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Abstract

Intrinsically disordered proteins and regions (IDPs/IDRs) leverage their structural flexi-
bility to fulfill essential cellular functions, with dysfunctions often linked to severe diseases.
However, the relationships between their sequences, structural dynamics and functional roles
remain poorly understood. Understading these complex relationships is crucial for thera-
peutic development, highlighting the need for methods that generate ensembles of plausi-
ble IDP/IDR conformers. While AlphaFold (AF) excels at modeling structured domains,
it fails to accurately represent disordered regions, leaving a significant portion of proteomes
inaccurately modeled. We present AFflecto, a user-friendly web server for generating large
conformational ensembles of proteins that include both structured domains and IDRs from
AF structural models. AFflecto identifies IDRs as tails, linkers or loops by analyzing their
structural context. Additionally, it incorporates a method to identify conditionally folded
IDRs that AF may incorrectly predict as natively folded elements. The conformational space
is globally explored using efficient stochastic sampling algorithms. AFflecto’s web interface
allows users to customize the modeling, by modifying boundaries between ordered and dis-
ordered regions, and selecting among several sampling strategies. The web server is freely
available at https://moma.laas.fr/applications/AFflecto/.
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1 Introduction

Structural biology has traditionally focused on the study of well-folded protein domains. However, in-
trinsically disordered proteins and regions (IDPs/IDRs), known for their conformational plasticity, are
highly abundant across all three kingdoms of life, especially in eukaryotes. For instance, approximately
40% of proteins in the human proteome are estimated to contain IDRs longer than 30 residues [1]. The
structural plasticity of IDRs is essential to their function, enabling them to adapt and interact with
multiple partners, thereby serving as hubs in cellular networks and mediating complex processes, such as
cell regulation and signaling [2]. More recently, IDRs have emerged as key actors in liquid-liquid phase
separation processes in cells, where they temporally and spatially control key biological processes [3].
Due to their critical roles, IDRs are also implicated in many human diseases, making them important
targets for drug development [4]. However, developing effective therapeutic interventions targeting IDRs
is challenging due to their inherent flexibility, which complicates the structural studies needed for drug
design.

Structural investigation of IDRs typically relies on a combination of experimental and computational
methods [5, 6]. Unlike well-folded domains with stable conformations, IDRs exist as ensembles of fluctu-
ating conformations that reflect their structural diversity. While structure prediction tools like the widely
used AlphaFold (AF) [7] are skillful in modeling structured domains, they fail to capture IDR ensembles,
instead depicting them as single static conformers with limited physical relevance [8]. This implies that
a significant portion of protein regions in AF structures are not accurately modeled. Methods such as
AF-Cluster [9], which predict multiple conformations from AF models, have been developed to address
structural diversity, but they are generally not applicable to IDPs/IDRs. Despite this limitation, the
confidence score of the AF models based on the predicted local distance difference test (pLDDT) can
serve as indicator of disordered protein segments [10, 11]. Additionally, it has been shown that in AF
structures, IDRs modeled with (very) high-confidence are likely to be conditionally folded regions that,
in many cases, closely resemble their bound state but they do not necessarily represent their structure in
solution [12].

As a complement to structure predictors for well-folded proteins, various computational tools have
been developed to model IDR ensembles relying on statistics-based or physics-based approaches and,
more recently, on machine-learning methods [13–16]. However, most of them deal with individual dis-
ordered regions independently of the rest of the protein, ignoring the structural influence exerted by
the molecular context. Only a few methods are capable of generating large conformational ensembles of
proteins simultaneously considering both IDRs and rigid domains [17, 18]. Nevertheless, these methods
typically require significant computational resources or expertise, and lack user-friendly implementations,
such as web servers, thereby limiting accessibility to a broad scientific community.

Here, we present the AFflecto web server, a new, user-friendly platform designed to generate large
conformational ensembles of proteins that include both structured and disordered regions based on AF
predictions. IDRs are identified using the pLDDT score and classified as tails, linkers or loops based
on their molecular context. Additionally, we introduced a method to detect conditionally folded IDRs
that are predicted as rigid regions in the AF models. To explore the conformational space efficiently,
AFflecto incorporates our previously-developed IDR and loop sampling methods [19,20]. The web server
allows users to perform customized analyses. Coupled with appropriate software, the generated ensemble
models can be used to interpret experimental measurements, such as NMR, SAXS or hydrodynamic data,
or serve as initial states for molecular dynamics simulations.
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2 Materials and methods

2.1 Region classification protocol

On the basis of the AF structural model, boundaries of rigid and flexible regions are defined using
the following process. Per-residue pLDDT scores are extracted from the B-factor column of the PDB
file. Residues with a pLDDT score lower than the specified cutoff (a default value of 0.7 is used, as
recommended for disorder prediction [21], however this is adjustable by the pLDDT_cutoff parameter)
are classified as flexible, while residues above this threshold are considered rigid. Next, the flexible
residues are grouped into flexible regions through two steps: i) Flexible regions are defined as consecutive
flexible residues with lengths of at least three residues for tails and linkers and at least five residues for
loops. ii) These flexible regions are further merged if the number of rigid residues between them is smaller
than the shortest_rigid parameter (three by default, but this is adjustable). The remaining regions of
the sequence are identified as rigid regions.

