
HAL Id: hal-04866194
https://hal.science/hal-04866194v1

Submitted on 6 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Being Efficient in Time, Space, and Workload: a
Self-stabilizing Unison and its Consequences

Stéphane Devismes, David Ilcinkas, Colette Johnen, Frédéric Mazoit

To cite this version:
Stéphane Devismes, David Ilcinkas, Colette Johnen, Frédéric Mazoit. Being Efficient in Time, Space,
and Workload: a Self-stabilizing Unison and its Consequences. STACS 2025: 42nd International
Symposium on Theoretical Aspects of Computer Science, Mar 2025, Jena, Germany. �hal-04866194�

https://hal.science/hal-04866194v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Being Efficient in Time, Space, and Workload:1

a Self-stabilizing Unison and its Consequences2

Stéphane Devismes # �3

Laboratoire MIS, Université de Picardie, 33 rue Saint Leu - 80039 Amiens cedex 1, France4

David Ilcinkas #�5

LaBRI, Université de Bordeaux, 351 cours de la Libération, F-33405 Talence cedex, France6

Colette Johnen #�7

LaBRI, Université de Bordeaux, 351 cours de la Libération, F-33405 Talence cedex, France8

Frédéric Mazoit #�9

LaBRI, Université de Bordeaux, 351 cours de la Libération, F-33405 Talence cedex, France10

Abstract11

We present a self-stabilizing algorithm for the unison problem which is efficient in time, workload,12

and space in a weak model. Precisely, our algorithm is defined in the atomic-state model and works13

in anonymous asynchronous connected networks in which even local ports are unlabeled. It makes14

no assumption on the daemon and thus stabilizes under the weakest one: the distributed unfair15

daemon.16

In an n-node network of diameter D and assuming the knowledge B ≥ 2D + 2, our algorithm17

only requires Θ(log(B)) bits per node and is fully polynomial as it stabilizes in at most 2D + 218

rounds and O(min(n2B, n3)) moves. In particular, it is the first self-stabilizing unison for arbitrary19

asynchronous anonymous networks achieving an asymptotically optimal stabilization time in rounds20

using a bounded memory at each node.21

Furthermore, we show that our solution can be used to efficiently simulate synchronous self-22

stabilizing algorithms in asynchronous environments. For example, this simulation allows us to23

design a new state-of-the-art algorithm solving both the leader election and the BFS (Breadth-First24

Search) spanning tree construction in any identified connected network which, to the best of our25

knowledge, beats all existing solutions in the literature.26

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory27

of computation → Distributed algorithms; Theory of computation → Design and analysis of28

algorithms29

Keywords and phrases Self-stabilization, unison, time complexity, synchronizer.30

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2331

Funding David Ilcinkas, Colette Johnen, and Frédéric Mazoit: This work was supported by the32

ANR project ENEDISC. Colette Johnen and Stéphane Devismes: This work was supported by the33

ANR project SkyData.34

© Stéphane Devismes, David Ilcinkas, Colette Johnen and Frédéric Mazoit;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:stephane.devismes@u-picardie.fr
https://orcid.org/0000-0002-8032-9732
mailto:david.ilcinkas@labri.fr
https://orcid.org/0000-0002-0094-4330
mailto:johnen@labri.fr
https://orcid.org/0000-0001-7170-4521
mailto:frederic.mazoit@labri.fr
https://orcid.org/0009-0000-7660-9275
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

S. Devismes, D. Ilcinkas, C. Johnen and F. Mazoit 23:1

1 Introduction35

1.1 Context36

Self-stabilization is a general non-masking and lightweight fault tolerance paradigm [25, 3].37

Precisely, a distributed system achieving this property inherently tolerates any finite number38

of transient faults.1 Indeed, starting from an arbitrary configuration, which may be the result39

of such faults, a self-stabilizing system recovers within finite time, and without any external40

intervention, a so-called legitimate configuration from which it satisfies its specification.41

In this paper, we consider the most commonly used model in the self-stabilizing area: the42

atomic-state model [25, 3]. In this model, the state of each node is stored into registers and43

these registers can be directly read by neighboring nodes. Furthermore, in one atomic step,44

a node can read its state and that of its neighbors, perform some local computation, and45

update its state accordingly. In the atomic-state model, asynchrony is materialized by an46

adversary called daemon that can restrict the set of possible executions. We consider here47

the weakest (i.e., the most general) daemon: the distributed unfair daemon.48

Self-stabilizing algorithms are mainly compared according to their stabilization time, i.e.,49

the worst-case time to reach a legitimate configuration starting from an arbitrary one. In50

the atomic-state model, stabilization time can be evaluated in terms of rounds and moves.51

Rounds [13] capture the execution time according to the speed of the slowest nodes. Moves52

count the number of local state updates. So, the move complexity is rather a measure53

of work than a measure of time. It turns out that obtaining efficient stabilization times54

both in rounds and moves is a difficult task. Usually, techniques to design an algorithm55

achieving a stabilization time polynomial in moves make its round complexity inherently56

linear in n, the number of nodes (see, e.g., [2, 23, 19]). Conversely, achieving the asymptotic57

optimality in rounds, usually O(D) where D is the network diameter, commonly makes the58

stabilization time exponential in moves (see, e.g., [22, 31]). Surprisingly, Cournier, Rovedakis,59

and Villain [14] manage to prove the first fully polynomial (i.e., with Poly(n) move and60

Poly(D) round complexities) silent2 self-stabilizing algorithm. Their algorithm builds a BFS61

(Breadth-First Search) spanning tree in any rooted connected network and they prove that it62

stabilizes in O(n6) moves and O(D2) rounds using Θ(log B + log ∆) bits per node, where B63

is an upper bound on D and ∆ is the maximum degree of the network.64

Up to now, fully polynomial self-stabilizing algorithms have only been proposed (see [14,65

21]) for so called static problems [34], such as spanning tree constructions and leader election,66

which compute a fixed object in finite time. In this paper, we propose an algorithm for67

a fundamental dynamic (i.e., non static) problem: the asynchronous unison (unison for68

short). It consists in maintaining a local clock at each node. The domain of clocks can be69

bounded (like everyday clocks) or infinite. The liveness property of the problem requests70

each node to increment its own clock infinitely often. Furthermore, the safety property of71

the unison requires the difference between the clocks of any two neighbors to always be at72

most one increment. The usefulness of the unison comes from the fact that asynchrony often73

makes fault tolerance very difficult in distributed systems. The impossibility of achieving74

consensus in an asynchronous system in spite of at most one process crash [30] is a famous75

example illustrating this fact. Thus, fault tolerance, and in particular self-stabilization, often76

requires some kind of barrier synchronization, which the unison provides, to control the77

1 A transient fault occurs at an unpredictable time, but does not result in a permanent hardware damage.
Moreover, as opposed to intermittent faults, the frequency of transient faults is considered to be low.

2 In the atomic-state model, a self-stabilizing algorithm is silent if all its executions terminate.

CVIT 2016

23:2 Being Efficient in Time, Space, and Workload: a Self-stabilizing Unison

asynchronism of the system by making processes progress roughly at the same speed. Unison78

is thus a fundamental algorithmic tool that has numerous applications. Among others, it79

can be used to simulate synchronous systems in asynchronous environments [17], to free an80

asynchronous system from its fairness assumption (e.g., using the cross-over composition) [8],81

to facilitate the termination detection [9], to locally share resources [11], or to achieve82

infimum computations [10]. Thus, as expected, we also derive from our unison algorithm a83

synchronizer allowing us to obtain several new state-of-the-art self-stabilizing algorithms for84

various problems, including spanning tree problems and leader election.85

1.2 Related Work86

Related Work on the Self-stabilizing Unison87

The first self-stabilizing asynchronous unison for general graphs was proposed by Couvreur,88

Francez, and Gouda [15] in the link-register model (a locally-shared memory model without89

composite atomicity [27, 26]). However, no complexity analysis was given. Another solution,90

which stabilizes in O(n) rounds, is proposed by Boulinier, Petit, and Villain [11] in the91

atomic-state model assuming a distributed unfair daemon. Its move complexity is shown92

in [24] to be in O(Dn3 + αn2), where α is a parameter of the algorithm that should satisfy93

α ≥ L − 2, where L is the length of the longest hole in the network. In his PhD thesis,94

Boulinier proposes a parametric solution that generalizes the solutions of both [15] and [11].95

In particular, the time complexity analysis of this latter algorithm reveals an upper bound in96

