SUPPLEMENTARY MATERIALS FOR THE ARTICLE:

Overt and hidden Polymorphism in the binary system involving the Z- and E- isomers of broparestrol

By: Siro Toscani, Hassan Allouchi, René Ceolin, Laia Villalobos, Maria Barrio, Josep-Lluis Tamarit and Ivo B. Rietveld

TABLE OF CONTENTS

TABLES

Table S1. Temperatures and pressures for triple points involving the vapour phase

Table S2. Crystal data and structure refinement of E-broparestrol form I_E

Table S3. Atom coordinates and B_{iso} for *E*-broparestrol form I_E at 293 K

Table S4. Bond lengths in *E*-broparestrol form I_E

Table S5. Bond angles in *E*-broparestrol form I_E

Table S6. Torsion angles in *E*-broparestrol form I_E

Table S7. Lattice parameters of *E*-broparestrol form I_E as a function of temperature

Table S8. Lattice parameters of *E*-broparestrol form II_E as a function of temperature

Table S9. Lattice parameters of Z-broparestrol form I_Z as a function of temperature

Table S10. DSC data of physical mixtures of forms II_E and I_Z after annealing at 323 K

Table S11. DSC data of melted mixtures of forms I_E and I_Z after annealing at RT for three years

Table S12. DSC data of melted mixtures of forms I_E and II_Z after annealing at RT for several days

FIGURES

Figure S1. X-ray diffraction patterns of forms II_E and I_Z

Figure S2. Fitted diffraction pattern for structure resolution of form I_E

Figure S3. Identification of forms I_E and II_E in mixtures from the melt by X-ray diffraction

Figure S4a. Projection of the unit cell of I_E on the **bc** plane

Figure S4b. Molecular structure and atom numbering in form IE

Figure S5. Topological pressure-temperature phase diagram involving forms I_E and II_E

Figure S6a. DSC curves of physical mixtures of forms II_E and I_Z after annealing at 323 K (Table S10)

Figure S6b. Tammann plot of the eutectic equilibrium ϵ_1 observed at 363 K

Figure S7a. DSC curves of melted mixtures of forms I_E and I_Z after annealing at RT for three years (Table S11)

Figure S7b. Tammann plot of the eutectic equilibrium ϵ_2 observed at 358 K

Figure S8a. DSC curves of melted mixtures leading to forms I_E and II_Z after annealing at RT for three years (Table S12)

Figure S8b. Close-up of Figure S8a of exothermic recrystallisation events to form Iz

Figure S8c. Tammann plot of the eutectic equilibrium ϵ_3 observed at 340 K

Figure S9. T-x phase diagram of the *E*-rich side demonstrating the intersection of the ideal liquidus curves of the two forms I_E and II_E

Figure S10. Qualitative "close-up" of Figure 10 (main article) demonstrating the location of the solid solutions in the *E*-rich samples

EQUATIONS Equation S1. Tammann plot of eutectic ε_1 Equation S2. Tammann plot of eutectic ε_2

Equation S3. Tammann plot of eutectic ε_3

Equation S4. Fitted liquidus II_E

Equation S5. Fitted liquidus I_E

Equation S6. Fitted liquidus I_Z

TABLES

Table S1. Triple points, t	temperatures, and	pressures in the E	E-broparestrol system
----------------------------	-------------------	---------------------------	-----------------------

TRIPLE POINTS	Temperature /K	Pressure /Pa	Constant B ^a
I-Liquid-Vapour	386.7	10.40	31.75
II-Liquid-Vapour	385.4	9.71	33.07
I-II-Vapour	376.6	4.72	-

^aThe constant of the involved polymorph.

The data in **Table S1** have been obtained in the following way. The vapour pressures of *E*-broparestrol forms I and II can be calculated using the Clausius-Clapeyron equation:

$$\ln P = -\frac{\Delta H}{RT} + B$$

in which *P* is the vapour pressure of a condensed phase (liquid or forms I or II), ΔH the enthalpy of vaporization for the liquid or the enthalpy of sublimation for a solid in J mol⁻¹, *R* = 8.314472 J mol⁻¹ K⁻¹ is the gas constant, *T* is the absolute temperature, and *B* is a constant.