Flexible regions are then classified as linker, loop or tail based on their structural context, as deter-
mined by analyzing the AF model. Flexible regions at the C- or N-termini, neighbored by only one rigid
region, are classified as tails. Loops are defined as flexible regions where two adjacent rigid regions form
at least 10 contacts. A contact is defined when the Cβ atoms (Cα for glycine) of residue pairs from each
rigid region are at 8 Å or less. This distance is adjustable using the contact_dist parameter, which can
be set in the range of 6–12 Å to effectively capture significant residue contacts associated with stabilizing
interactions in folded proteins. Finally, linkers are classified as flexible regions that connect two rigid
regions that do not form stable contacts. If no rigid region is detected, the protein is classified as a pure
IDP.

Finally, secondary structural elements (SSEs) that do not form a significant number of tertiary contacts
with other SSEs are identified as conditionally folded (CF) SSEs. Concretely, for a given SSE, the contacts
between this SSE and all other SSEs in the protein are aggregated and the average number of contacts
per residue is calculated. If this value falls below the optimized cutoff of 0.474, the SSE is identified as
a CF SSE (see Supplementary Information for further details). The identified CF SSEs are provided as
protein segments for sampling using strategies designed to capture partially structured conformations.

2.2 Conformational sampling of IDRs

To generate realistic conformers of IDRs, we integrated our previously-developed sampling method into
the web server. This method uses structural information from three-residue fragments extracted from
high-resolution structures to build conformers through two main strategies. The first, single-residue-
based sampling (SRS), generates conformers in a residue-specific manner without considering neighboring
residues. The second, three-residue-based sampling (TRS), considers the local sequence and the structural
context, making it well suited to model partially structured regions in IDPs. Sampling is performed using
computationally efficient stochastic algorithms, which have been shown to accurately reproduce NMR and
SAXS experimental data measured in IDPs [19]. The sampling method manages loop closure constraints
by integrating a robotics-inspired approach [20].
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2.3 Web server implementation

AFflecto was integrated as a new tool of the MoMA software suite (https://moma.laas.fr/). The web
server was developed using the Django python-based framework. For visualizing the protein structures,
we used the PDBe implementation of Mol* [22], which is a web-based structure viewer offering simple
navigation. The web server is fully functional with all modern browsers that support HTML5 and WebP
formats.

3 Web server description

AFflecto takes AF models as input, identifies the IDRs and samples them to generate ensemble models of
physically-plausible conformers. Users can modify the default settings, allowing for customized modelling
of IDPs/IDRs. The web server is freely available at https://moma.laas.fr/applications/AFflecto/. This
section provides guidance on its usage.

3.1 Submission page

On the submission page, users are required to provide a job title and structural input using a UniProt
accession number or uploading a valid AF PDB file. This second option allows the use of AF models
generated locally by the users. If a UniProt accession number is provided, the server automatically
retrieves the corresponding PDB file from the AF Database (AFDB) [23]. After starting the job, the
user will be redirected to the prediction page, unless the uploaded PDB file has an incorrect format or
the pLDDT score is missing. In these cases, the job will be aborted.

3.2 Prediction page

The prediction page (Fig 1.) is divided into five main sections, each one offering distinct functionalities.
These sections are described in detail below.

Part1 - Structure visualization: AFflecto classifies flexible regions into tails, loops or linkers. In the
visualization section, these regions are mapped directly onto the AF model, presenting the structure with
the flexible regions for visual inspection by users. Each type of flexible region is marked with a distinct
color to guide users. This overview of flexible regions in the full protein context provides valuable insights,
assisting users in customizing their analysis in the following sections.

Part2 - Parameter settings: This section provides access to adjustable parameters for the identifi-
cation and classification of flexible regions. The available parameters are:

• pLDDT_cutoff: to discriminate rigid/flexible residues in the AF model.

• contact_dist: definition of contact between two rigid regions (see methods for details).

• shortest_rigid: minimum required length to define rigid regions.

After selecting the desired parameters, clicking the Apply button refreshes the entire prediction page
based on the newly chosen configuration.
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Part3 - Adjusting and redefining flexible regions: The classified regions can be modified by the
user to customize the modeling. Complete regions can be removed, new linkers and loops can be added
within rigid regions, and tails can be included at the termini. The region boundaries can be adjusted, and
the Update button must be clicked afterward to save the changes. The continuity of boundary positions
and the alternation between rigid and flexible regions are automatically checked and adjusted.