O(D · n) rounds on the stabilization time of the atomic-state model version of the algorithm97

in [15]. Awerbuch, Kutten, Mansour, Patt-Shamir, and Varghese [4] propose a self-stabilizing98

unison that stabilizes in O(D) rounds using an infinite state space. The move complexity of99

their solution is not analyzed. An asynchronous self-stabilizing unison algorithm is given100

in [23]. It stabilizes in O(n) rounds and O(∆ · n2) moves using unbounded local memories.101

Emek and Keren [28] present in the stone age model a self-stabilizing unison that stabilizes102

in O(B3) rounds, where B is an upper bound on D known by all nodes. Their solution103

requires Θ(log B) bits per node. Moreover, since node activations are required to be fair, the104

move complexity of their solution is unknown and may be unbounded.105

Related Work on Simulations106

Simulation is a useful tool to simplify the design of algorithms. In self-stabilization, simulation107

has been mainly investigated to emulate schedulers or to port solutions from a strong108

computational model to a weaker one. Awerbuch [7] introduced the concept of synchronizer109

in a non-self-stabilizing context. A synchronizer simulates a synchronous execution of an input110

algorithm into an asynchronous environment. The first two self-stabilizing synchronizers have111

been proposed in [4] for message-passing systems. Both solutions achieve a stabilization time112

in O(D) rounds. The first solution is based on the previously mentioned unison, also proposed113

in the paper, that uses an infinite state space. To solve this latter issue, they then propose114

to mix it with the reset algorithm of [5] applied on links of a BFS spanning tree computed115

in O(D) rounds. This reset algorithm is devoted, and so limits the approach, to locally116

checkable and locally correctable problems, and the BFS spanning tree construction uses a117

finite yet unbounded number of states per node and requires the presence of a distinguished118

node (a root). Again, the move complexity of their solutions is not analyzed. Awerbuch119

and Varghese [6] propose, still in the message-passing model, two synchronizers: the rollback120

compiler and the resynchronizer. The resynchronizer additionally requires the input algorithm121

to be locally checkable and assumes the knowledge of a common upper bound D on the122

S. Devismes, D. Ilcinkas, C. Johnen and F. Mazoit 23:3

network diameter. Using the rollback, resp. the resynchronizer, method, a synchronous123

non-self-stabilizing algorithm can be turned into an asynchronous self-stabilizing algorithm124

that stabilizes in O(T) rounds, resp. O(T + D) rounds, using Ω(T × S) space, resp. Θ(S)125

space, per node where T , resp. S, is the execution time, resp. the space complexity, of the126

input algorithm. Again, the move complexity of these synchronizers is not analyzed. Now,127

the straightforward atomic-state model version of the rollback compiler is shown to achieve128

exponential move complexities in [21]. Finally, the synchronizer proposed in [21] works in the129

atomic-state model and achieves round and space complexities similar to those of the rollback130

compiler, but additionally offers polynomial move complexity. Hence, it allows to design131

fully polynomial self-stabilizing solutions for static problems, but still with an important132

memory requirement (using Ω(T × S) space).133

Simulation has been also investigated in self-stabilization to emulate other schedulers. For134

example, the conflict manager proposed in [32] allows to emulate an unfair locally central135

scheduler in fully asynchronous settings. Another example is fairness that can be enforced136

using a unison algorithm together with the cross-over composition [8].137

Concerning now model simulations, Turau proposes in [35] a general procedure allowing138

to simulate any algorithm for the distance-two atomic-state model in the (classical) distance-139

one atomic-state model assuming that nodes have unique identifiers. Finally, simulation140

from the atomic-state model to the link-register one and from the link-register model to the141

message-passing one are discussed in [26].142

1.3 Contributions143

Fully Polynomial Self-stabilizing Unison144

We propose a fully polynomial self-stabilizing bounded-memory unison in the atomic-state145

model assuming a distributed unfair daemon. It works in any anonymous network of arbitrary146

connected topology, and stabilizes in O(D) rounds and O(n3) moves using Θ(log B) bits per147

node, where B ≥ 2D + 2 (see Table 1 below). To the best of our knowledge, our algorithm148

vastly improves on the literature as other self-stabilizing algorithms have at least one of the149

following drawbacks: an unbounded memory, an Ω(n) round complexity, a restriction on the150

daemon (synchronous, fair, . . .). Note also that the computational model we use is at least151

as general as the stone age model of Emek and Wattenhofer [29]: it does not require any152

local port labeling at nodes, or knowing how many neighbors a node has.153

Overall, our unison achieves outstanding performance in terms of time, workload, and154

space, which also makes it the first fully polynomial self-stabilizing algorithm for a dynamic155

problem.156

Self-stabilizing Synchronizer157

From our unison algorithm, we straightforwardly derive a self-stabilizing synchronizer that158

efficiently simulates synchronous executions of an input self-stabilizing algorithm in an159

asynchronous environment. More precisely, if the input algorithm AlgI is silent, then the160

output algorithm Sync(AlgI) is silent as well and satisfies the same specification as AlgI .161

The specification preservation property also holds for any algorithm, silent or not, solving162

a static problem. We analyze the complexity of this synchronizer and show that it mostly163

preserves the round and space complexities of the simulated algorithm (see Table 1 for164

details). This synchronizer is thus a powerful tool to ease the design of efficient asynchronous165

self-stabilizing algorithms. Indeed, for many tasks, the usual lower bound on the stabilization166

time in rounds is Ω(D). Now, thanks to our unison, one just has to focus on the design167

CVIT 2016

23:4 Being Efficient in Time, Space, and Workload: a Self-stabilizing Unison

of a synchronous O(D)-round self-stabilizing algorithm to finally obtain an asynchronous168

self-stabilizing solution asymptotically optimal in rounds, with a low overhead in space169

(Θ(log B) bits per node) and a polynomial move complexity (i.e., a fully polynomial solution).170

The transformer of [21] has similar round and move complexities. But this algorithm and171

ours are incomparable as they make different trade-offs. This paper prioritizes memory over172

generality, while the transformer of [21] makes the opposite choice by prioritizing generality173

over memory. More precisely, the transformer of [21] can simulate any synchronous algorithm174

(not necessarily self-stabilizing), by storing its whole execution. It thus has a much larger175

space complexity than ours, which only stores two states of the simulated input algorithm. It176

turns out that the connections between our algorithm and the transformer of [21] are deeper177

than their move and round complexities. We further explain their similarities as well as their178

differences in Sections 3 and 4.5.179

Implications of our Results180

Using our synchronizer, one can easily obtain state-of-the-art (silent) self-stabilizing solutions181

for several fundamental distributed computing problems, e.g., BFS tree constructions, leader182

election, and clustering (see Table 1).183

Moves Rounds Space

Unison O
(
min(n2B, n3)

)
2D + 2 ⌈log B⌉ + 2

Synchronizer O
(
min(n2B, n3) + nT

)
5D + 3T 2M + ⌈log B⌉ + 2

Problem Moves Rounds Space

BFS tree in rooted networks O(n3) O(D) Θ(log B + log ∆)

BFS tree in identified networks O(n3) O(D) Θ(log N)

Leader election O(n3) O(D) Θ(log N)

O(n
k

)-clustering O(n3) O(D) Θ(log k + log N)

T and M are the synchronous time and space complexities of the input algorithm,
and B and N are input parameters satisfying B ≥ 2D + 2 and N ≥ n.

Table 1 Complexities of the Unison, the Synchronizer, and some consequences.