The PhysChem Module of the ACD/Labs Percepta Platform predicts a boiling point of 428.4 °C (701.55 K) and an enthalpy of vaporization of 65.7 kJ mol^{-1.®} Using these values and the fact that the vapour pressure of the liquid at the boiling point is 1×10^5 Pa, the temperature dependence of the vapour pressure is given by the following Clausius-Clapeyron equation:

Ln(P/Pa) = -(7901.88/(T/K)) + 22.78.

Since the vapour pressure of the liquid and that of the solids are equal at their respective melting triple points, the vapour pressure dependence on the temperature of each polymorph can be calculated. Using Hess' law, the sublimation enthalpy $\Delta_{sub}H_i$ (i = I or II) is obtained by the sum of the melting enthalpy $\Delta_{fus}H_i$ and the vaporization enthalpy $\Delta_{vap}H$. Thus, the sublimation enthalpies are $\Delta_{sub}H_I = 94546.81$ J mol⁻¹ and $\Delta_{sub}H_{II} = 98732$ J mol⁻¹.

The Clausius-Clapeyron equation above allows to calculate the vapour pressures at the temperatures of fusion approximating the triple points *i*-liquid-vapour and from these pressures the constants $B_{sub,i}$ can be obtained, hence leading to Clausius-Clapeyron equations for the two solid forms I_E and II_E. At triple point I-II-vapor, the vapour pressures of forms I and II are equal. Setting the equations equal of the I-vapour and II-vapour two-phase equilibria, the temperature and the pressure of the I-II vapour equilibrium are found to be 376.6 K and 4.7 Pa, respectively. These results have been compiled in **Table S1**.

[®] ACD/Labs Percepta Platform-PhysChem Module.

https://www.acdlabs.com/products/percepta-platform/

Table S2. Crystal data and structure refinement of E-broparestrol form I_E

Crystal data

 $C_{22}H_{19}Br$ $M_r = 363.29$ Monoclinic, $P2_1/c$ a = 5.6079(4) Å b = 16.1206(10) Å c = 20.250(1) Å $\beta = 100.569(4)^{\circ}$ $V = 1799.6(2) Å^3$ Z = 4 $D_x = 1.26 \text{ g cm}^{-3}$ Cu $K\alpha_1$ radiation $\mu = 0.095 \text{ mm}^{-1}$ T = 293 KSpecimen shape: cylinder 10×0.5 mm

Data collection

Diffractometer INEL CPS 120 Specimen mounting: Lindemann glass capillary 0.5 mm Specimen mounted in transmission mode Scan method: curved detector Absorption correction: none $2\theta_{\min} = 4.0^{\circ}, 2\theta_{\max} = 75.0^{\circ}$ Increment in $2\theta = 0.029^{\circ}$

Refinement

Refinement on I_{net} $R_p = 6.300$ $R_{wp} = 8.786$ $R_{exp} = 2.033$ $\chi^2 = 4.322$ Profile function: modified Thompson-Cox-Hastings pseudo-Voigt 952 reflections 177 parameters 119 restraints H-atom parameters restrained Weighting scheme based on measured s.u.'s $w = 1/\sigma(Y_{obs})^2$ $(\Delta/\sigma)_{max} = 0.001$

