
The first one estimates shrunk covariances from the ERPs filtered with 6 XDAWN
filters, projects these covariances to a tangent space and classifies the result using L2-
regularized logistic regression (XDAWNCov-TS-LR) (Cecotti et al., 2017). Secondly,
we adopt the pipeline from Aydarkhanov et al. (2020), since their work shows favorable
performance in the presence of single-trial ERP latency jitter. Shrunk spatial covariance
matrices are estimated from epochs that are augmented by concatenating the average
target and average non-target ERP as extra channels, projected to tangent space and
classified using L2-regularized logistic regression (ERPCov-TS-LR).

3.2. Experiments

We evaluate our approach on a publicly available dataset and one specifically recorded
for this study, designed to probe different modalities of covert VSA.

3.2.1. CVSA-ERP dataset We recorded a dataset to validate our approach. The
Covert Visuospatial Attention ERP (CVSA-ERP) dataset consists of 15 participants,
mean age 26.34 ± 3.04 years. This study was approved by the Ethics Commission of
University Hospital Leuven (S62547). Appendix A details the stimulation and recording
procedure. Each subject performed different VSA conditions (overt, covert and split),
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Figure 1: Schematic representation of the Woody Classifier Based Latency Estimation training
phase. (1) The first-stage spatiotemporal binary classifier is trained on a set of epochs. (2) It is
then applied to time-shifted copies of the epochs to obtain scores and class probabilities over time.
(3) The medians of these probability distributions are assumed the class latencies. (4) The epochs
are aligned to their corresponding class latencies by shifting in time such that all latencies fall at
the same moment. (5) The spatiotemporal classifier is then retrained on the aligned epochs for a
next iteration. (6) After the iterative process halts, the scores and latencies obtained from the last
iteration are used to train the second-stage classifier.

illustrated in figure 3A. Using a hexagonal layout interface, similar to the visual Hex-o-
Spell proposed by Treder and Blankertz (2010), we present six flashing targets (without
letters or symbols) to the participant while the EEG, electrooculogram (EOG), and the
participant’s eye gaze using eye tracking were recorded. The VSA conditions described
in the first row of figure 3A are considered.

In contrast to the protocol proposed by Frenzel et al. (2011), split VSA was
performed by instructing the participant to attend the intensifications of the cued target,
and ignore the intensifications of the distractor target. Since we assume there will be an
effect depending on the distance between attended target and the distractor, we discern
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Figure 2: Schematic representation of the Woody Classifier Based Latency Estimation test phase.
(1) The first-stage spatiotemporal binary classifier obtained from the training phase is applied to
time-shifted copies of the epochs to obtain scores and class probabilities over time. (2) The medians
of these probability distributions are assumed as the new class latencies. (3) The scores and class
latencies are input to the trained second-stage classifier, which predicts the label of the epochs.

three split VSA sub-conditions: the distractor is either clockwise or counterclockwise
directly next to the attended target (d = 1), there is one other target between the
attended target and the distractor (d = 2), or the distractor is opposite to the intended
target (d = 3).

3.2.2. BNCI2014-009 dataset The BNCI2014-009‡ dataset (Aloise et al., 2012a) was
used in the analysis performed in Aricò et al. (2014). It contains data from 10 subjects
(median age 24.5 ± 1.9 years) that performed two spelling tasks illustrated in the
second row of figure 3A: using the P3 Matrix speller interface to exploit overt VSA,
and the GeoSpell covert VSA interface. To use the GeoSpell interface, the participant
gazes at the fixation point at the center of the screen, while groups of characters flash
simultaneously in a circular layout around the fixation point. The user directs their
visuospatial attention to the location where the intended letter is expected to appear,
and when it does, a P3 ERP component is expected to be evoked. This results in a
specific setting where both visuospatial attention and feature attention (the attended

