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Abstract. We present a Python-based framework for event-log predic-
tion in streaming mode, enabling predictions while data is being gener-
ated by a business process. The framework allows for easy integration
of streaming algorithms, including language models like n-grams and
LSTMs, and for combining these predictors using ensemble methods.
Using our framework, we conducted experiments on various well-known
process-mining data sets and compared classical batch with streaming
mode. Though, in batch mode, LSTMs generally achieve the best perfor-
mance, there is often an n-gram whose accuracy comes very close. Com-
bining basic models in ensemble methods can even outperform LSTMs.
The value of basic models with respect to LSTMs becomes even more
apparent in streaming mode, where LSTMs generally lack accuracy in
the early stages of a prediction run, while basic methods make sensible
predictions immediately.

Keywords: event-log prediction · n-gram · LSTM · ensemble methods
· streaming data · batch processing

1 Introduction

Digital data is omnipresent and continuously produced in today’s world. A par-
ticular type of data that is available to many organizations and institutions,
either through explicit mining or implicitly within business processes, are event
logs, i.e., timed traces of events recorded along the execution of a process. Exam-
ples are examinations of patients entering a hospital, server log files, and clicks
of a user browsing a website.

While such event logs are often readily available at organizations, process
models are typically absent. More so, quantitative models that allow one to
describe, analyze, optimize, and predict possible future events are challenging to
obtain.
? The work was supported by the French National Research Agency (ANR) projects
DREAMY (ANR-21-CE48-0003) and COSTXPRESS (ANR-23-CE45-0013), as well
as the SAIF project, funded by the “France 2030” government investment plan man-
aged by ANR, under the reference ANR-23-PEIA-0006.
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The discipline of process mining [42, 43] aims at automatically discovering
a model of the underlying process, reflecting its causalities and concurrency,
with applications in streamlining it and finding potential bottlenecks. Classically,
process mining is applied as a batch process to post-mortem data, with the
discovery process being re-executed as more data is accumulated, and properties
of the model being analyzed for potential optimization [35].

More recently, process mining has focused on prediction tasks [44]. In this
context, a (language) model predicts the next activity of a given case based on its
historical event data. Within the realm of event-log prediction, one distinguishes
between two paradigms: batch learning and streaming learning, also referred to
as offline and online learning. The choice of these approaches depends on the
application as well as the kind of available data: In batch mode, a model is
trained on post-mortem data; potentially including data that is different from
what is seen in production: data may be annotated post-mortem with additional
information. On the other side, streaming mode differs from batch mode in
that: (i) Events are given one by one, interleaved across cases. (ii) Training is
conducted online, i.e., in production. (iii) Predictions are made on pre-mortem
data and can be exploited for decision-making in the running process, impacting
and optimizing future trajectories. A major difference is that, in streaming mode,
meaningful predictions are required early on when data is still sparse.

Activity prediction in discrete, case-based event logs. While process event logs
can be diverse and include attributes of various types, in this work we consider
them to consist of finitely many discrete activities, each belonging to a so called
case. That is, an event consists of a case ID and an activity. An example from
healthcare would be patients as cases and organizational, diagnostic, and treat-
ment measures as activities. In the benchmarks used in this work, the number
of activities ranges from 13 to 42. In the streaming case, however, the set of
activities does not need to be known in advance.

Given a prefix of such an event log, we study the problem of predicting the
most likely next activity for a case, including a distinguished stop symbol to
signal the end of the case. A solution to this problem is a prediction function,
also referred to as language model, which, given the prefix and the case, re-
turns the predicted next activity. For simplicity, we only consider prediction
functions whose output for a case depends solely on the historical event data
for that specific case. For example, such functions do not capture global deci-
sions within a hospital of adapting a diagnostic measure for a patient due to
resource-limitations induced by other patients.

While various synthetic datasets have been used as benchmarks for learning
algorithms for inferring probabilistic automata [52], it is difficult to draw conclu-
sions from these performance metrics for real-life scenarios. Generating meaning-
ful patterns randomly is already challenging when considering only single-case
behaviors and it is not clear how the traces of several cases should be interleaved.
By contrast, in real-life datasets, interleavings are often imposed by resource con-
straints or external factors, which may follow non-trivial patterns. We thus per-
form experiments based on 7 well known real-world process-mining datasets [39]
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from different domains, including healthcare, finance, and IT service manage-
ment. The number of events ranges from 15,214 to 2,514,266. These datasets
have been previously used in [18] to establish experimental performance metrics
for recurrent neural networks. Our results align with theirs in the context of
neural networks, although the exact accuracies differ slightly.