			(2)5 K		
Atom lal	belling ification	$x(\sigma)$	$y(\sigma)$	$z(\sigma)$	$B_{\rm iso}(\sigma)/{\rm \AA}^2$
C1	С	-0.76721(75)	0.37712(23)	0.32992(19)	11.00(22)
C2	С	-0.55050(89)	0.33322(32)	0.37131(18)	11.00(22)
C3	С	-0.80248(61)	0.46598(25)	0.34852(16)	11.00(22)
C4	С	-0.79320(65)	0.37081(19)	0.25392(18)	11.00(22)
Br5	Br	-0.53532(80)	0.35105(27)	0.46697(19)	11.00(22)
C6	С	-0.53934(63)	0.24137(24)	0.35771(16)	11.00(22)
C7	С	-0.97880(65)	0.48733(24)	0.38716(14)	11.00(22)
C8	С	-0.66458(66)	0.52948(24)	0.32725(17)	11.00(22)
С9	С	-0.61230(66)	0.32991(19)	0.22638(19)	11.00(22)
C10	С	-0.99072(67)	0.40370(19)	0.20806(19)	11.00(22)
C11	С	-0.32939(65)	0.19419(23)	0.38267(15)	11.00(22)
C12	С	-0.74129(66)	0.20076(24)	0.31923(14)	11.00(22)
C13	С	-1.01525(67)	0.56946(24)	0.40398(17)	11.00(22)
H14	Н	-1.0900(33)	0.4390(10)	0.40490(87)	13.20(26)
C15	С	-0.69971(65)	0.61059(24)	0.34373(16)	11.00(22)
H16	Н	-0.5257(30)	0.51629(98)	0.29747(91)	13.20(26)
C17	С	-0.62797(66)	0.32230(19)	0.15746(19)	11.00(22)
H18	Н	-0.4558(29)	0.30378(99)	0.25973(81)	13.20(26)
C19	С	-1.00394(66)	0.39566(16)	0.13907(19)	11.00(22)
H20	Н	-1.1379(31)	0.43609(96)	0.22576(83)	13.20(26)
C21	С	-0.32103(67)	0.11081(23)	0.37003(14)	11.00(22)
H22	Н	-0.1674(30)	0.2227(10)	0.41246(96)	13.20(26)
C23	С	-0.73292(66)	0.11649(24)	0.30642(15)	11.00(22)
H24	Н	-0.9090(32)	0.2345(10)	0.29840(95)	13.20(26)
C25	С	-0.87571(61)	0.63114(24)	0.38232(15)	11.00(22)
H26	Н	-1.1529(32)	0.5854(10)	0.43371(89)	13.20(26)
H27	Н	-0.5870(35)	0.6583(11)	0.32616(90)	13.20(26)
C28	С	-0.82167(62)	0.35466(18)	0.11300(18)	11.00(22)
H29	Н	-0.4889(39)	0.29090(97)	0.13614(94)	13.20(26)
H30	Н	-1.1583(33)	0.4214(10)	0.10377(86)	13.20(26)
C31	С	-0.51904(62)	0.07225(24)	0.33255(14)	11.00(22)
H32	Н	-0.1600(30)	0.0739(10)	0.38890(84)	13.20(26)
H33	Н	-0.8927(33)	0.0855(11)	0.27617(82)	13.20(26)
H34	Н	-0.9049(34)	0.69572(98)	0.39531(96)	13.20(26)
C35	С	-0.82953(64)	0.34443(21)	0.03887(18)	11.00(22)
H36	Н	-0.5037(34)	0.00619(98)	0.3243(10)	13.20(26)
C37	С	-0.70733(67)	0.41756(24)	0.01226(18)	11.00(22)
H38	Н	-0.7389(32)	0.28674(98)	0.02860(80)	13.20(26)
H39	Н	-1.0177(32)	0.3396(10)	0.01231(74)	13.20(26)
H40	Н	-0.7160(32)	0.4133(10)	-0.04259(89)	13.20(26)
H41	Н	-0.5158(37)	0.42045(95)	0.03630(92)	13.20(26)
H42	Н	-0.7932(26)	0.4759(14)	0.0231(11)	13.20(26)

Table S3. Atom coordinates and equivalent displacement parameters B_{iso} in the *E*-broparestrol high-temperature form I_E at 293 K^a