‡ https://bnci-horizon-2020.eu/database/data-sets

https://bnci-horizon-2020.eu/database/data-sets
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Figure 3: A Interfaces and visuospatial attention (VSA) conditions in the CVSA-ERP and
BNCI2014-009 datasets. In the CVSA-ERP oddball BCI interface, screen targets are intensified
one after the other in pseudorandom order while the participant can either pay overt, covert, or split
VSA to the cued target. In the BNCI2014-009 overt VSA interface, entire rows and columns are
intensified at once. In its covert counterpart, groups of 6 letters are intensified one after the other,
partly relying on feature attention. B Contrast between target (color) and non-target, and distractor
(gray) and non-target grand average event-related potentials per VSA condition and dataset. Overt
VSA yields a strong modulation of the N1 component in both datasets; the P3 amplitude decreases
with the degree of split VSA. In split VSA, N1 and P2 are more prominently evoked by the distractor,
while the P3 is evoked by the target.
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letter) are exploited. For a detailed description of the paradigm and dataset, we refer
to Aloise et al. (2012a).

3.2.3. Data preprocessing and analysis Analysis was performed using Python and the
MNE software package (version 1.3.1) (Gramfort, 2013). All datasets were band-pass
filtered between 0.1Hz and 20Hz with a 4th-order Butterworth filter. Bad channels in the
data were automatically detected using the RANSAC method (Fischler and Bolles, 1981)
and rejected. The recorded EEG was re-referenced offline to the average of the mastoid
electrodes TP9 and TP10. Next, the EEG signals were corrected for eye movement
artifacts using an Independent Component Analysis (ICA). Since we have access to
EOG data for the CVSA-ERP dataset components correlating significantly with the
EOG were rejected. For the BNCI2014-009 dataset, ICA components were manually
rejected. Finally, the EEG signal is divided into epochs ranging from 100ms before
stimulus onset to 700ms after stimulus onset and down-sampled to 128Hz. In both
datasets, only 16 channels were kept for analysis (Fz, FCz, Cz, CPz, Pz, Oz, F3, F4,
C3, C4, CP3, CP4, P3, P4, PO7 and PO8).

To evaluate performance, 6-fold cross-validation without shuffling was performed for
both datasets. At each fold, classifiers were trained on five target selection blocks (300
epochs) and tested on one block (60 epochs) without overlap for CVSA-ERP. For each
subject and run in the BNCI2014-009 dataset, classifiers were trained on five symbol
selections (480 epochs) and tested on one symbol selection (96 epochs) without overlap
at each fold. A window ranging from 0ms to 600ms after stimulus onset was used for
CBLE and WCBLE. With epochs ranging from -100ms to 700ms relative to stimulus
onset, this allows for extracting latencies ranging from -100ms to +100ms.

4. Results

4.1. BCI decoding performance

We evaluated the BCI decoding performance in a single-trial classification experiment,
as well as in a target selection experiment reflecting BCI operation.

Figure 4A shows a comparison of areas under the Receiver Operating Characteristic
curve (ROC-AUC) for all pairs of tLDA, CBLE and WCBLE for single-trial classification
to investigate the contributions of CBLE and WCBLE relative to their first-stage
classifier tLDA. For this evaluation, epochs were rejected when the peak-to-peak
amplitude exceeded 800µV and, for the CVSA-ERP dataset, if the user’s gaze differed
more than 10 degrees of visual angle from the fixation crosshair. Wilcoxon signed-
rank tests controlled for multiple comparisons by Benjamini and Hochberg’s False
Discovery Rate procedure (FDR) revealed that for the BNCI2014-009 dataset, WCBLE
significantly outperformed tLDA (∆ROC− AUC = 0.019, p = 0.004) and CBLE
(∆ROC− AUC = 0.016, p = 0.036) for covert VSA but was significantly outperformed
by tLDA in overt VSA decoding (∆ROC− AUC = −0.004, p = 0.040). For the
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Figure 4: A Difference in cross-validated single-trial classification receiver operating characteristic
curve (∆ROC-AUC) between Classifier-based Latency Estimation (CBLE), Woody CBLE (WCBLE),
and their first-stage classifier (tLDA). 95% confidence intervals were determined using k = 1000

bootstrapping. Our proposed WCBLE decoder outperforms tLDA and CBLE for covert and split
(d = 3) visuospatial attention (VSA). CBLE scores on par with tLDA. B Cross-validated target
selection accuracy for all decoders plotted n function of the number of test repetitions in different
VSA conditions. Significance was determined using one-sided (WCBLE > other) Wilcoxon rank-
sum tests using False Discovery Rate correction (∗ = p < 0.05, ∗∗ = p < 0.01, ∗ ∗ ∗ = p < 0.001).
WCBLE generally achieves highest covert VSA target selection accuracy.