First, we obtain a new state-of-the-art asynchronous self-stabilizing algorithm for the BFS184

spanning tree construction in rooted and connected networks, by synchronizing the algorithm185

in [22] (which is a bounded-memory variant of the algorithm in [27]). This new algorithm186

converges in O(n3) moves and O(D) rounds with Θ(log B + log ∆) bits per node (the same187

round and space complexities as in [22]), where B is an upper bound on D and ∆ is the188

maximum node degree. It improves both on the algorithm in [14], which only converges in189

O(n6) moves and O(D2) rounds, and on the algorithm in [21], which has similar complexities190

but uses Θ(B · log ∆) bits per node.191

In the following, we consider identified connected networks. In this setting, when nodes192

store identifiers, they usually know a bound k on the size of these identifiers. They thus193

know a bound N = 2k on n, and since N is a bound on D, we set B = 2N + 2.194

In identified networks, a strategy to compute a BFS spanning tree is to compute a leader195

together with a BFS tree rooted at this leader. This is what the self-stabilizing algorithm196

in [33] actually does in a synchronous setting. Therefore, by synchronizing it, we obtain197

a new state-of-the-art asynchronous self-stabilizing algorithm for both the leader election198

S. Devismes, D. Ilcinkas, C. Johnen and F. Mazoit 23:5

and the BFS spanning tree construction in identified and connected networks. This new199

algorithm converges in O(n3) moves and O(D) rounds with Θ(log N) bits per node (i.e.,200

the same round and space complexities as in [33]). To the best of our knowledge, no such201

efficient solutions exist until now in the literature. There are two incomparable asynchronous202

self-stabilizing algorithms that achieve an O(D) round complexity [12, 1]. They operate in203

weaker models (resp. message-passing and link-register). However, their move complexity is204

not analyzed and the first one has a Θ(log B · log N) space requirement (B being a known205

upper bound on D) while the second one uses an unbounded space.206

Other memory-efficient fully polynomial self-stabilizing solutions can be easily obtained207

with our synchronizer, e.g., to compute the median or centers in anonymous trees by simulating208

algorithms proposed in [18]. Another application of our synchronizer is to remove fairness209

assumptions along with obtaining good complexities. For example, the silent self-stabilizing210

algorithm proposed in [16] computes a clustering of O(n
k) clusters in any rooted identified211

connected network. It assumes a distributed weakly fair daemon and its move complexity212

is unknown. With our synchronizer,3 we achieve a fully polynomial silent solution that213

stabilizes under the distributed unfair daemon and without the rooted network assumption,214

in O(D) rounds, O(n3) moves, and using Θ(log k + log N) bits per node.215

Note that, by using the compiler in [21], one can obtain similar time complexities for all216

the previous problems, but with a drastically higher space usage.217

1.4 Roadmap218

The rest of the paper is organized as follows. Section 2 is dedicated to the computational219

model and the basic definitions. We develop the links between the present paper and [21]220

in Section 3, and we present our algorithm in Section 4. We sketch its correctness and its221

time complexity in Section 5. In Section 6, the self-stabilizing synchronizer derived from our222

unison algorithm is presented and its complexity is also sketched. We conclude in Section 7.223

2 Preliminaries224

2.1 Networks225

We model distributed systems as simple graphs, that is, pairs G = (V, E) where V is a226

set of nodes and E is a set of edges representing communication links. We assume that227

communications are bidirectional. The set N(p) = {q | {p, q} ∈ E} is the set of neighbors228

of p, with which p can communicate, and N [p] = N(p) ∪ {p} is the closed neighborhood of p.229

A path (from p0 to pl) of length l is a sequence P = p0p1 · · · pl of nodes such that consecutive230

nodes in P are neighbors. We assume that G is connected, meaning that any two nodes are231

connected by a path. We can thus define the distance d(p, q) between two nodes p and q to232

be the minimum length of a path from p to q. The diameter D of G is then the maximum233

distance between nodes of G.234

2.2 Computational Model: the Atomic-state Model235

Our unison algorithm works in a variant of the atomic-state model in which each node holds236

locally shared registers, called variables, whose values constitute its state. The vector of all237

3 Also replacing the spanning tree construction used in [16] by the new BFS tree construction of the
previous paragraph.

CVIT 2016

23:6 Being Efficient in Time, Space, and Workload: a Self-stabilizing Unison

node states defines a configuration of the system.238

An algorithm consists of a finite set of rules of the form label : guard → action. In239

the variant that we consider, a guard is a boolean predicate on the state of the node and240

on the set of states of its neighbors. The action changes the state of the node. To shorten241

guards and increase readability, priorities between rules may be set. A rule whose guard is242

true is enabled, and can be executed. By extension, a node with at least one enabled rule243

is also enabled, and Enabled(γ) contains the enabled nodes in a configuration γ. Note that244

this model is quite weak. Indeed, in other variants, nodes may have, for example, distinct245

identifiers. In our case, the network is anonymous and since a node only accesses a set of246

states, it cannot even count how many neighbors it has.247

An execution in this model is a maximal sequence of configurations e = γ0γ1 · · · γi · · ·248

such that for each transition (called step) γi 7→ γi+1, there is a nonempty subset X i of249

Enabled(γi) whose nodes simultaneously and atomically execute one of their enabled rules,250

leading from γi to γi+1. We say that each node of X i executes a move during γi 7→ γi+1.251

Note that e is either infinite, or ends at a terminal configuration γf where Enabled(γf) = ∅.252

An algorithm with no infinite executions is terminating or silent.253

A daemon D is a predicate over executions. An execution which satisfies D is said to be254

an execution under D. We consider the synchronous daemon, which is true if, at all steps,255

X i := Enabled(γi), and the fully asynchronous daemon, also called distributed unfair daemon256

in the literature, which is always true. Note that under the distributed unfair daemon, a257

node may starve and may never be activated, unless it is the only enabled node.258

In an execution, all the information in the states is not necessarily relevant for a problem.259

We thus use a projection to extract information (e.g., just an output boolean for the boolean260

consensus) from a node’s state, and we canonically extend this projection to configurations261

and executions. A specification of a distributed problem is then a predicate over projected262

executions. A problem is static if its specification requires the projected executions to be263

constant, and it is dynamic otherwise.264

An algorithm is self-stabilizing under a daemon D if, for every network and input265

parameters, there exists a set of legitimate configurations such that (1) the algorithm266

converges, i.e., every execution under D (starting from an arbitrary configuration) contains a267

legitimate configuration, and (2) the algorithm is correct, i.e., every execution under D that268

starts from a legitimate configuration satisfies the specification.269

We consider three complexity measures: space, moves which model the total workload,270

and rounds which model an analogous of the synchronous time by taking the speed of the271

slowest nodes into account. As done in the literature on the atomic-state model, the space272

complexity is the maximum space used by one node to store its own variables. As explained273

before, a move is the execution of a rule by a node. To define the round complexity of an274

execution e = γ0γ1 · · · , we first need to define the notion of neutralization: a node p is275

neutralized in γi 7→ γi+1, if p is enabled in γi and not in γi+1, but it does not apply any rule276

in γi 7→ γi+1. Then, the rounds are inductively defined as follows. The first round of an277

execution e = γ0γ1 · · · is the minimal prefix e′ such that every node that is enabled in γ0
278

either executes a move or is neutralized during a step of e′. If e′ is finite, then let e′′ be279

the suffix of e that starts from the last configuration of e′; the second round of e is the first280

round of e′′, and so on. For every i > 0, we denote by γri the last configuration of the i-th281

round of e, if it exists and is finite; we also conventionally let γr0 = γ0. Consequently, γri−1282

is also the first configuration of the i-th round of e. The stabilization time of a self-stabilizing283

algorithm is the maximum time (in moves or rounds) over every execution possible under284

the considered daemon (starting from any initial configuration) to reach (for the first time) a285

S. Devismes, D. Ilcinkas, C. Johnen and F. Mazoit 23:7

legitimate configuration.286

3 A Glimpse of our Research Process287

3.1 An Unbounded Unison Algorithm288

We started this work on the bounded unison problem when we observed that an unbounded289

solution can easily be derived from [21]. This can be seen as follows. The algorithm290

given in [21] simulates a synchronous non self-stabilizing algorithm in an asynchronous291

self-stabilizing setting. To do so, it uses a very natural idea. It stores, at each node, the292

whole execution of the algorithm so far as a list of states. Given its list and the lists of its293

neighbors, a given node can check for inconsistencies in the simulation and correct them.294

Now if we implement this idea in an asynchronous algorithm which is not self-stabilizing,295

then the length of the lists satisfy the unison property. Indeed, to compute its (i + 1)-th296

value, a node must wait for all its neighbors to have computed at least their i-th value.297

Obviously, in a self-stabilizing setting, we cannot expect the length of the lists of the298

nodes to initially satisfy the unison property. It turns out that the error recovery mechanism299

in [21] not only solves the initial inconsistencies of the simulation, but also recovers the300

unison property.301

If we simulate an algorithm “that does nothing”, we can compress the lists by only storing302

their lengths. We thus obtain a first (unbounded) unison algorithm, given below. Note that303

although we describe the whole algorithm, the reader does not need to fully understand it.304

Each node p has a status p.s ∈ {E, C} (Error/Correct) and a time p.t ∈ N. Given these305

predicates,306

root(p) :=
(
p.s = E ∧ ¬(∃q ∈ N(p), q.s = E ∧ q.t < p.t)

)
∨307 (

p.s = C ∧ ∃q ∈ N(p), (q.t ≥ p.t + 2)
)