Atom1	Atom2	Length(σ)/Å	Atom1	Atom2	Length(σ)/Å
C1	C2	1.519(6)	C12	H24	1.10(2)
C1	С3	1.503(5)	C13	C25	1.385(5)
C1	C4	1.522(5)	C13	H26	1.09(2)
C2	Br5	1.945(5)	C15	C25	1.406(5)
C2	С6	1.509(6)	C15	H27	1.10(2)
C3	C7	1.411(5)	C17	C28	1.380(5)
C3	C8	1.398(5)	C17	H29	1.08(2)
C4	С9	1.408(5)	C19	C28	1.399(5)
C4	C10	1.412(5)	C19	H30	1.10(2)
C6	C11	1.415(5)	C21	C31	1.373(5)
C6	C12	1.412(5)	C21	H32	1.09(2)
C7	C13	1.391(5)	C23	C31	1.412(5)
C7	H14	1.10(2)	C23	H33	1.11(2)
C8	C15	1.373(5)	C25	H34	1.09(2)
C8	H16	1.09(2)	C28	C35	1.503(5)
С9	C17	1.388(5)	C31	H36	1.08(2)
C9	H18	1.09(2)	C35	C37	1.512(5)
C10	C19	1.391(5)	C35	H38	1.10(2)
C10	H20	1.09(2)	C35	H39	1.10(2)
C11	C21	1.371(5)	C37	H40	1.10(2)
C11	H22	1.10(2)	C37	H41	1.10(2)
C12	C23	1.385(5)	C37	H42	1.10(2)

Table S4. Bond lengths in *E*-broparestrol form I_{E^a}

Table S5. Bond angles A-O-B in *E*-broparestrol form $I_{E^{a,b}}$

Atom A	Atom 0	Atom B	Angle(σ)/°	Atom A	Atom 0	Atom B	Angle(σ)/°
C2	C1	C3	115.7(3)	C3	C8	C15	120.7(3)
C2	C1	C4	116.4(3)	C4	C9	C17	121.5(3)
C3	C1	C4	108.9(3)	C4	C10	C19	121.1(3)
C1	C2	Br5	111.4(3)	C6	C11	C21	121.0(3)
C1	C2	C6	114.3(4)	C6	C12	C23	120.4(3)
Br5	C2	C6	109.3(3)	C7	C13	C25	119.2(3)
C1	C3	C7	120.6(3)	C8	C15	C25	120.4(3)
C1	С3	C8	121.0(3)	C9	C17	C28	121.3(3)
C7	С3	C8	118.4(3)	C10	C19	C28	121.0(3)
C1	C4	С9	119.3(3)	C11	C21	C31	119.7(3)
C1	C4	C10	123.9(3)	C12	C23	C31	118.7(3)
С9	C4	C10	116.8(3)	C13	C25	C15	120.1(3)
C2	C6	C11	121.5(3)	C17	C28	C19	118.3(3)
C2	C6	C12	120.0(3)	C17	C28	C35	119.1(3)
C11	C6	C12	118.6(3)	C19	C28	C35	122.6(3)
C3	C7	C13	121.1(3)	C21	C31	C23	121.6(3)