Part4 - Partially structured regions: In AF structures, conditionally folded (CF) regions are often
represented by high-confidence secondary structural elements (SSEs) that are good models of the bound
state [12]. In AFflecto, we introduced a method to identify CF SSE regions based on the assumption that,
unlike SSEs in natively folded domains which form many contacts to stabilize the structure, CF SSEs lack
significant tertiary contacts with other SSEs, as they primarily interact with their binding partners (Fig.
S1) (see methods). These CF SSEs are treated as partially structured regions and are constructed using
the TRS sampling strategies. Users can refine these regions by adjusting their boundaries, or adding and
removing regions as needed.

Part5 - Job submission: Users can specify the number of conformers to be generated (up to a
maximum of 1000, with a default of 100). By enabling the Add sidechains option, side-chains will be
added in the output PDB files based on the input AF structure; only the side-chains involved in collisions
will be locally re-sampled. Otherwise, pseudo Cβ atoms will be considered for collision detection, and
the output PDB files will only contain backbone atoms. Finally, clicking the Launch button initiates the
ensemble generation process.

3.3 Result page

The conformational ensemble model of the submitted protein is generated on the server back-end using
stochastic algorithms to sample IDR conformers (see methods). Once the calculation is completed, an
email notification is sent (if the user has created an account) and the user can download the generated
ensemble from the results page as a ZIP file, which contains the conformers as individual PDB files.
Anonymous users can retrieve their results using a unique identifier assigned to them.
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Figure 1: Screenshot of the prediction page using the protein example P26743, with the five sections
highlighted by rectangles.
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4 Use cases

4.1 Example 1: Measles Virus Nucleoprotein

The measles virus nucleoprotein (MV-N, 525 residues, UniProt ID: P0DXN6) assembles into nucleo-
capsids together with the viral genome and interacts with the P-protein, which is bound to the viral
polymerase complex. These processes are mediated by MV-N IDRs and have been the subject of exten-
sive experimental studies. MV-N consists of the N-core domain (residues 34-374), responsible for binding
viral RNA and maintaining capsid structure, flanked by N- and C-terminal arms (Narm and Carm, 1-33
and 375-391, respectively) that stabilize nucleocapsid assembly by binding neighbouring protomers. The
Carm is followed by the disordered N-tail (residues 392–525), which includes the molecular recognition
region (MoRE, residues 485–502) that binds to the P-protein [24–28].

Since viral proteins are not included in the AlphaFold Protein Data Bank (AFDB), the MV-N structure
was predicted using the AlphaFold3 server [29]. Using default parameters, AFflecto identified a C-terminal
long tail (residues 378–525), encompassing the C-arm and the disordered N-tail. [27]. In the N-tail region,
two short CF SSEs were identified (residues 485–501 and 520–523) and flagged for sampling using the
TRS strategy. When submitted to AFflecto, the ensemble showed partially helical conformations (Fig.
1). These findings align with experimental results, which describe α-helices within the conformational
ensemble of the N-tail, particularly around the MoRE region [26]. Additionally, AFflecto identified an N-
terminal tail (residues 1–26) associated with the N-arm. Within the N-arm region, a 15-residue-long CF
region (2-16) was also identified by AFflecto. When sampled using the TRS strategy, this region showed
α-helices in some of the conformers (Fig. 1). Notably, this helix has been demonstrated to stabilize
nucleocapsid assembly by binding neighbouring MV-N protomers [30]. Note that AFflecto also identified
two loops according to the AF prediction (133-143 and 206-210), which were sampled simultaneously
with the other flexible regions.

Additionally, a flexible linker (residues 262–266) was inserted between the N- and C-terminal subdo-
mains of the N-core domain (NTD and CTD) (Fig. 1). Although this region was predicted with high
confidence in the AF structure and was not classified as a linker by default in the AFflecto model, the
server allows users to manually define and insert such flexible regions. This feature provides a valuable
advantage for customizing ensemble generation. The conformational ensemble generated by AFflecto
displays the hinge motions between both folded subdomains. Note that this hinge motions, which are
limited according to the modelling, have been associated with the open-closed transition during nucleo-
capsid formation [31, 32]. This use case exemplifies the capacity of AFflecto to model complex protein
chains including the three types of flexible regions, and to integrate previous structural knowledge derived
from high-resolution techniques.
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Figure 2: AFflecto model of the nucleoprotein from Measles Virus. (a) AF model of the protein, with
colors corresponding to the AF pLDDT score coloring system. (b) AFflecto classification of rigid and

flexible regions based on default parameters, and with the inclusion of an additional linker region
connecting the two rigid subdomains. (c) Ten conformations generated for the protein using the

definitions from panel (b).