CVSA-ERP dataset, WCBLE also achieved significantly better covert VSA performance
than tLDA (∆ROC− AUC = 0.023, p = 0.041) and CBLE (∆ROC− AUC = 0.036,
p = 0.024) . We found no significant difference in WCBLE performance over tLDA in
the split VSA conditions in the CVSA-ERP dataset, but results show a clear trend of
increase in WCBLE performance over tLDA and CBLE as d increases CBLE failed to
significantly outperform its first-stage classifier tLDA in all evaluated VSA conditions.
Table B1 reports all single-trial classification scores for all considered models, datasets
and conditions.

Figure 4B shows the cross-validated BCI selection accuracy on the BNCI2014-009
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and the CVSA-ERP dataset for all investigated decoders. Accuracy was determined
by, for each block, selecting the character with the highest (stage-two if applicable)
classifier score and comparing it to the cued target. Significance was calculated using
one-sided Wilcoxon rank-sum tests (p = 0.05) corrected for FDR over decoders. For this
evaluation, no epochs were rejected to keep the trial-based structure of BCI operation
intact. For all datasets and VSA conditions, CBLE scores approximately on par with
tLDA. Yet, WCBLE yields an improved decoding accuracy for covert VSA in both
datasets, which is greatest for smaller numbers of repetitions and decreases as the
number of repetitions increases. This covert VSA accuracy increase over tLDA is
significant in the BNCI2014-009 dataset for 1 and 3 repetitions and in CVSA-ERP
for 1-5 and 10 repetitions. Furthermore, while we reported a relative decrease in
single-trial ROC-AUC for WCBLE in overt VSA, this does not seem to result in a
consistent decrease in target selection accuracy. No significant increase of WCBLE over
other methods was found in split VSA. While Riemannian methods are significantly
outperformed by tLDA, CBLE and WCBLE in the BNCI2014-009 dataset, they perform
approximately on par with tLDA and WCBLE in CVSA-ERP.

Overall, we observed a 5.10%pt. accuracy increase with WCBLE over tLDA for
covert VSA in the BNCI2014-009 dataset and 5.55%pt. in the CVSA-ERP dataset.
These results compare to the performance gain in Zisk et al. (2022). They observed
a 5.63%pt. accuracy increase with 1-10 selection repetitions over step-wise Linear
Discriminant Analysis (SWLDA) for 6 ALS patients, whose SWLDA performance also
suffered from jitter. Note that interpretation of this comparison may be challenging due
to differences in interface design (number of targets, inter-stimulus interval), subject
population, EEG recording procedure and available training data.