^aesd's in parentheses ^bBond angles involving H-atoms not listed

Atom	Atom	Atom	Atom	Torsion	Atom	Atom	Atom	Atom	Torsion
1	2	3	4	angle(σ)/°	1	2	3	4	angle(σ)/°
C3	C1	C2	Br5	47.6(4)	C1	C4	C10	C19	-179.9(3)
C3	C1	C2	C6	172.2(3)	C9	C4	C10	C19	0.0(5)
C4	C1	C2	Br5	177.5(3)	C2	C6	C11	C21	-180.0(4)
C4	C1	C2	C6	-57.9(5)	C12	C6	C11	C21	-0.1(5)
C2	C1	С3	C7	-101.7(4)	C2	C6	C12	C23	180.0(3)
C2	C1	С3	C8	79.2(5)	C11	C6	C12	C23	0.1(5)
C4	C1	С3	C7	124.8(4)	C3	C7	C13	C25	0.0(5)
C4	C1	С3	C8	-54.2(4)	C3	C8	C15	C25	-0.1(5)
C2	C1	C4	С9	-3.7(5)	C4	С9	C17	C28	0.1(5)
C2	C1	C4	C10	176.2(4)	C4	C10	C19	C28	0.0(5)
C3	C1	C4	С9	129.4(3)	C6	C11	C21	C31	0.0(5)
C3	C1	C4	C10	-50.7(5)	C6	C12	C23	C31	-0.0(5)
C1	C2	C6	C11	168.6(3)	C7	C13	C25	C15	0.1(5)
C1	C2	C6	C12	-11.4(5)	C8	C15	C25	C13	-0.0(5)
Br5	C2	C6	C11	-65.8(4)	C9	C17	C28	C19	-0.1(5)
Br5	C2	C6	C12	114.3(4)	C9	C17	C28	C35	-179.9(3)
C1	C3	C7	C13	-179.2(3)	C10	C19	C28	C17	0.0(5)
C8	C3	C7	C13	-0.1(5)	C10	C19	C28	C35	179.8(3)
C1	C3	C8	C15	179.2(3)	C11	C21	C31	C23	0.0(5)
C7	C3	C8	C15	0.1(5)	C12	C23	C31	C21	-0.0(5)
C1	C4	С9	C17	179.8(3)	C17	C28	C35	C37	-90.6(4)
C10	C4	C9	C17	-0.1(5)	C19	C28	C35	C37	89.6(4)

Table S6. Torsion angles in *E*-broparestrol form $I_{E^{a,b}}$

^bTorsion angles involving H-atom not listed

Table S7. Lattice parameters, volume of the asymmetric unit (Z = 4) and specific volume of *E*-broparestrol form I_E as a function of temperature^a

<i>T /</i> K	a(σ) /Å	<i>b</i> (σ) /Å	c(σ) /Å	$\beta(\sigma)$ /°	<i>V/Z</i> (σ) /(Å ³)	<i>ν</i> (<i>σ</i>) /cm ³ g ⁻¹
150	5.546(2)	16.032(3)	20.057(3)	100.17(3)	438.8(2)	0.7272(3)
180	5.560(2)	16.041(3)	20.097(3)	100.20(2)	441.1(2)	0.7308(3)
230	5.575(2)	16.068(3)	20.174(3)	100.29(3)	444.6(2)	0.7367(3)
250	5.584(2)	16.080(2)	20.204(3)	100.33(2)	446.2(2)	0.7393(3)
270	5.600(2)	16.093(2)	20.241(3)	100.45(3)	448.5(2)	0.7431(3)
290	5.609(2)	16.110(2)	20.278(3)	100.48(3)	450.5(2)	0.7464(3)
310	5.620(2)	16.122(2)	20.311(3)	100.57(2)	452.3(2)	0.7494(3)
330	5.627(2)	16.128(2)	20.349(3)	100.75(2)	453.6(2)	0.7516(3)
350	5.643(2)	16.144(2)	20.387(4)	100.89(3)	455.9(2)	0.7555(3)
360	5.659(2)	16.145(2)	20.401(4)	101.02(4)	457.4(2)	0.7578(4)
370	5.665(2)	16.150(2)	20.418(4)	101.15(3)	458.2(2)	0.7592(3)
375	5.675(2)	16.152(2)	20.420(4)	101.19(3)	459.0(2)	0.7605(3)
380	5.682(2)	16.151(2)	20.422(4)	101.18(3)	459.6(2)	0.7616(3)