308

activeRoot(p) := root(p) ∧ (p.t > 0 ∨ p.s = C)309

errProp(p, i) := ∃q ∈ N(p), q.s = E ∧ q.t < i < p.t310

canClearE(p) := p.s = E ∧ ∀q ∈ N(p),
(
|q.t − p.t| ≤ 1 ∧ (q.t ≤ p.t ∨ q.s = C)

)
311

updatable(p) := p.s = C ∧
(
∀q ∈ N(p), p.t ≤ q.t ≤ p.t + 1

)
312

the algorithm is defined by the following four rules313

RR : activeRoot(p) −→ p.t := 0 ; p.s := E

RP (i) : errP rop(p, i) −→ p.t := i ; p.s := E

RC : canClearE(p) −→ p.s := C

RU : updatable(p) −→ p.t := p.t + 1

314

in which RR has the highest priority, and RP (i) has a higher priority than RP (i′) for i < i′.315

The rules RR, RP (i) and RC are “error management” rules. Thus, once the algorithm has316

stabilized, the status of all nodes is C and only RU is applicable.317

This unbounded self-stabilizing unison algorithm is not really interesting by itself. Indeed,318

it converges in 2D + 2 rounds in an asynchronous setting, but in this regard, the algorithm319

in [4] converges twice as fast, is simpler and operates in the message-passing model, which is320

more realistic. However, whereas nobody has been able to derive a bounded version of the321

algorithm in [4], we hoped that this could be done with this new algorithm.322

In the following subsections, we present a first very natural attempt, which ultimately323

failed, and a more complex version, which we detail and prove in the next sections of the324

paper.325

CVIT 2016

23:8 Being Efficient in Time, Space, and Workload: a Self-stabilizing Unison

3.2 A Failed Bounded Unison Algorithm326

The most natural strategy to turn an unbounded unison into a bounded one is simply to327

count modulo a large enough fixed bound B. To outline this change of paradigm from an328

ever-increasing time to a circular clock, we rename the variable p.t into p.c for any node p.329

We thus modify the rule RU as follows:330

updatable(p) := p.s = C ∧
(
∀q ∈ N(p), q.c ∈ {p.c, p.c + 1 mod B}

)
331

RU : updatable(p) −→ p.c := p.c + 1 mod B332
333

At first glance, we do not need to modify the other rules as their purpose is only to334

correct errors, but this intuition is wrong. Indeed, when two neighboring nodes p and q are335

such that p.s = q.s = C, p.c = 0 and q.c = B − 1, they satisfy the unison property, but p336

can apply the rule RR, although there are no errors to correct. The problem comes from337

the term ∃q ∈ N(p), (q.c ≥ p.c + 2) in the root predicate which should detect out-of-sync338

neighbors. Hence, we must at least modify this predicate as follows:339

root(p) :=
(
p.s = E ∧ ¬(∃q ∈ N(p), q.s = E ∧ q.c < p.c)

)
∨340 (

p.s = C ∧ ∃q ∈ N(p), (q.c ≥ p.c + 2)∧¬(p.c = 0 ∧ q.c = B − 1). .
)
.341

342

Therefore, transforming the algorithm to implement this simple modulo-B idea is already343

not as straightforward as it may seem.344

Moreover, even small modifications generally introduce new unforeseen behaviors, and345

the modified algorithm has no particular reasons to be efficient, or even correct. As a matter346

of fact, we failed to prove its correctness. To understand why, we must delve a bit into the347

proof scheme of [21].348

An important observation is that rootless configurations (i.e., those without nodes349

satisfying the root predicate) satisfy the safety property of the unison. In [21], the correctness350

and the move complexity then follow from the key property that roots cannot be created,351

and that, in a “small” number of steps, at least one root disappears.352

Sadly, this first attempt algorithm does not satisfy the “no root creations” property. To353

see this, consider a path p − q − r and a configuration γa in which p.c = q.c = B − 1, r.c = 3,354

p.s = q.s = C and r.s = E. In one step γa 7→ γb,355

p applies the rule RU and thus, in γb, p.c = 0 and p.s = C356

q applies the rule RP (4), and thus, in γb, q.c = 4.357

Therefore, in γb, p.s = C and p has a neighbor q such that q.c ≥ p.c + 2 and q.c ̸= B − 1.358

Thus, p is a root in γb, although it is not one in γa.359

Note that the fact that roots can be created is not necessarily a problem. Indeed, if only360

a finite number of them appears, we recover the correctness of the algorithm. We actually361

believe that, for B large enough, any node can become a root only once per execution, and362

this would most likely imply that the move complexity remains polynomial. But n roots may363

appear sequentially, which would lead to an Ω(n) round complexity.364

At this point, we cannot rule out that this algorithm is correct and has good properties.365

However, because of these problems, we took another approach.366

3.3 Our Solution367

In the end, our solution is obtained by a rather limited modification of the previous algorithm:368

we extend the range of the counters p.c to the interval [−B, B), but we restrict their range369

to [−B, 0) when p.s = E.370

S. Devismes, D. Ilcinkas, C. Johnen and F. Mazoit 23:9

Actually, this modification prevents all root creations. But, as with the previous attempt,371

we must be extra careful even with the smallest change, as proofs can easily break. We thus372

present the whole algorithm and its proofs in more details in the next sections, and further373

highlight the differences with [21] in Section 4.5.374

4 A Unison Algorithm375

4.1 Data Structures376

Let B ≥ 2D + 2 be an integer. Each node p maintains a single variable p.v ∈ {(C, x) | x ∈377

[−B, B)} ∪ {(E, x) | x ∈ [−B, 0)}. In the algorithm, p.s and p.c, the status and the clock378

of p, respectively denote the left and right part of p.v. An assignment to p.s or p.c modifies379

the corresponding field of p.v.380

We define the unison increment a ⊕B 1 as (B − 1) ⊕B 1 = 0 and a ⊕B 1 = a + 1 if381

a ∈ [−B, B − 2]. Two clocks are synchronized if they are at most one increment apart.382

We then define a ⊕B b as the result of b iterations of ⊕B 1 over a. Note that, as hinted in383

Section 3.2, we also use the usual addition and subtraction.384

4.2 Some Predicates385

Apart from its state, a node p has only access to the set {q.v | q ∈ N(p)} of its neighbors’386

variables. A guard should thus not contain a direct reference to a neighbor q of p. This may387

look like a problem for we have already used such references. Nevertheless, these uses are388

legitimate as, for any predicate Pred, the semantics of ∃(s, c) ∈ {q.v | q ∈ N(p)}, Pred(s, c)389

is precisely ∃q ∈ N(p), Pred(q.s, q.c). We can similarly encode universal statements.390

As a matter of fact, we use the following shortcuts to increase readability:391

Shortcut1 ∃q ∈ N(p), Pred(q.s, q.c) := ∃(s, c) ∈ {q.v | q ∈ N(p)}, Pred(s, c)
Shortcut2 ∀q ∈ N(p), Pred(q.s, q.c) := ∀(s, c) ∈ {q.v | q ∈ N(p)}, Pred(s, c)

Below, we define the predicates used by our algorithm.392

root(p) :=
(
p.s = E ∧ ¬(∃q ∈ N(p), q.s = E ∧ q.c < p.c)

)
∨(

p.s = C ∧ ∃q ∈ N(p), (q.c ≥ p.c + 2) ∧ ¬(p.c = 0 ∧ q.c = B − 1)
)

activeRoot(p) := root(p) ∧ (p.c ̸= −B ∨ p.s = C)

errorPropag(p, i) := i < 0 ∧ ∃q ∈ N(p), q.s = E ∧ q.c < i < p.c

canClearE(p) := p.s = E ∧ ∀q ∈ N(p),
(
|q.c − p.c| ≤ 1 ∧ (q.c ≤ p.c ∨ q.s = C)

)
updatable(p) := p.s = C ∧ ∀q ∈ N(p), q.c ∈ {p.c, p.c ⊕B 1}

A node p is a root if root(p). An error rule is either the rule RR or a rule RP (i).393