Contributions. Our contributions are twofold. (i) We provide a Python frame-
work that facilitates experiments for predictions in batch and streaming process
mining. The framework allows base models to be easily assembled into com-
posed models, which can themselves serve as components of other models, in
both streaming and batch mode. (ii) Experiments conducted in our framework
demonstrate the potential of simple base language models, especially when com-
bined in ensemble methods. For all tested datasets, long short-term memory
(LSTM) networks [19] outperform base models such as prefix trees and n-grams.
However, n-grams with a relatively small n often comes close to the LSTM’s
performance. The performance gap is further reduced (or even inverted) by com-
bining base models using ensemble methods.

Related Work. Our work touches upon several fields including automata learning
and grammatical inference [12, 40], process mining [42], and various contexts
within machine learning.

Compared to classical automata learning in batch mode, grammatical infer-
ence for streaming data has received considerably less attention. Notable ex-
ceptions include [1, 2, 36], which propose efficient algorithms for probabilistic
automata to address computational complexities in streaming settings. Non-
quantitative incremental automata learning was explored in [15].

Event-log predictions in process mining is an active area of research. Recent
works include [5,10,18,32,33,45]. Process mining in a streaming setting has been
studied, e.g., in [6, 7, 22, 51]. Note that [22] suggests using ensemble methods in
the presence of noise, though not resorting to n-grams.

The use of n-grams dates back to [37] and has been widely applied to a
multitude of problems including business processes [5].

Apart from prediction, another interesting application domain of automata
learning is verification [23,27,28,40]. For example, [27] focuses on learning deter-
ministic probabilistic automata from batches, building on variants of the Alergia
algorithm [8]. However, targeting reactive systems, the focus of this work is on
infinite words rather than making predictions based on finite historical data.

Finally, several general-purpose automata learning libraries have been devel-
oped, including [4, 20,30,53].

Outline. We provide the technical background of the framework and the lan-
guage models used in this paper in Section 2: prefix trees, n-grams, probabilistic
deterministic finite automata [54], and LSTMs [19]. The computational Python
framework is introduced in Section 3. The experimental setup and results are
presented in Section 4. We conclude in Section 5, discussing potential future
directions.
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2 Language Models and Ensemble Learning

We start with a unified, automata-based view of various base language models,
including frequency prefix trees [12], n-grams [37], and probabilistic deterministic
finite automata [54]. This not only allows one to compare the above approaches
within a single setting but has also been adapted within our Python frame-
work, where concrete language models are obtained by refining basic automata
provided by the framework.

2.1 Base Language Models

We fix a nonempty finite set Σ of activities, also referred to as activities. The set
is not necessarily known in advance to a language model, though an algorithm
(e.g., a neural network) may require specifying an upper bound on its size (as
part of the embedding dimension in case of the neural network). We write Σ∗ for
the set of finite sequences of activities. In particular, the set includes the empty
sequence ε. Activities are referred to as a, b, etc. We denote by stop a symbol
that is not contained in Σ and that is used by a language model to signal the
end of a sequence. The set Σstop = Σ ∪ {stop} contains all activities and the
stop symbol. In the following, let σ, τ be from Σstop. Activities are associated to
cases. We assume that case IDs are taken from a countably infinite set CaseID .
Specifically, in our benchmarks, case IDs will be from the set of strings or the
set of natural numbers.

A language model can take several forms. Examples are models based on n-
grams, bags, probabilistic automata, and recurrent neural networks. In essence,
every such language model defines a probabilistic prediction function or, simply,
prediction function p : Σ∗ → ∆(Σstop), where ∆(Σstop) is the set of probability
distributions overΣstop. Given a sequence w ∈ Σ∗, applying p yields a probability
distribution over the set of possible next activities, including stop. In analogy to
conditional probabilities, one usually writes p(σ | w) for the probability p(w)(σ).
The focus in this work is on predicting the most likely next activity, which
is readily obtained from a probabilistic prediction function. Note that, under
certain conditions, the prediction function also allows one to generate sequences
according to a probability distribution over Σ∗.