4.2. Gaze-independence through cross-condition transfer

To further back our claim of gaze-independence in the case where eye motor control
cannot be assumed, we evaluate our proposed decoder in a transfer learning setting
between VSA conditions. While performing covert attention requires gaze redirection
for each target selection, performing covert or split VSA continuously still requires
sustained gaze fixation, which might not be possible for some patients that could benefit
from such an application. Studying the transfer between conditions simulates what
happens when the user performs different VSA conditions throughout the experimental
session. Furthermore, if our decoder performs well in transfer-learning settings, it must
capture some information about the ERP responses that is independent of the VSA
condition, and hence does not depend on gaze redirection to perform these conditions.
We introduce an additional setting of interest here, namely on a combination of VSA
conditions, which represents those cases where patients cannot redirect their gaze and
hence can be in any one of the VSA conditions depending on the target they attend.
For BNCI2014-009, this is implemented as an equal mix of overt and covert VSA, for
CVSA-ERP the combined condition represents an equal mix of overt, covert and split
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Figure 5: A,B Difference in cross-validated area under the receiver operating characteristic curves
between Classifier-based Latency Estimation (CBLE) and Woody CBLE (WCBLE) across conditions
for the CVSA-ERP and BNCI2014-009 datasets respectively. A decoder is each time trained on
a visuospatial attention (VSA) condition and tested on all VSA conditions. WCBLE yields an
improvement in most non-overt VSA settings, indicating it is more invariant to eye gaze than CBLE
and tLDA. C Jitter characterized as the inter-quartile range (IQR) of target epochs for different
VSA conditions. Overt VSA exhibits lower jitter than other conditions. Significance of differences
was determined with two-sided Wilcoxon rank-sum tests with False Discovery Rate correction on
per-subject jitter (∗ = p < 0.05, ∗∗ = p < 0.01, ∗ ∗ ∗ = p < 0.001, ∗ ∗ ∗∗ = p < 0.0001).

VSA, disregarding parameter d.
Figure 5A and figure 5B show the pair-wise differences in area under the ROC curve

(∆ROC-AUC) between the investigated decoders. In this evaluation, bad epochs were
rejected as in section 4.1. When comparing CBLE and tLDA, we do not observe large
differences in any of the evaluated settings, similar to the within-subject conditions. On
the contrary, when considering the comparisons between WCBLE and tLDA, we see
that performance is on par or greater using WCBLE for most conditions, except for
within-overt VSA decoding.
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5. Discussion

Figure 4A shows that WCBLE significantly improves covert VSA decoding. This is
advantageous for the development of a class of ERP-BCI interfaces for patients who
prefer to rest their gaze on a fixation cross on the screen, avoiding the effort of redirecting
their eye gaze for every selection. Furthermore, the performance gain over the first-stage
classifier in the split VSA (d = 3) and between-VSA condition transfer settings are
promising for patients with even less eye motor control that can experience involuntary
eye movements or fixation fatigue hence cannot keep their gaze fixed throughout an
entire BCI operation session. WCBLE would allow them to operate a BCI comfortably
while directing their gaze to whichever portion of the screen they prefer, even when there
is another target present or this location varies during the course of operation. Although
WCBLE did not significantly improve overt VSA single-trial decoding, figure 4B shows
that this does not negatively impact target selection accuracy. While target selection
accuracy also did not improve for split VSA, the increase in single-trial performance in
split (d = 3) shows that an iterative alignment procedure has the potential to improve
over CBLE and its first-stage classifier for this case as well.

We believe the relative increase in performance of our proposed decoder in covert
and split VSA, and the lack thereof in overt VSA, could stem from the following:
(1) Covert and split VSA exhibit higher P3 jitter than overt VSA. In covert and split
VSA, participants have to execute a dual task by dissociating their visuospatial attention
and gaze fixation. Evidence shows that ERP latency variability is higher when attention
is divided (Polich, 2007; Aricò et al., 2014). Aricò et al. (2014) also partly attribute
higher latency jitter to the covert VSA task performed in the BNCI2014-009 dataset
since the GeoSpell interface requires both spatial and feature attention. (2) In overt
VSA, the first-stage classifier can rely mostly on the modulation of early visually evoked
potentials (VEPs) like N1 than on the P3 (Treder and Blankertz, 2010). These VEPs
are closely related to visual processing hence exhibit lower jitter, contrary to P3 which
is more prone to the effects of attention and workload (Hu et al., 2010), reducing the
contribution of alignment. (3) This property can also result in the estimation of VEP
latencies instead of the P3 latency and WCBLE would in this case fail to increase the
P3 SNR, which still could be somewhat jittered in overt VSA. (4) Aligning to the P3
will lower the SNR of early VEPs while aligning to VEPs will lower P3 SNR, since they
are not time-locked to each other. (5) Covert and split VSA ERPs may exhibit lower
SNR than overt VSA due to lower P3 amplitudes or even due to the presence of higher
P3 jitter itself. Higher SNR in overt VSA results in higher decoding performance of
state-of-the-art classifiers, leaving less room for relative improvement in this case.