4.3 The Algorithm394

A unison algorithm is rarely used alone. It is merely a tool to drive another algorithm. It395

thus makes sense that our algorithm depends on some properties which are external to the396

unison algorithm and its variables. Our algorithm uses a predicate Paux which is not yet397

defined. As a matter of fact, its influence on the complexity analysis of the algorithm is very398

limited. To prove the correctness of the unison, we set Paux = true, and we specialize Paux399

differently in Section 6 when using our algorithm as a synchronizer.400

CVIT 2016

23:10 Being Efficient in Time, Space, and Workload: a Self-stabilizing Unison

RR : activeRoot(p) −→ p.c := −B ; p.s = E

RP (i) : errorP ropag(p, i) −→ p.c := i ; p.s = E

RC : canClearE(p) −→ p.s := C

RU : updatable(p) ∧ Paux(p) −→ p.c := p.c ⊕B 1

401

The rule RR has the highest priority, and RP (i) has a higher priority than RP (i′) for i < i′.402

4.4 An Overview of the Algorithm403

Contrary to [4] which proceeds by only locally synchronizing out-of-sync clocks, i.e., the404

clocks of two neighboring nodes that differ by at least two increments, we organize the405

synchronizations in error broadcasts. Every node p involved in such a broadcast is in error406

and its status is p.s = E. Otherwise, it is correct and p.s = C.407

If p is correct, in sync with its neighbors, and if its clock p.c is a local minimum, then p408

can apply the rule RU to increment its clock.409

There is a cliff between r and one of its neighbors p if their clocks are out-of-sync and410

p.c > r.c. If r is correct and has a cliff with a neighbor, then r is said to be a root and should411

initiate an error broadcast by applying the rule RR, which respectively sets r.c to −B and412

r.s to E.413

If there is a cliff between r and p, r is in error, and r.c < −1, then p should propagate414

the broadcast by applying the rule RP which sets p.c to r.c + 1 and p.s to E. If p has several415

such neighbors r, it applies RP according to the one with the minimum clock.416

As a consequence, any node p in error with p.c > −B should have at least one neighbor417

in error with a smaller clock. This way, the structure of an error broadcast is a dag (directed418

acyclic graph). We therefore extend the definition of root to include nodes in error with no419

“parents” in the broadcast dag.420

Note that a node may decrease its clock multiple times using RP , and in doing so may421

consecutively join several error dags or several parts of them. This way, nodes reduce the422

height of the error dags, which is a key element to achieve the O(D)-round complexity.423

Furthermore, any node in error eventually has a clock smaller than −B + D and all cliffs are424

eventually destroyed.425

Finally, if p is in error, is not involved in any cliff (in which case an error must be426

propagated), and if all its neighbors with larger clocks are correct, then the broadcast from p427

is finished, and p can apply the rule RC to switch back p.s to C.428

A key element to bound the move complexity is that a dag built during an error broadcast429

is cleaned from the larger clocks to the smaller, but nodes previously in the dag resume the430

“normal” increments (using the rule RU) in the reverse order (i.e., from the smaller clocks431

to the larger). Indeed, a non-root node in an error broadcast is one increment ahead of its432

parents in the dag and so has to wait for their increment before being able to perform one433

itself. Hence, the first node in the dag that makes a RU move after an error broadcast is its434

root.435

4.5 Some Subtleties436

Some statements and the corresponding proof arguments are very similar to the ones of [21]437

(rather its arXiv version [20]). However, the fact that the algorithm and its data structures438

are different imply that proofs are indeed different. As a matter of fact, we have tried but439

failed to unify both algorithms into a natural more general one.440

Below, we outline subtleties which are specific to our algorithm.441

S. Devismes, D. Ilcinkas, C. Johnen and F. Mazoit 23:11

Since nodes in error are restricted to negative clocks, it is natural to expect that legitimate442

configurations require all clocks to be non-negative. This would suggest a Θ(B) round443

complexity, which is weaker than what we claim. But this intuition is false. For example,444

the configuration where all nodes are correct and all clocks are set to −B is legitimate.445

This is one of the reasons for our O(D) round complexity.446

In the unbounded unison algorithm above which we derive from [21], whenever two447

neighboring nodes p and q are such that q.s = E and p.c ≥ q.c + 2, the node p can always448

apply a rule RP (i). In our algorithm, this is not the case when q.c = −1. This could449

introduce unexpected behaviors which could impact the complexities of our algorithm, or450

in the worst case, lead to deadlocks. We thus have to deal with this slight difference in451

the proofs.452

In [21], the proofs heavily rely on the fact that the counters increase when applying the453

rule RU while they decrease when applying the rules RR and RP (i). This monotony454

property is however not true in our setting. More generally, having two addition operators455

+ and ⊕B requires special care throughout the proofs.456

Finally, to bound the memory, the maximum clock is B − 1, after which clocks go back457

to 0. Notice that to ensure the liveness property of the unison, we must have B ≥ 2D + 2458

(an example of deadlock is presented for B = 2D + 1 in Subsection 5.2).459

5 Self-Stabilization and Complexity of the Unison Algorithm460

As already mentioned, the unison algorithm corresponds to Paux = true. However, since461

most proofs are valid regardless of the definition of Paux, we only specify it when needed.462

We define the legitimate configurations as the configurations without roots. Let e = γ0γ1 · · ·463

be an execution. We respectively denote by p.si and p.ci the value of p.s and p.c in γi.464

5.1 Convergence and Move Complexity of the Unison Algorithm465

Although it is tedious, it is straightforward to prove, by case analysis, that roots cannot be466

created. Since roots are obstructions to legitimate configurations, it is natural to partition467

the steps of e into segments such that each step in which at least one root disappears is the468

last step of a segment. There are thus at most n segments with roots, which constitute the469

stabilization phase, and at most one root-less segment. We now show that the stabilization470

phase is finite by providing a (finite) bound on its move complexity.471

In the following, s is any segment of the stabilization phase. The key fact is that in s, a472

node p in error cannot apply the rule RU until the end of s. We prove this by induction on473

p.c. If p.c = −B, then p is a root, and the only rule that p can apply is RC , which removes474

its root status. The base case thus follows. Now let p be in error with p.c > −B. If p does475

not move in s, then our claim holds. Otherwise let γa 7→ γb be the first step in which p476

moves. If p applies the rule RR, then p.cb = −B, and for the remainder of s, the claim holds477

by induction. Otherwise, p has a neighbor q such that q.sa = E and q.ca < p.ca < 0. By478

induction, q.c cannot increase until the end of s. As long as p.c > q.c, p cannot apply the rule479

RU and if, at some point, p.c ≤ q.c, then p must have applied an error rule, thus decreasing480

its clock, at which point the claim holds by induction.481

Since roots cannot be created, the number of RR-moves is at most n. Moreover, since482

between two RC -moves, there has to be at least one error move (RR- or RP -move), we have483

#RC-moves ≤ n + #RR-moves + #RP -moves ≤ 2n + #RP -moves. We thus only need to484

bound the number of RU -moves and RP -moves.485

CVIT 2016

23:12 Being Efficient in Time, Space, and Workload: a Self-stabilizing Unison

We now bound the number of RU moves by a node in s. If a node q does not move486

between γa and γb in s with a < b, then a neighbor p can apply the rule RU at most twice,487

to go from q.ca − 1 to q.ca + 1. More generally, if p.cb ≥ p.ca + 2 + i (we really mean the488

+ operator and not the ⊕B operator), then every neighbor q of p must increase its clock by489

at least i between γa and γb. By induction on d, if p.cb = p.ca + 2d + i, then every node q490

at distance d from p increases its clock by at least i between γa and γb. Since roots cannot491

increase their clocks, this implies that p.cb ≤ p.ca + 2D.492

From this “linear” bound, we now derive a “circular” bound which takes into account the493

fact that the clock of a node may decrease while applying the rule RU (from B − 1 to 0).494

In the worst case, p could apply the rule RU 2D times to reach p.c = B − 1, then apply495

RU once so that p.c = 0, then reapply RU 2D more times (recall that B ≥ 2D + 2). To496

summarize, p may apply RU at most 4D + 1 times in s. This gives an O(n2D) bound on the497

number of RU -moves done during the stabilization phase.498

We now focus on the rule RP in s. If a node p0 applies a rule RP in a step γj1 7→ γj1+1 of499

s, it does so to “connect” to a neighbor p1 which is already in error. Now p1 may be in error500

in γj1 because it has applied a rule RP in another step γj2 7→ γj2+1 of s with j2 < j1, to501

connect to a neighbor p2, and so on. This defines a causality chain p0 · · · pl for some l. Since,502

according to the key fact, rules RP and RU do not alternate in s, a node cannot appear503

twice in the causality chain, thus l < n. Moreover, when considering a maximal causality504

chain, pl.c
jl is either the value of pl.c at the beginning of s, or −B if pl has applied the505

rule RR. The clock p0.c can thus take at most n(n + 1) distinct values in s, which implies506

that the rule RP is applied at most O(n2) times in s by a given node. This gives an overall507