As previously stated, we follow an automata-based approach to obtain pre-
diction functions. This is motivated by two reasons: (i) It unifies widely-used
approaches, and (ii) its formalism is close to streaming learning with incremen-
tal state updates, allowing us to compare batch and streaming mode within a
single framework. Given that state updates due to learning will be determinis-
tic, we will use a deterministic automaton to describe these. Following [28], we
define:

Definition 1. A probabilistic deterministic finite automaton (PDFA) is com-
posed of a finite set S of states with a dedicated initial state s0 ∈ S, a partial
deterministic transition function δ : S × Σ → S (also called update function),
and a mapping π : S → ∆(Σstop) assigning a probability distribution to every
state.
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With a PDFA A, we associate a prediction function p inductively as follows.
We extend the automaton’s transition function δ to δ̂ : S×Σ∗ → S over sequences
in the usual way by letting δ̂(s, ε) = s and δ̂(s, aw) = δ̂(δ(s, a), w) for all s ∈ S,
a ∈ Σ, and w ∈ Σ∗. The prediction for w ∈ Σ∗ is then given by p(w) =

π(δ̂(s0, w)). Figure 1c depicts a PDFA. Its initial state is the topmost state. We
have, e.g., p(stop | ε) = 0, p(stop | aa) = 7

13 , p(a | aa) =
5
13 , and p(b | aa) =

1
13 .

Towards a data structure that provides natural ways to update transition
functions, we use a related concept of frequencies rather than probabilities on
activities [12]: A frequency deterministic finite automaton (FDFA) is defined
analogously to a probabilistic deterministic automaton, the only difference being
that, instead of a mapping π : S → ∆(Σstop), it is equipped with a mapping
f : S → NΣstop . Intuitively, for state s ∈ S and activity σ ∈ Σstop, frequency
f(s)(σ) is the number of times σ was observed while being in state s (i.e., after
parsing a sequence ending up in s). In particular, f(s)(stop) is the number of
times a sequence stopped in s. An example FDFA is depicted in Figure 1b.
For the initial (topmost) state s, we have f(s)(stop) = 0, f(s)(a) = 13, and
f(s)(b) = 17.

For each such FDFA, we obtain a corresponding PDFA with identical states
and transition function and π defined by π(s)(σ) = f(s)(σ)/

∑
τ∈Σstop

f(s)(τ).
Here, we assume

∑
τ∈Σstop

f(s)(τ) ≥ 1 for all s ∈ S which is without restriction
for the automata constructed via learning. Function π is usually constructed
on demand for a given state when a prediction is due or an activity is to be
sampled. To simplify notation, we will use an FDFA and its corresponding PDFA
synonymously.

We can now express the classical language models within this framework. A
frequency prefix tree (FPT) is an FDFA that organizes a finite set of sequences
into a tree structure, where prefixes of arbitrary length are identified with states
(Figure 1a). For n ≥ 1, an n-gram is an FDFA whose states s are identified with
the last n−1 activities called the access string of s, i.e., the suffix of length n−1
for words of length at least n−1 and the word itself for shorter words (see Figure
1b for a 3-gram). For example, starting from an initial state (the root in Figure
1b), the two sequences ab and aaab share the same suffix ab of length n− 1 = 2,
and lead to the same state (the one with stop-frequency 1). The access string of
this state is ab. A bag keeps track of the set of activities seen until now. It is
thus an FDFA whose states are subsets of the set Σ of possible activities.

2.2 Batch Learning

We next define the prediction problem for batch learning and then adapt the
solutions to the streaming case.

In batch learning, we are given an event log L ⊆ (CaseID×Σ)∗, which is a fi-
nite set of finite sequences of case ID-activity pairs. The goal is to train a language
model on L, i.e., to construct a prediction function p : Σ∗ → ∆(Σstop) that gener-
alizes well and enables informed predictions based on event data not necessarily
seen before. Recall that, in our setting, a prediction for a given case ID only de-
pends on the projection of the event log to this case. Consequently, it is sufficient
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(d) Keeping track of current states indi-
cated by curly lines and case IDs