Although it is not immediately clear if WCBLE actively corrects for higher P3 jitter
present in covert and split VSA compared to overt VSA, we justify our approach similar
to Hardiansyah et al. (2020) by observing that the increased discrimination performance
of a machine-learning model accounting for jitter forgoes the need for characterizing the
underlying physiological processes while still objectively quantifying the presence of
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jitter between data classes. Furthermore, some evidence points towards higher P3 jitter
as the main contributing factor. While figure 3B shows no visible smearing effect in the
shape of the ERPs, a more quantitative analysis on latencies in figure 5C indicates the
opposite. To obtain comparable results across VSA conditions, WCBLE was evaluated
per session and trained on all combined VSA conditions as in section 4.2. Since all
conditions have the P3 in common, the estimated latencies can be interpreted as P3
latencies. Two-sided Wilcoxon rank-sum tests on jitter, expressed as the inter-quartile
range (IQR) of the estimated latencies of target trials, revealed that overt VSA exhibited
significantly lower jitter than all other conditions for both datasets. No other significant
differences were found. p-values were corrected for the family-wise error rate using
Bonferroni correction. Additionally Aricò et al. (2014) prove that P3 jitter does play a
non-negligible role in covert VSA by comparing performance between overt and covert
VSA, while including or excluding early VEPs. This analysis showed that the absence
of the N1 and other early VEPs is not the only factor hampering covert VSA decoding
performance. However, the large increase in performance for covert VSA in Aricò et al.
(2014) could also be explained by overfitting on artifacts amplified by aligning, since
their method is not evaluated on unseen data, as opposed to ours.

Finally, we argue that the increased performance of WCBLE is partly due to the
fact that tLDA is a suitable first-stage classifier. Firstly, imposing a Toeplitz-covariance
structure strongly regularizes the problem (Sosulski and Tangermann, 2022; Van
Den Kerchove et al., 2022), at the benefit of decoding performance. Secondly, this
method has a synergy with CBLE since both make the same assumption about the
short-time stationary of the EEG background noise within an epoch. CBLE does not
retrain the first-stage classifier for each time shift, but rather trains it once within the
given window. After training, the classifier parameters represent some information about
the expected ERP waveform and background noise. By applying the trained classifier
to different time shifts, it assumes this ERP waveform can be shifted in time, but since
the classifier’s information about the background noise was only obtained from the
initial window, CBLE assumes its properties do not vary throughout the epoch. The
block-Toeplitz covariance structure of tLDA also assumes that the background noise
represented by this covariance after subtracting the class averages is stationary within
the epoch (Sosulski and Tangermann, 2022).

We found that CBLE did not improve gaze-independent decoding performance
significantly and also did not increase performance over its first-stage classifier in overt
VSA contrary to what was reported by Mowla et al. (2017). While they report that
CBLE is relatively independent to the first-stage classifiers evaluated in their work,
it is evident here that applying any given classifier in the CBLE scheme does not
necessarily increase its performance. In our case, this could be due to characteristics
of the tested dataset, e.g. the presence of jitter, or the generally higher performance of
tLDA as compared to the first-stage classifiers tested by Mowla et al. (2017), leaving
less performance to be gained.

Thompson et al. (2012) already attempted applying CBLE in an iterative scheme
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but did not report any results due to convergence issues. We mitigated this by combining
the robust latency estimation presented in section 3.1.2 with the alignment of both
target and non-target epochs. Aligning only the target epochs containing the jittered
P3 component is prone to overfitting by aligning non-discriminate noise that is present
in both classes, such as environment noise, oscillatory background rhythms or non-
modulated VEPs. If SNR is low, residual noise varying slightly between classes could
dominate the expected response of the first-stage classifier and subsequently dominate
WCBLE from the start, preventing convergence to a meaningful solution. Our procedure
circumvents this problem by aligning both classes to the time points where the expected
separation between classes is greatest. This way, noise of which the latencies are
estimated in a given iteration will be perfectly time-locked in all classes in the next
iteration. The first-stage classifier can then more easily suppress this noise since it is
now clear it is present in both classes and non-discriminative. This aids the method in
converging to a more robust classifier by iteratively increasing SNR for both classes and
class separation over time.