O(n4)-bound on the number of rules RP . Note that a more careful analysis gives an overall508

bound of O(n3) on the total number of RP -moves.509

We can also easily obtain a bound that involves B. Indeed, a node p has at most B510

RP -moves and 4D + 1 = O(B) RU -moves in s. This gives an O(n2B)-bound on the number511

of moves. To summarize, the stabilization phase terminates after at most O(min(n3, n2B))512

moves.513

Note that any configuration γ with at least one root contains at least one enabled node.514

Indeed, if any two neighboring clocks are at most one increment apart, then any root is in515

error, and the rule RC is enabled at any node p in error with p.c maximum. Otherwise, there516

exist two neighbors p and q such that p.c and q.c are more than one increment apart. We517

choose them with q.c < p.c and q.c minimum. q.c being minimum, we can show that either q518

is a root that is enabled for RR, or p can apply the rule RP because q is in error and satisfies519

q.c ≤ −B + D < −1. Thus, the last configuration of the stabilization phase is legitimate.520

Also, note that since roots cannot be created, being legitimate is a closed property,521

meaning that in a step γa 7→ γb, if γa is legitimate, then so is γb.522

5.2 Correctness of the Unison Algorithm523

We now show that any legitimate configuration γ satisfies the safety property of the unison.524

First, γ cannot contain nodes in error, because any such node p with p.c minimum would be525

a root. Moreover, if the clocks of two correct neighbors differ by more than one increment,526

then the node with the smaller clock is a root.527

To prove the liveness property of the unison, we set Paux = true in this paragraph. In528

legitimate configurations, since neighboring clocks differ by at most one increment, any two529

clocks differ by at most D increments. And since B ≥ 2D + 2, there exists c ∈ [0, B) which530

is not the clock of any node. This implies that there exists at least one node p whose clock is531

not the increment of any other clock. Thus, p satisfies updatable and can apply RU . This532

S. Devismes, D. Ilcinkas, C. Johnen and F. Mazoit 23:13

proves that at least one node applies RU infinitely often, and thus so do all nodes. Observe533

that B ≥ 2D + 2 is tight. Indeed, when B = 2D + 1, the configuration of the cycle p0,534

p1, . . . p2D in which all nodes are correct and pi.c = i, is legitimate but is terminal.535

5.3 Round Complexity of the Unison Algorithm536

We claim that γr2D+2 contains no roots and so is legitimate. Recall that for all i ≥ 1, Round i537

is γri−1 · · · γri . We suppose that all γri with i ≤ 2D + 1 contain roots otherwise our claim538

directly holds.539

We now study the first D + 1 rounds. Let r be any root in γrD+1 . Since there are no540

root creations, r is already a root in γ0. By the end of the first round (using the rule RR if541

needed), r.c = −B and r.s = E. Now, since r is still a root in γrD+1 , it cannot make a move542

in the meantime, and its state does not change until γrD+1 . Furthermore, every neighbor543

p of r such that p.c > −B + 1 can apply the rule RP . So, by the end of Round 2, and as544

long as r does not increment its clock, p.c ≤ −B + 1. By induction on the distance d(p, r)545

between p and r, we can prove that p.crD+1 ≤ −B + d(p, r) for every node p and every root546

r in γrD+1 .547

We claim that γrD+1 does not contain any cliff, i.e., a pair (q, p) of neighboring nodes548

whose clocks are out-of-sync and such that q.c < p.c. Suppose that (q, p) is a cliff in γrD+1 .549

The node q is in error as otherwise it would be a root not in error, which, as already mentioned,550

is impossible from γr1 . Moreover, we can prove by induction on q.c that there is a root r in551

γrD+1 such that q.c ≥ −B + d(q, r). Since p.c ≥ q.c + 2, we have p.c > −B + d(p, r), which552

contradicts the result of the previous paragraph.553

We now consider the next D + 1 rounds. Since γrD+1 contains no nodes which can apply554

RR, and no cliffs, nodes can only apply the rules RU or RC . Furthermore, among nodes in555

error, those with the largest clock can apply the rule RC , which implies that roots no longer556

exist by the end of Round 2D + 2, and thus γr2D+2 is legitimate.557

6 A Synchronizer558

Let us consider a variant of the atomic-state model which is at least as expressive as the559

model of our unison algorithm. This means that, in this model, we should be able to encode560

the shortcuts Shortcut1 and Shortcut2 (defined page 9).561

In this model, let AlgI be any silent algorithm which is self-stabilizing with a projection562

proj for a static specification SP under the synchronous daemon. Using folklore ideas (see,563

e.g., [4] and [28]), we define in this section a synchronizer which uses our unison to transform564

AlgI into an algorithm Sync(AlgI) which “simulates” synchronous executions of AlgI in an565

asynchronous environment under a distributed unfair daemon.566

6.1 The Synchronized Algorithm567

On top of its unison variables, each node p stores two states of AlgI , in the variables p.old568

and p.curr. These variables ought to contain the last two states of p in a synchronous569

execution of AlgI . When p applies the rule RU , it also computes a next state of AlgI . It570

does so by applying the function ÂlgI which selects p.curr and, for each neighbor q, the571

variable q.curr if p.c = q.c, and q.old if q.c = p.c ⊕B 1, and applies AlgI on these values. We572

thus modify the rule RU in the following way:573

RU : updatable(p) ∧ Paux(p) −→ p.old := p.curr; p.curr := ÂlgI(p); p.c := p.c ⊕B 1.

CVIT 2016

23:14 Being Efficient in Time, Space, and Workload: a Self-stabilizing Unison

The folklore algorithm corresponds to the case when Paux(p) is always true. In this case,574

the clocks of the unison constantly change. Thus, even if AlgI is silent, its simulation is not.575

To obtain a silent simulation, we devise another strategy by defining Paux(p) as follows.576

Paux(p) = (ÂlgI(p) ̸= p.curr) ∨ (∃q ∈ N(p), q.c = p.c ⊕B 1).

We define the legitimate configurations of Sync(AlgI) to be its terminal configurations.577

In the next sections, we sketch the proof that Sync(AlgI) is self-stabilizing for the same578

specification as AlgI . As a matter of fact, our result is more general as the silent assumption579

is not necessary (we need a different definition for the legitimate configurations though).580

6.2 Convergence and Move Complexity of the Synchronized Algorithm581

In everyday life, we have a distinction between the value of a clock (modulo 24 hours) and582

the time. Both are obviously linked. We would like to make a similar distinction here. Let583

e = γ0γ1 · · · be an execution of legitimate configurations. Since γ0 is legitimate, every two584

neighboring clocks differ by at most one increment.585

Since B ≥ 2D + 2, as already mentioned, at least one element of [0, B) is the clock of no586

nodes in γ0. This implies that there is a node x such that x.c0 ⊕B 1 is not the clock of any587

node. We extend this local synchronization property by uniquely defining time(p)0 ∈ [−D, 0]588

by (1) time(x)0 = 0, (2) if p.c0 = q.c0, then time(p)0 = time(q)0, and (3) if p.c ⊕B 1 = q.c,589

then time(p)0 = time(q)0 −1. Moreover, we also define time(p)i+1 = time(p)i +1 if p applies590

RU in γi 7→ γi+1, and time(p)i+1 = time(p)i otherwise.591

For any i, j ≥ 0 such that time(p)j = i, we set sti
p := p.currj . When sti

p is defined for592

all p, let λi be the configuration in which the state of each node p is sti
p. A careful analysis593

shows that, by definition of Paux, λi exists as soon as some sti
p does, and Λ = λ0λ1 · · · is594

precisely the synchronous execution of AlgI from λ0.595

Suppose that T is a bound on the number of rounds that AlgI needs to reach silence.596

Thus, Λ = λ0 · · · λH for some H ≤ T . In the simulation phase, a node makes at most D597

moves to have a non-negative time, and then at most T moves to finish the simulation.598

Together with the stabilization time of the unison, our simulated algorithm is also silent with599

an O(min(n3, n2B) + nD + nT) = O(min(n3, n2B) + nT) move complexity.600

6.3 Correctness of the Synchronized Algorithm601

In Sync(AlgI), we define the restriction rest(s) of the state s of any node p to be p.curr,602

and we canonically extend rest to configurations and executions. Let us consider a legitimate603

configuration γ of Sync(AlgI). This configuration is terminal, and therefore there exists a604

unique execution e of Sync(AlgI) starting at γ (the one restricted to γ alone). Besides, since605