Fig. 1: Automata obtained for the event log given by the set L =
{〈a〉5, 〈aa〉3, 〈aaa〉3, 〈aab〉1, 〈aaaa〉1, 〈b〉9, 〈ba〉1, 〈bb〉5, 〈bba〉1, 〈bbb〉1}, with multi-
plicities of a sequence denoted by powers. States (nodes) and transitions upon
activities (arrows) are shown. Frequencies, respectively, probabilities for activ-
ities are indicated in brackets next to activities and within nodes for the stop
activity. (a) FPT (b) FDFA for the 3-gram, as well as (c) PDFA for the 3-gram.
(d) FDFA for the 3-gram enriched with the current states of cases 123, 453, and
721 as maintained during inference and streaming learning.

to maintain the event order of an event log L within a case, rather than across all
cases. This allows us to represent L as a finite multiset over Σ∗, i.e., as a mapping
L : Σ∗ → N with finite support. An example of L over the activity set Σ = {a, b}
is L = {〈a〉5, 〈aa〉3, 〈aaa〉3, 〈aab〉1, 〈aaaa〉1, 〈b〉9, 〈ba〉1, 〈bb〉5, 〈bba〉1, 〈bbb〉1} with
powers denoting the multiplicity within the set. Here, L(ε) = 0, L(a) = 5,
L(bb) = 5, etc. The multiset contains 30 sequences (cases).

Most batch automata learning algorithms conceptually proceed in two steps
[12]. First, the event log is arranged as an FPT (Figure 1a). In a second step,
this FPT is reduced (or, folded) by identifying, i.e., merging some of the states.
The specificity of an algorithm lies in the second step:

FPT. The simplest algorithm directly uses the FPT (and the derived PDFA) as
is, without any state equivalences. While this approach does not generalize
well, particularly because no prediction can be made for unseen prefixes, it
serves as a baseline and a potential component for ensemble methods.

Alergia. A commonly used merging algorithm is Alergia [9]. The algorithm
successively merges nodes in a top-down fashion, with each merge consisting
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of two stages. In the first stage, the algorithm identifies two states that can be
merged, typically using a statistical test such as Hoeffding’s incompatibility
test [9, 13]. Two states s and s′ are considered equivalent (i.e., “mergeable”)
if their probability distributions p(s) and p(s′) do not differ significantly,
and if their respective successors are equivalent, too. In the second stage,
the algorithm performs the actual merging of the states and resolves any
non-determinism that arises by merging subsequent states and transitions.

Gram. Finally, an FPT can be reduced to obtain an n-gram. For this purpose,
two states are considered equivalent if the sequence of the last n−1 activities
in their corresponding access strings is identical (Figures 1b and 1c). Intu-
itively, the difference between state merging in Algeria and n-grams is that
Algeria considers the potential future and n-grams the past of a sequence to
decide if two states are equivalent.

To optimize computational complexities, implementations, e.g., of n-grams, di-
rectly construct the FDFA without detouring through an FPT. We detail this
in Section 2.3 when discussing streaming learning.

Further, we assumed that L is given as a multiset of cases. While this may be
the case for batch learning, inference in production will likely have to cope with
interleaved cases. If so, one simply tracks, for every active case ID, the current
state in the FDFA (Figure 1d).

Finally, we note that an LSTM which receives as input a sequence of activities
of a case and as output provides a probability distribution over the case’s next
activities, can be viewed as a probabilistic automaton (with a potentially large
number of states).

2.3 Streaming Learning

In streaming learning, one is given an event stream, where cases are interleaved,
rather than an event log, and learning and prediction alternate. Formally, an
event stream is a finite or infinite sequence of events in CaseID × Σ. While
processing the stream, after any activity, we aim to predict the next activity for
each active case. For that purpose, after each activity, we perform an update of
the automaton and query it to return a distribution over the next activities. For
an n-gram, the steps are:

Initialization. The FDFA has a single root node ρ corresponding to the access
string ε and we set the current state of each (potential) case to ρ.