Zisk et al. (2022) addressed P3 jitter in ALS patients by augmenting the training
data once with time-shifted copies based on CBLE-estimated jitter. While we aim
to train the first-stage classifier without the effects of jitter in its parameters, they
do the opposite by intentionally jittering the training data. As their focus was on
ALS patients and inter-session stability, they did not assess how their method interacts
with visuospatial attention. We achieved a similar performance gain with our jitter
compensation method, but argue that our method can cope with more granular latency
differences, as Zisk et al. (2022) augment the data with just one positive and negative
time shift.

While Hardiansyah et al. (2020) decoded covert VSA more effectively by
contributing single-trial latency and amplitude features to decoder. Contrary to our
approach, they did not then correct these amplitude features for the jitter in their
latencies by e.g. aligning trials to achieve better separability. Hence, their approach
would not in principle render the classifier more robust to jitter. Furthermore we
incorporated estimated latency features in both CBLE and WCBLE, yet only WCBLE
improved covert VSA performance. This shows that the incorporation of latency features
is not the only driver of covert VSA decoding performance increase.

Despite encouraging results, our study faces some limitations that we plan to tackle
in the future. Firstly, multiple ERP components can be time-locked to different neural
processes, each with their own jitter, hampering the performance of single-trial latency
estimation and their interpretability. Adaptations could be made to incorporate prior
time windows or probability distributions on the latency of specific ERP components
or to simultaneously estimate set of multiple component (clusters) latencies per ERP
such as in Residue Iteration Decomposition (Ouyang et al., 2017). Future efforts should
investigate how strong spatiotemporal filtering can be combined with methods that
allow for a more flexible non-stationarity of the ERP like Dynamic Time Warping
(DTW) or other techniques lent from time series classification, or methods that explicitly
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model multiple time displacements present in one ERP. Secondly, performance might
be improved by venturing beyond the classical target/non-target binary classification
problem. Due to e.g. the perifoveal stimulus cruciform model (Vanegas et al., 2013),
covert and split VSA responses might differ based on the relative position in the field
of view of their related stimulus which could be exploited in a multi-class classification
problem. Similarly, explicitly taking into account the characteristic of the distractor
ERP response might have a beneficial effect. Thirdly, results were obtained in an off-
line and within-session evaluation, which does not reflect true BCI operation. Using
multiple sessions with on-line feedback, the user could optimize their performance over
time by controlling attention or gaze. Finally, since this work was conducted with patient
applications in mind, we should highlight that gaze of participants in the conducted
experiments was cued and fixed, which is per definition impossible for the patients we
consider. We are currently conducting a patient study to further investigate whether
the studied VSA conditions are appropriate and to what extent they occur in natural
patient BCI operation.

6. Conclusion

Our aim was to improve gaze-independent BCI performance for spatially organized
visual event-related potential (ERP) paradigms by using a suited decoder. Earlier results
on BCI performance in covert visuospatial attention (VSA) performance prediction have
shown that accounting for single-trial latency jitter could improve gaze-independent
decoding performance. We applied Classifier-based Latency Estimation (CBLE) as a
decoder robust to latency jitter but found no increase in gaze-independent decoding
performance. To remedy this, we improved CBLE by adapting it into CBLE with Woody
iterations (WCBLE), an iterative scheme using probabilistic latency estimation. Results
for WCBLE within and across VSA condition decoding show that gaze-independent BCI
performance can be improved at the decoding stage. Overt decoding performance was
not improved, but our proposed method can provide added value for patients who are
unable to operate a visual BCI in overt attention mode. Later studies should confirm
whether our findings hold in patient populations suffering from a variety of eye-motor
impairments, and develop a solution that is capable of properly handling multiple non-
time locked ERP components.
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Appendix A. Stimulation and Recording