γ is terminal, its restriction is terminal too (for AlgI). Therefore rest(γ) is legitimate, and606

proj(rest(e)) satisfies the specification SP . Hence, the algorithm Sync(AlgI) also satisfies607

SP (for the projection proj ◦ rest).608

6.4 Round Complexity of the Synchronized Algorithm609

The round complexity is analyzed by considering two stages: a first stage to have all times610

non-negative, and a second stage to have all times equal to H.611

To give an intuition of our proof, as it is the more complex, we first consider the second612

stage. Figure 1 is an illustration of the following explanation. Suppose that all times are 0613

in γ0, and only s1 is such that st0
s1

̸= st1
s1

. In the first round of the synchronous execution,614

S. Devismes, D. Ilcinkas, C. Johnen and F. Mazoit 23:15

p0 s1 s2 s3 s4 s5 p6 p7 p8

0 0 0 0 0 0 0 0 0

1

round 1

0
1
2
3

ti
m
e(
p
)

p0 s1 s2 s3 s4 s5 p6 p7 p8

0 0 0 0 0 0 0 0 0

12 2 3 41

4

round 4

p0 s1 s2 s3 s4 s5 p6 p7 p8

0 0 0 0 0 0 0 0 0

12 2 3 41

4

5 6 7

6 5 5 6 7

1

4

7

round 7

p0 s1 s2 s3 s4 s5 p6 p7 p8

0 0 0 0 0 0 0 0 0

12 2 3 41

4

5 6 7

6 5 5 6 7

1

4

7

8

8 9 10

10 9 8 8 9 10 11 12

14 13 12 11 11 12 13 13

18 17 16 15 14 14 15 16

1

4

7

10

13

round 18

0
1
2
3
4
5

ti
m
e(
p
)

Figure 1 The intuition of the round complexity for the second stage.

s1 applies RU , and then, after each new round, nodes at distance 1 from s1, then 2, and so615

on will increase their time to 1. Now suppose that only s2 ∈ N [s1] is such that st1
s2

̸= st2
s2

.616

As soon as all nodes in N [s2] have a time of 1, s2 applies RU . This happens at Round 3 if617

s2 = s1 and at Round 4 otherwise. After this, after each new round, nodes at distance 1618

from s2, then 2, and so on will increase their time to 2. If we consider some s3 ∈ N [s2], and619

so on, then si increases its time to i at Round at most 3i − 2, and all nodes do so at Round620

at most 3i + D − 2. If nodes increase their time earlier, this only speed up the process.621

Now, by definition of H, there is a node sH whose state changes between λH−1 and λH .622

If the states of all nodes in N [p] were the same in λH−2 and λH−1, then sH would not have623

changed its state between λH−1 and λH . There thus exists sH−1 ∈ N [sH] that changes its624

state between λH−2 and λH−1. By repeating this process, we can prove that, unless H = 0,625

Λ has a starting sequence that is a sequence s1 · · · sH verifying sti−1
si

̸= sti
si

for 1 ≤ i ≤ H,626

and si−1 ∈ N [si] for 1 < i ≤ H. We can then prove that, if all nodes have a positive time at627

Round X, then the algorithm becomes silent after at most X + 3H + D − 2 rounds.628

Using similar ideas, we can prove that all times are non-negative after at most X = 2D629

rounds. Taking into account the 3D + 2 rounds of the stabilization phase, we obtain an630

overall 5D + 3T round complexity to reach the silence from any configuration.631

7 Conclusion632

We propose the first fully polynomial self-stabilizing unison algorithm for anonymous633

asynchronous bidirectional networks of arbitrary connected topology, and use it to obtain new634

state-of-the-art algorithms for various problems such as BFS constructions, leader election,635

and clustering.636

A challenging perspective would be to generalize our approach to weaker models such637

as the message passing or the link-register models. We would also be curious to know the638

properties of the algorithm proposed in Section 3.2. Thirdly, although we could not do it, it639

would be nice to unify our result with that of [21] in a satisfactory manner. Finally, it would640

be interesting to know whether or not constant memory can be achieved by an asynchronous641

self-stabilizing unison for arbitrary topologies.642

CVIT 2016

23:16 Being Efficient in Time, Space, and Workload: a Self-stabilizing Unison

References643

1 S. Aggarwal and S. Kutten. Time optimal self-stabilizing spanning tree algorithms. In 13th644

Foundations of Software Technology and Theoretical Computer Science, (TSTTCS’93), volume645

761, pages 400–410, 1993. doi:10.1007/3-540-57529-4_72.646

2 K. Altisen, A. Cournier, S. Devismes, A. Durand, and F. Petit. Self-stabilizing leader647

election in polynomial steps. Information and Computation, 254(3):330–366, 2017. doi:648

10.1016/j.ic.2016.09.002.649

3 K. Altisen, S. Devismes, S. Dubois, and F. Petit. Introduction to Distributed Self-Stabilizing650

Algorithms. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool, 2019.651

doi:10.2200/S00908ED1V01Y201903DCT015.652

4 B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and G. Varghese. Time optimal self-653

stabilizing synchronization. In 25th Annual Symposium on Theory of Computing, (STOC’93),654

pages 652–661, 1993. doi:10.1145/167088.167256.655

5 B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking and656

correction. In 32nd Annual Symposium of Foundations of Computer, Science (FOCS’91),657

pages 268–277, 1991. doi:10.1109/SFCS.1991.185378.658

6 B. Awerbuch and G. Varghese. Distributed program checking: a paradigm for building self-659

stabilizing distributed protocols. In 32nd Annual Symposium on Foundations of Computer660

Science, (FOCS’91), pages 258–267, 1991. doi:10.1109/SFCS.1991.185377.661

7 Baruch Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804–823, 1985.662

doi:10.1145/4221.4227.663

8 J. Beauquier, M. Gradinariu, and C. Johnen. Cross-over composition - enforcement of fairness664

under unfair adversary. In 5th International Workshop on Self-Stabilizing Systems, (WSS’01),665

pages 19–34, 2001. doi:10.1007/3-540-45438-1_2.666

9 L. Blin, C. Johnen, G. Le Bouder, and F. Petit. Silent anonymous snap-stabilizing termination667

detection. In 41st International Symposium on Reliable Distributed Systems, (SRDS’22), pages668

156–165, 2022. doi:10.1109/SRDS55811.2022.00023.669

10 C. Boulinier and F. Petit. Self-stabilizing wavelets and rho-hops coordination. In 22nd IEEE670

International Symposium on Parallel and Distributed Processing, (IPDPS’08), pages 1–8, 2008.671

doi:10.1109/IPDPS.2008.4536130.672

11 C. Boulinier, F. Petit, and V. Villain. When graph theory helps self-stabilization. In 23rd673

Annual Symposium on Principles of Distributed Computing, (PODC’04), pages 150–159, 2004.674

doi:10.1145/1011767.1011790.675

12 J. Burman and S. Kutten. Time optimal asynchronous self-stabilizing spanning tree. In 21st676

International Symposium on Distributed Computing, (DISC’07), volume 4731, pages 92–107,677

2007. doi:10.1007/978-3-540-75142-7_10.678

13 A. Cournier, A. K. Datta, F. Petit, and V. Villain. Snap-stabilizing PIF algorithm in arbitrary679

networks. In 22nd International Conference on Distributed Computing Systems (ICDCS’02),680

pages 199–206, 2002. doi:10.1109/ICDCS.2002.1022257.681

14 A. Cournier, S. Rovedakis, and V. Villain. The first fully polynomial stabilizing algorithm for682

BFS tree construction. Information and Computation, 265:26–56, 2019. doi:10.1016/j.ic.683

2019.01.005.684

15 J.-M. Couvreur, N. Francez, and M. G. Gouda. Asynchronous unison (extended abstract). In685

12th International Conference on Distributed Computing Systems, (ICDCS’92), pages 486–493,686

1992. doi:10.1109/ICDCS.1992.235005.687

16 A. K. Datta, S. Devismes, K. Heurtefeux, L. L. Larmore, and Y. Rivierre. Competitive688

self-stabilizing k-clustering. Theoretical Computer Science, 626:110–133, 2016. doi:10.1016/689

j.tcs.2016.02.010.690

17 A. K. Datta, S. Devismes, and L. L. Larmore. A silent self-stabilizing algorithm for the691

generalized minimal k-dominating set problem. Theoretical Computer Science, 753:35–63,692