Update. Upon receiving an event (id i, ai), with i ≥ 1, from the event stream,
the FDFA is updated as follows. Let s be the current state of case id i. If
the case id i has not been encountered before, i.e., the current state of the
case is ρ, increment f(s)(stop). We then decrement f(s)(stop), as one fewer
sequence stops in s, increment f(s)(ai), as one more sequence continues with
ai, and increment f(δ(s, ai))(stop), provided δ(s, ai) exists. We also update
the current state of case id i to s′ = δ(s, ai). Observe that f(s′)(stop) > 0 at
the end of the update step, so that a potential subsequent decrement does
not result in a negative f(s′)(stop).
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An example is given in Figure 1d: Assume a new event (123, a) is received.
Case 123 has been encountered before, and we let s be its current state.
After the update step, f(s)(stop) = 4, f(s)(a) = 9, and f(δ(s, a))(stop) = 8.
If, on the other hand, δ(s, a) is not defined, a new transition is created (and
possibly a new state). To illustrate this, consider again Figure 1d and suppose
an event (721, a) arrives. As the current state of 721 has the access string
ab, the last two activities seen were ab, and so the new history of length 2
becomes ba. A new transition is created to the state with access string ba
and the the counts are adjusted as described above.

Query. Upon a query for id ∈ CaseID , the probability distribution induced by
f(s) at the current state s of case id is returned.

Both steps are local and computationally efficient on automata as a data struc-
ture. By contrast to the updates in n-gram, this locality is not ensured by Alergia.

2.4 Ensemble Methods

Ensemble methods [56] combine multiple base models, such as FPTs or n-grams,
into more complex models using voting mechanisms. Voting mechanisms are dis-
tinguished based on how they handle updates and inference queries. In both soft
voting and hard voting, each base model individually processes updates from in-
coming events. Similarly, queries are forwarded to all base models, each of which
produces a prediction in the form of a probability distribution. The key difference
lies in how these distributions are aggregated: In soft voting, the final probabil-
ity distribution is obtained by averaging all individual distributions, while in
hard voting (also referred to as majority voting), each probability distribution
is converted into a concrete activity, and the activity chosen most frequently
constitutes the final verdict (which may be represented as a Dirac probability
distribution).

While hard and soft voting apply to both batch and streaming modes, adap-
tive voting is specific to streaming mode. The idea is to track the current accuracy
of each base model. A query is then forwarded to the model with the highest
accuracy. An update on an incoming event involves two steps. In step 1, the
accuracy is adjusted: the activity a of the event is compared to the prediction
of each base model. Base models that correctly predict a see their accuracy in-
crease, while the accuracy of all other models decreases. Step 2 updates the base
models in the same manner as in soft and hard voting.

Finally, we use ensemble methods as a fallback method to compensate for
slowly-learning language models in streaming learning. For example, we apply
the FPT with a minimum number of 10 visits3 whenever possible. If the minimum
number has not been reached, as a fallback option, the prediction of an n-gram
is returned, where, for our experiments, we use n = 5 or n = 7 depending on the
dataset.
3 This is a hyperparameter that can be adjusted according to the required confidence
level needed.
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We will show in Section 4 that soft voting generally outperforms hard voting.
Most importantly, soft voting offers considerable improvements over automata-
based base models and, in streaming mode, even outperforms LSTMs on many
datasets.

3 Computational Framework

A wide range of stream-processing frameworks is available, with examples being
Dataflow [11], Faust [16], Flink [17], Pathway [31], as well as River [29]. Towards
the goal of a combined batch and stream processing with easy general-purpose
function modules, local deployment, analysis via dashboards, low overhead and
latencies, and stop-resume functionalities, we developed the logicsponge Python
library [24].

A data pipeline in logicsponge is made up of terms that are connected
via sequential or parallel composition. We distinguish two basic types of terms:
source terms and function terms. The output of a source term does not ex-
plicitly depend any other terms in the pipeline. On the other hand, a function
term receives data from other terms as input and can produce output to other
downstream terms. A function term that does not produce any outputs for other
terms is a sink. It may, of course, produce outputs not modeled in the pipeline,
like appending data to files or user console output. In the sequential composition
t1 * t2 of terms t1 and t2, the input of t2 is equal to the output of t1. In
their parallel composition t1 | t2, both t1 and t2 receive the same upstream
input and its downstream output is the union of outputs of t1 and t2, acces-
sible as separate streams. Function terms that merge these streams into single
streams are provided by the framework. Independently of where they appear in
the pipeline, all terms are executed in separate threads.