EEG for the CVSA-ERP dataset was recorded using a SynAmps RT amplifier
(Compumedics Neuroscan, Australia) at 2048Hz and 62 Ag/AgCl active electrodes
arranged in the international 10-10 layout fitted to a standard electrode cap (EASYCAP
GmbH, Germany), with electrodes located at AFz and FCz as ground and reference
respectively. Using electrolyte gel, electrode impedances were brought below 5kΩ.
Electrodes TP9 and TP10, used for off-line re-referencing, were directly attached to
the skin using stickers for better contact. The power line frequency in Belgium is 50
Hz. Participant’s eye gaze was registered using an EyeLink 1000 Plus eye tracker (SR
Research, Canada) in non-fixation mode.

Participants signed the informed consent form and were seated at a distance of
60 cm before a CRT-emulating monitor (VPixx Technologies, Canada) operating at
a refresh rate of 120Hz, displaying 6 circular white targets with a diameter of 4.15°
visual angle and laid out on a hexagon with a radius of 12.28° of visual angle centered
on the midpoint of the screen, conforming to the interface proposed by Treder and
Blankertz (2010) (figure A1A). A hexagonal layout interface with an empty center and
a low number of targets counteracts target crowding and, as long as the subject’s gaze
is within the hexagon of targets, no other target can be between the subject’s gaze
and a covertly attended target. Targets are full-contrast white and were intensified by
scaling them to a larger size (5.60° of visual angle, figure A1B) instead of changing the
contrast to avoid Troxler-fading§ (Treder and Blankertz, 2010) in the peripheral visual
field. Stimuli were presented using PsychopPy (version 2023.1.3) (Peirce et al., 2019).

The participant was instructed to press the space bar when ready for a block
of stimulations. Then, one target was indicated as the cue and the participant was
instructed to count the number of intensifications of the cued target during the following
block of stimulations. After pressing the space bar again, a blue crosshair appeared,
and the subject was instructed to fixate their gaze on the blue crosshair for the duration
of the stimulation block (figure A1C and figure A1D). The position of this crosshair
determined the VSA condition for this trial: overt VSA when the crosshair was at the
same location as the cued target, covert VSA when the crosshair appeared in the center
of the screen, and split VSA when the crosshair appeared on a different target than the
cued one. After pressing the space bar again and a delay of 5 seconds, the stimulation
block starts. All targets were intensified for a duration of 100 ms, in pseudorandom
order. The inter-stimulus-interval (ISI), the time between the onsets of subsequent
intensifications, was variable and consisted of a fixed 300ms interval (of which 100ms

§ The optical illusion of disappearing unchanging stimuli experienced when visually fixating (Troxler,
1804).
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with an intensified target onscreen) with 200ms uniform jitter added, resulting in an ISI
between 200 and 400 ms. Inter-stimulus intervals were jittered to counteract steady-state
effects and residue in averaging. A longer inter-stimulus interval will increase component
amplitude and aid in counteracting temporal autocorrelation for a higher statistical
test precision. In a block of stimulations, each target was intensified a pseudorandom
number of times between 10 and 15. This led to stimulation blocks with an average
duration of 26.25 seconds. After a block of stimulations, an input prompt appeared to
enter the mentally counted number of intensifications. After inputting this number, the
subject was allowed to pause until pressing the space bar again. In total, six blocks
were presented for overt VSA, six blocks for covert VSA, 12 blocks for split (d = 1)
VSA, 12 blocks for split (d = 2) VSA and 6 blocks for split (d = 3) VSA, covering
all possible combinations of VSA conditions, cued targets and crosshair locations. The
experiment started with five non-recorded practice stimulation blocks, one for each of
the 5 VSA conditions. During these practice blocks, the participant received feedback
about their gaze position and counting accuracy. Counting the instructions and the
participant’s response to the input prompts, a block lasted about 30 seconds. In sum,
the experiment featured approximately 45 minutes of stimulation time. After blocks
14 and 28, the participant was allowed to take a longer break. Including these longer
breaks, the experiment lasted approximately one hour.
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Figure A1: A Visual features of the stimulation interface used in the CVSA-ERP dataset. B Targets
were intensified by shortly expanding in size. C The cue for gaze fixation in the overt and split
conditions. D The cue for gaze fixation in covert conditions.