2019. doi:10.1016/j.tcs.2018.06.040.693

https://doi.org/10.1007/3-540-57529-4_72
https://doi.org/10.1016/j.ic.2016.09.002
https://doi.org/10.1016/j.ic.2016.09.002
https://doi.org/10.1016/j.ic.2016.09.002
https://doi.org/10.2200/S00908ED1V01Y201903DCT015
https://doi.org/10.1145/167088.167256
https://doi.org/10.1109/SFCS.1991.185378
https://doi.org/10.1109/SFCS.1991.185377
https://doi.org/10.1145/4221.4227
https://doi.org/10.1007/3-540-45438-1_2
https://doi.org/10.1109/SRDS55811.2022.00023
https://doi.org/10.1109/IPDPS.2008.4536130
https://doi.org/10.1145/1011767.1011790
https://doi.org/10.1007/978-3-540-75142-7_10
https://doi.org/10.1109/ICDCS.2002.1022257
https://doi.org/10.1016/j.ic.2019.01.005
https://doi.org/10.1016/j.ic.2019.01.005
https://doi.org/10.1016/j.ic.2019.01.005
https://doi.org/10.1109/ICDCS.1992.235005
https://doi.org/10.1016/j.tcs.2016.02.010
https://doi.org/10.1016/j.tcs.2016.02.010
https://doi.org/10.1016/j.tcs.2016.02.010
https://doi.org/10.1016/j.tcs.2018.06.040

S. Devismes, D. Ilcinkas, C. Johnen and F. Mazoit 23:17

18 A. K. Datta and L. L. Larmore. Leader election and centers and medians in tree networks. In694

15th International Symposium on Stabilization, Safety, and Security of Distributed Systems,695

(SSS’13), pages 113–132, 2013. doi:10.1007/978-3-319-03089-0_9.696

19 S. Devismes, D. Ilcinkas, and C. Johnen. Optimized silent self-stabilizing scheme for tree-based697

constructions. Algorithmica, 84(1):85–123, 2022. doi:10.1007/s00453-021-00878-9.698

20 S. Devismes, D. Ilcinkas, C. Johnen, and F. Mazoit. Making local algorithms efficiently699

self-stabilizing in arbitrary asynchronous environments. CoRR, abs/2307.06635, 2023. doi:700

10.48550/arXiv.2307.06635.701

21 S. Devismes, D Ilcinkas, C. Johnen, and F. Mazoit. Asynchronous self-stabilization made702

fast, simple, and energy-efficient. In 43rd Symposium on Principles of Distributed Computing,703

(PODC’24), pages 538–548, 2024. doi:10.1145/3662158.3662803.704

22 S. Devismes and C. Johnen. Silent self-stabilizing BFS tree algorithms revisited. Journal on705

Parallel Distributed Computing, 97:11–23, 2016. doi:10.1016/j.jpdc.2016.06.003.706

23 S. Devismes and C. Johnen. Self-stabilizing distributed cooperative reset. In 39th International707

Conference on Distributed Computing Systems, (ICDCS’19), pages 379–389, 2019. doi:708

10.1109/ICDCS.2019.00045.709

24 S. Devismes and F. Petit. On efficiency of unison. In 4th Workshop on Theoretical Aspects710

of Dynamic Distributed Systems, (TADDS’12), pages 20–25, 2012. doi:10.1145/2414815.711

2414820.712

25 E. W. Dijkstra. Self-stabilization in spite of distributed control. Communications of the ACM,713

17(11):643–644, 1974. doi:10.1145/361179.361202.714

26 S. Dolev. Self-Stabilization. MIT Press, 2000.715

27 S. Dolev, A. Israeli, and S. Moran. Self-stabilization of dynamic systems assuming only716

read/write atomicity. Distributed Computing, 7(1):3–16, 1993. doi:10.1007/BF02278851.717

28 Y. Emek and E. Keren. A thin self-stabilizing asynchronous unison algorithm with applications718

to fault tolerant biological networks. In 40nd Symposium on Principles of Distributed719

Computing, (PODC’21), pages 93–102, 2021. doi:10.1145/3465084.3467922.720

29 Y. Emek and R. Wattenhofer. Stone age distributed computing. In 32nd Symposium on721

Principles of Distributed Computing, (PODC’13), pages 137–146, 2013. doi:10.1145/2484239.722

2484244.723

30 M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with724

one faulty process. Journal of the ACM, 32(2):374–382, 1985. doi:10.1145/3149.214121.725

31 C. Glacet, N. Hanusse, D. Ilcinkas, and C. Johnen. Disconnected components detection726

and rooted shortest-path tree maintenance in networks. Journal of Parallel and Distributed727

Computing, 132:299–309, 2019. doi:10.1016/j.jpdc.2019.05.006.728

32 Maria Gradinariu and Sébastien Tixeuil. Conflict managers for self-stabilization without729

fairness assumption. In 27th IEEE International Conference on Distributed Computing Systems730

(ICDCS 2007), June 25-29, 2007, Toronto, Ontario, Canada, page 46. IEEE Computer Society,731

2007. doi:10.1109/ICDCS.2007.95.732

33 A. Kravchik and S. Kutten. Time optimal synchronous self stabilizing spanning tree. In733

27th International Symposium on Distributed Computing, (DISC’13), pages 91–105, 2013.734

doi:10.1007/978-3-642-41527-2_7.735

34 S. Tixeuil. Vers l’auto-stabilisation des systèmes à grande échelle. Habilitation à diriger des736

recherches, Université Paris Sud - Paris XI, 2006. URL: https://tel.archives-ouvertes.737

fr/tel-00124848/file/hdr_final.pdf.738

35 V. Turau. Efficient transformation of distance-2 self-stabilizing algorithms. Journal of Parallel739

and Distributed Computing, 72(4):603–612, 2012. doi:10.1016/j.jpdc.2011.12.008.740

CVIT 2016

https://doi.org/10.1007/978-3-319-03089-0_9
https://doi.org/10.1007/s00453-021-00878-9
https://doi.org/10.48550/arXiv.2307.06635
https://doi.org/10.48550/arXiv.2307.06635
https://doi.org/10.48550/arXiv.2307.06635
https://doi.org/10.1145/3662158.3662803
https://doi.org/10.1016/j.jpdc.2016.06.003
https://doi.org/10.1109/ICDCS.2019.00045
https://doi.org/10.1109/ICDCS.2019.00045
https://doi.org/10.1109/ICDCS.2019.00045
https://doi.org/10.1145/2414815.2414820
https://doi.org/10.1145/2414815.2414820
https://doi.org/10.1145/2414815.2414820
https://doi.org/10.1145/361179.361202
https://doi.org/10.1007/BF02278851
https://doi.org/10.1145/3465084.3467922
https://doi.org/10.1145/2484239.2484244
https://doi.org/10.1145/2484239.2484244
https://doi.org/10.1145/2484239.2484244
https://doi.org/10.1145/3149.214121
https://doi.org/10.1016/j.jpdc.2019.05.006
https://doi.org/10.1109/ICDCS.2007.95
https://doi.org/10.1007/978-3-642-41527-2_7
https://tel.archives-ouvertes.fr/tel-00124848/file/hdr_final.pdf
https://tel.archives-ouvertes.fr/tel-00124848/file/hdr_final.pdf
https://tel.archives-ouvertes.fr/tel-00124848/file/hdr_final.pdf
https://doi.org/10.1016/j.jpdc.2011.12.008

	1 Introduction
	1.1 Context
	1.2 Related Work
	1.3 Contributions
	1.4 Roadmap

	2 Preliminaries
	2.1 Networks
	2.2 Computational Model: the Atomic-state Model

	3 A Glimpse of our Research Process
	3.1 An Unbounded Unison Algorithm
	3.2 A Failed Bounded Unison Algorithm
	3.3 Our Solution

	4 A Unison Algorithm
	4.1 Data Structures
	4.2 Some Predicates
	4.3 The Algorithm
	4.4 An Overview of the Algorithm
	4.5 Some Subtleties

	5 Self-Stabilization and Complexity of the Unison Algorithm
	5.1 Convergence and Move Complexity of the Unison Algorithm
	5.2 Correctness of the Unison Algorithm
	5.3 Round Complexity of the Unison Algorithm

	6 A Synchronizer
	6.1 The Synchronized Algorithm
	6.2 Convergence and Move Complexity of the Synchronized Algorithm
	6.3 Correctness of the Synchronized Algorithm
	6.4 Round Complexity of the Synchronized Algorithm

	7 Conclusion