Inputs and outputs of terms are handled via data streams. A data stream
encapsulates a list of data items. A data item is a Python dictionary with some
associated metadata. Each data stream is owned by a unique term to which
it is associated as an output. The owner of a data stream can append data
items to it. A data stream can be the input to other terms as defined by the
sequential and parallel composition. Terms that have a data stream as an input
do not have write access to it and can access it only via a read-only data stream
view object. The underlying list data structure of a data stream is protected
from concurrent access via readers-writer locks [34], minimizing conflicts. When
starting a pipeline, setting an optional persistent function argument configures
the contents of the data streams to be stored in a Python object database [57].
Restarting the pipeline after an interrupt or crash restores the state from the
database and resumes computation. The library contains predefined terms to
generate plots, compute basic statistics, and create interactive web dashboards.

We implemented the process-mining algorithms used for this work as function
terms in the logicsponge-processmining package [25]. We first define a list of
language models:
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models =[
BasicMiner(algorithm=Bag()),
BasicMiner(algorithm=FrequencyPrefixTree ()),
BasicMiner(algorithm=NGram(window_length =2)),
BasicMiner(algorithm=NGram(window_length =3)),

]

This list is then provided to a term that performs soft voting on the models:

soft_voting = StreamingActivityPredictor(
strategy=SoftVoting(models=models)

)

Additionally, we create a term that acts as an LSTM model:

lstm = StreamingActivityPredictor(
strategy=NeuralNetworkMiner(

model=LSTMModel(vocab_size , *dim , device=device),
criterion=nn.CrossEntropyLoss (),
optimizer=optim.Adam(model.parameters (), lr=0.001) ,
batch_size =8,

)
)

Both terms are combined in parallel with a subsequent respective evaluation
term that generates statistics on their accuracy and performance. The pipeline’s
source term generates a data stream out of the dataset. The data stream is
subsequently processed by applying a key filter and adding start symbol before
it is fed into the parallel predictor terms:

pipeline = (
ListStreamer(data_list=dataset)
* ls.KeyFilter(keys=["case_id", "activity"])
* AddStartSymbol ()
* (

(soft_voting * Evaluation("soft_voting"))
| (lstm * Evaluation("lstm"))

)
)

Finally, the pipeline is started:

pipeline.start()

4 Experimental Evaluation

To evaluate our framework and approach, we performed experiments based on
seven well-known real-world business-process datasets (Table 1). All experiments
were performed on an 11th Gen Intel Core i9-11900K architecture (3.50GHz,
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Table 1: Dataset statistics and experimental setup (voting uses FPT + bag +
the three n-grams specified below)

Sepsis
Cases
[26]

BPI
2012
[46]

BPI
2013
[38]

BPI
2014
[47]

BPI
2017
[48]

BPI
2018
[50]

BPI
2019
[49]

#Activities 16 24 13 39 26 41 42
#Cases 1,050 13,087 7,554 46,616 31,509 43,809 251,734
Avg. case length 14.49 20.04 8.68 10.01 38.16 57.39 6.34
#Events 15,214 262,200 65,533 466,737 1,202,267 2,514,266 1,595,923

Voting:
(FPT+bag+...) 3, 4, 5 3, 5, 7 3, 4, 5 3, 4, 5 3, 5, 7 3, 5, 7 3, 5, 7

Fallback:
FPT → ... 5-gram 7-gram 5-gram 5-gram 7-gram 7-gram 7-gram

8 cores, 24GB RAM) with an NVIDIA GeForce RTX 3090 (24GB) running
Ubuntu (24.04.1) and Python (3.12.3). For the LSTM training and inference we
used PyTorch with CUDA. We measured accuracy in both batch and streaming
modes. In both modes, we used incremental inference based on the current state
of a case. In our comparison, we included n-grams with n ranging from 1 to 8,
FPTs, bags, and LSTMs. The LSTMs consisted of two hidden layers of dimension
128, preceded by an embedding layer of dimension 50. Every voting method used
five submodels, including one FPT, one bag, and three n-grams with varying
combinations of n (Table 2). The fallback method is instantiated with an FPT
(considering only states with at least 10 total visits) and an n-gram with n = 5
or n = 7.

4.1 Batch Mode

In batch mode, a given dataset (event log) was divided into a training set (70%),
a validation set (15%), and a test set (15%), where the percentages refer to the
number of sequences in the event log. To account for stop-predictions, we added
a stop symbol to the end of each sequence. The validation set was used only for
LSTM training to determine a stopping criterion. We averaged the results over
5 runs. We performed at most 20 epochs per run with a batch size of 8, but
stopped a run as soon as a model failed to improve for 3 consecutive epochs. Per
run, we then selected the LSTM model with the best validation accuracy.