Appendix B. Single-trial classification performance

dataset BNCI2014-009 CVSA-ERP

VSA condition overt covert overt covert split (d = 1) split (d = 2) split (d = 3)

ERPCov-TS-LR 0.9000 0.7450 0.7956 0.6880 0.6690 0.7252 0.7214
XDAWNCov-TS-LR 0.9044 0.7464 0.8113 0.6780 0.6683 0.7259 0.7136
tLDA 0.9474 0.7890 0.8660 0.7111 0.7097 0.7550 0.7474
CBLE 0.9497 0.7928 0.8559 0.6977 0.7087 0.7467 0.7465
WCBLE 0.9428 0.8084 0.8525 0.7338 0.7084 0.7581 0.7687

Table B1: Cross-validated single-trial classification area under the receiver operating characteristic
curve for all evaluated models, visuospatial attention conditions and datasets
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Appendix C. Algorithms

Algorithm 1 Classifier-Based Latency Estimation
Train
Input: {Xtrain

n }Nn=1, l
train, C(·, f,Pr), s1, s2

1: θ ← trainC({Xtrain
n [:, s1 : s2]}Nn=1, l) ▷ Train stage 1

2: for n = 1 . . . N do ▷ Feature extraction for stage 2
3: for s = 1 . . . R do
4: ytrainn,s ← f(Xtrain

n [:, s : s+ (s2 − s1)], θ)

5: end for
6: strainn,target ← median

[
Pr(s|Xtrain

n , θ, target)
]

7: strainn,non−target ← median
[
Pr(s|Xtrain

n , θ, non-target)
]

8: end for
Output: θ,Ytrain, straintarget, s

train
non−target

Evaluate
Input: {Xtest

m }Nm=1, C(θ, f,Pr), s1, s2
1: for m = 1 . . .M do ▷ Feature extraction for stage 2
2: for s = 1 . . . R do
3: ytestm,s ← f(Xtest

n [:, s : s+ (s2 − s1)], θ)

4: end for
5: stestm,target ← median [Pr(s|Xtest

m , θ, target)]

6: stestm,non−target ← median [Pr(s|Xtest
m , θ, non-target)]

7: end for
Output: Ytest, stesttarget, s

test
non−target
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Algorithm 2 Classifier-Based Latency Estimation with Woody Iterations
Train
Input: {Xtrain

n }Nn=1, l, C(·, f,Pr), s1, s2
1: X′

n ← Xtrain
n ∀ n = 1 . . . N ▷ Train stage 1

2: repeat
3: θ∗ ← trainC({X′

n[:, s1 : s2]}N−1
0 , l

4: for n = 1 . . . N do
5: sn ← median [Pr(s|X′

n, θ
∗, ln)]

6: X′
n ← align(Xtrain

n , s∗n)

7: end for
8: until convergence or maximum iterations reached
9: for n = 1 . . . N do ▷ Feature extraction for stage 2

10: for s = 1 . . . R do
11: ytrainn,s ← f(Xtrain

n [:, s : s+ (s2 − s1)], θ
∗)

12: end for
13: strainn,target ← median

[
Pr(s|Xtrain

n , θ∗, target)
]

14: strainn,non−target ← median
[
Pr(s|Xtrain

n , θ∗, non-target)
]

15: end for
Output: θ∗,Ytrain, straintarget, s

train
non−target

Evaluate
Input: {Xtest

m }Nm=1, C(θ∗, f,Pr), s1, s2
1: for m = 1 . . .M do ▷ Feature extraction for stage 2
2: for s = 1 . . . R do
3: ytestm,s ← f(Xtest

n [:, s : s+ (s2 − s1)], θ
∗)

4: end for
5: stestm,target ← median [Pr(s|Xtest

m , θ∗, target)]

6: stestm,non−target ← median [Pr(s|Xtest
m , θ∗, non-target)]

7: end for
Output: Ytest, stesttarget, s

test
non−target
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