4.2 Example 2: Human Tau protein

The human Tau40 protein (Tau-F, UniProt ID: P10636-8), a 441-residue isoform of the microtubule-
associated protein Tau, stabilizes microtubules in neurons and regulates cytoskeletal structure [33]. Im-
portantly, its aggregation into neurofibrillary tangles is a hallmark of neurodegenerative pathologies, such
as Alzheimer’s disease [34]. The full-length protein can be divided into two main parts: an N-terminal
projection domain (1-200) and a C-terminal microtubule (MT) binding region (MTBR) (residues 242-
367), which encompasses four repeats that stabilize MTs through direct interaction [35]. Fluorescence
correlation spectroscopy and acrylodan fluorescence screening revealed helical structure in the MTBR
upon tubulin binding, indicating partially folded binding regions [36]. Thanks to extensive structural
studies, Tau40 is considered as a prototypical example of IDP when not associated with MTs [37–40],
and it has been annotated as such in the DisProt database under entry DP01100 [41].

The AF PDB file for Tau40 was generated using the AlphaFold3 server, as isoforms of this protein
are not available in the AFDB. AF predicts several high-confidence, rigid regions in the human Tau40
protein, including long coil segments and an α-helix within the N-terminal projection domain (Fig. 2).
However, using the developed region classification protocol, AFflecto indetifies regions with falsely high
confidence predictions in the AF structure as flexible, accurately presenting the Tau40 protein as a pure
IDP (Fig. 2). In the AFflecto region classification, several short partially structured regions within
the MTBR are correctly identified and designated for sampling using the TRS strategy. Additionally,
a 14-residue-long partially-structured region (424–438) is identified within the C-terminal tail (Fig. 2),
which contains both basic and acidic subregions and is associated with the indirect regulation of MT
binding [35].

To further investigate the structural characteristics of the C-terminal tail of Tau40 (residues 410–441),
we generated a conformational ensemble using the TRS sampling strategy for the region predicted as par-
tially structured, and analyzed it with the WARIO tool [42]. WARIO identifies clusters of conformations
that exhibit common structural patterns based on inter-residue contact maps. The analysis revealed that
22.5% of the conformers displayed α-helical conformations in the region spanning residues 425–430, indi-
cating a higher propensity for partial helicity in C-terminal tail (Fig. S2) (for details see supplementary
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materials). These findings suggest that the AFflecto-generated conformers effectively capture transient
secondary structures.

Figure 3: AFflecto model of the Tau40 protein. (a) AF model colored according to the pLDDT score.
(b) AFflecto identifies this protein as a pure IDPs. (c) Twenty conformations generated for Tau40,

modeled as a pure IDP. Each conformer is depicted in a different color.
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5 Conclusion

Many proteins are composed of both globular domains and flexible, disordered regions, such as linkers,
tails and loops that, in solution, sample a vast conformational space. While machine-learning-based struc-
ture prediction methods, such as AF, provide accurate models for structured domains, they often depict
disordered regions with a single, low-confidence conformation. To address this limitation, we present
AFflecto, a web server that generates conformational ensemble models by taking AF predictions as input
and sampling the conformations of disordered regions using a data-driven stochastic algorithm. These
ensembles offer a comprehensive representation of the diverse conformational states of flexible proteins
in solution, making them valuable entry points for more detailed analyses to interpret experimental data
or as starting points for molecular dynamics simulations.

The generated conformational ensembles provide a plausible picture of the protein in solution reporting
on the overall size, the feasibility of long-range intramolecular contacts, and the extent of loop motions.
Beyond these obvious applications of AFflecto, these models also provide valuable opportunities for
various biological applications. First, they can be used in combination with experimental methods such as
NMR and small-angle X-ray scattering (SAXS) to structurally characterize highly flexible proteins [5,43].
When coupled to appropriate computational forward models, the backcalculated observables can be
compared with the experimental ones in order to (in)validate the structural models. Alternatively, the
theoretical profiles can be used for ensemble optimization or reweighting strategies [44,45].

Second, the ensembles serve as excellent starting points for molecular dynamics simulations, facili-
tating more detailed investigations of protein flexibility and dynamics. Finally, these ensembles can be
used for drug design initiatives, particularly in identifying and targeting disordered regions or transient
conformations that play key functional roles.

In the future, we plan to enhance our method by integrating the predicted aligned error (PAE)—a
measure of the confidence in the relative positions of residues within structure predicted by AF—to better
distinguish between linkers and loops. Additionally, we are developing a locally runnable version of the
server that will allow users to generate larger ensembles and handle multiple chains, providing a more
flexible and scalable solution for complex protein systems. All together, we believe that AFflecto will
become a fundamental tool to investigate the flexibility of complex protein systems, which will provide
new avenues to understand the role of disorder in molecular biology.
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