Every model was evaluated on the test set. For every activity a in the dataset,
a given model selected the outcome â with the highest probability based on its
current state as its prediction. Thus, the prediction was correct if a = â. Accuracy
measured the proportion of correct predictions.

For n-grams, we implemented backoff [21]: if the next activity cannot be
parsed by an n-gram, the model attempts to parse shorter and shorter suffixes,
always starting from the initial state. The test results for Alergia were obtained
for significance parameter 0.5, using the automata-learning library AALpy [30].
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4.2 Streaming Mode

In streaming mode, we did not add stop-symbols to mark the end of a sequence,
as adding them to pre-mortem data is unsuitable unless explicitly present in the
dataset. On the other hand, to handle the first event of a case in a data stream,
we insert an “init” symbol to mark the start of a sequence allowing an LSTM to
make a prediction from the very beginning.

For querying an LSTM, we parse the current sequence through the model
and retrieve the corresponding outcome. LSTMs are not inherently designed for
streaming learning. We update a model efficiently with each incoming event as
follows: After each new event, we perform a training iteration. Each training
step uses a batch size of 8, always including the updated case sequence. The
remaining sequences are selected in a round-robin fashion to ensure all sequences
are considered repeatedly.

Note that, unlike in batch learning, there is no separation of the dataset in
training, validation, and test set.

4.3 Results

Experimental results are depicted in Table 2. In batch mode, LSTMs perform
best across most datasets. However, in most cases, an n-gram model comes very
close. Combining these models, along with frequency prefix trees and bags, into
ensemble methods further boosts the performance of simple base models: in two
cases, LSTMs are even outperformed (by soft voting).

In streaming mode, LSTMs appear to struggle during the initial stage of
a stream. As illustrated in Figure 2a for the sepsis dataset, which depicts the
accuracy evolution for various models, LSTM performance is initially well below
that of other base models, catching up only later (Figure 2b). Ensemble methods
can outperform LSTMs on several datasets. Notably, the average latency (the
total time required for making one prediction and one update) of base models is
significantly lower that of LSTMs.

5 Conclusion and Future Work

We presented a computational framework for event-log predictions in streaming
mode. Experimental results on business processes carried out in this framework
suggest that process data often exhibits behavior that is consistent with compu-
tationally efficient n-gram predictions. Moreover, ensemble methods considerably
boost smaller base models, at the expense of only little computational overhead.

One direction for future research is refining the methodology. Fallback algo-
rithms show promising potential, but more detailed experiments are required to
explore more sophisticated fallback strategies that rely, for example, on statis-
tical tests. A potential starting point is the work in automata learning [12]) to
compare states as well as the work on probabilistic bisimilarity distances [41]. It
would be interesting to investigate whether ensemble methods involving nested
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(a) First 550 predictions

(b) Predictions for the complete dataset

Fig. 2: Prediction accuracy for different language models in streaming mode over
the number of activities in the sepsis dataset from [26].

models (such as voting among other voting models) could further improve per-
formance. In streaming mode, more fine-grained adaptive methods, particularly
concerning LSTM training, may help reduce latency and avoid overfitting.

From a theoretical perspective, it would be worthwhile to explain the n-
gram phenomenon: Can a random automaton or process often be approximated
by an n-gram? What is the optimal n, or what are the best combinations of
n’s in ensemble methods? Can these be determined online? Is it worthwhile to
distribute them sparsely, or are clusters of n preferable? In other words, what is
the best way to determine the optimal hyperparameters?

As object-centric process mining attracts increasing attention [55], incorpo-
rating global behaviors into predictions gains in importance. In terms of au-
tomata, a natural model that distinguishes between global and local behaviors
is data automata [3], which have already been studied in a classification learning
setting [14]. Frequency-enriched and probabilistic versions are hypothesized to
be good starting points to pursue this direction beyond the local predictors con-
sidered in this paper. Another extension involves incorporating more attributes
or activities, including continuous ones such as energy consumption, clinical pa-
rameters, or timestamps and activity durations [18,45].
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