^aesd's in parentheses

	ar obti of forming us a function of temperature								
T/K	a(σ) /Å	$b(\sigma)$ /Å	с(<i>о</i>) /Å	$\beta(\sigma)/^{\circ}$	<i>V/Z</i> (σ) /(ų)	$v(\sigma)/\mathrm{cm}^{3}\mathrm{g}^{-1}$			
130	8.477(1)	35.490(6)	5.681(1)	86.14(1)	426.3(1)	0.7063(2)			
180	8.503(1)	35.583(5)	5.702(1)	86.12(1)	430.3(1)	0.7130(2)			
230	8.527(1)	35.680(5)	5.722(1)	86.10(1)	434.2(1)	0.7195(2)			
250	8.537(1)	35.71(5)	5.731(1)	86.09(1)	435.9(1)	0.72223(15)			
270	8.546(1)	35.761(5)	5.739(1)	86.08(1)	437.5(1)	0.72490(15)			
290	8.557(1)	35.808(5)	5.748(1)	86.08(1)	439.5(1)	0.72790(15)			
296.7	8.562(1)	35.840(5)	5.752(1)	86.07(1)	440.3(1)	0.72952(15)			
310	8.570(1)	35.872(5)	5.759(1)	86.08(1)	441.5(1)	0.73162(15)			
330	8.580(5)	35.921(5)	5.769(1)	86.09(1)	443.4(1)	0.73471(17)			
350	8.586(1)	35.977(5)	5.783(1)	86.08(1)	445.6(1)	0.73831(17)			
360	8.591(1)	36.009(5)	5.789(1)	86.08(1)	446.7(1)	0.74016(17)			
370	8.597(1)	36.052(5)	5.799(1)	86.10(1)	448.3(1)	0.74283(17)			
375	8.595(1)	36.064(5)	5.801(1)	86.09(1)	448.5(1)	0.7432(2)			
380	8.600(1)	36.076(6)	5.805(1)	86.08(1)	449.2(1)	0.7443(2)			

Table S8. Lattice parameters, volume of the asymmetric unit (Z = 4) and specific volume of *E*-broparestrol form II_{*E*} as a function of temperature^a

Table S9. Lattice parameters, volume of the asymmetric unit (Z = 2) and specific volume of *Z*-broparestrol as a function of temperature^a

Т/К	$a(\sigma)/Å$	<i>b</i> (σ) /Å	<i>c</i> (<i>σ</i>) /Å	$\alpha(\sigma) / ^{\circ}$	$\beta(\sigma)/^{\circ}$	γ(σ) /°	$V/Z(\sigma)/(Å^3)$	$v(\sigma)$ /cm ³ g ⁻¹
130	8.020(1)	9.390(2)	11.360(2)	91.711(15)	88.52(1)	90.588(15)	427.40(10)	0.7082(2)
180	8.040(2)	9.411(2)	11.416(2)	91.676(15)	88.80(1)	90.642(15)	431.57(15)	0.7151(2)
230	8.058(2)	9.428(2)	11.475(2)	91.613(15)	89.10(1)	90.686(20)	435.63(15)	0.7218(2)
250	8.070(2)	9.440(2)	11.505(2)	91.574(15)	89.22(1)	90.707(15)	437.97(15)	0.7257(2)
270	8.079(2)	9.451(2)	11.535(2)	91.547(15)	89.37(1)	90.743(15)	440.18(15)	0.7294(2)
292.5	8.090(2)	9.459(2)	11.564(2)	91.476(15)	89.53(1)	90.794(15)	442.25(15)	0.7328(2)
310	8.098(2)	9.469(2)	11.588(2)	91.465(15)	89.63(1)	90.808(15)	444.12(15)	0.7359(2)
330	8.110(1)	9.480(2)	11.621(2)	91.412(15)	89.75(1)	90.855(15)	446.61(15)	0.7400(2)
350	8.122(1)	9.491(2)	11.652(2)	91.354(15)	89.89(2)	90.891(15)	448.95(15)	0.7439(2)
360	8.130(1)	9.502(2)	11.675(2)	91.291(15)	89.95(2)	90.950(15)	450.81(15)	0.7470(2)
370	8.139(2)	9.513(2)	11.695(2)	91.251(15)	90.02(2)	90.978(15)	452.56(15)	0.7499(3)
375	8.146(2)	9.51(2)	11.709(2)	91.241(15)	90.09(1)	90.963(15)	453.44(15)	0.7513(2)
a	esd's in par	rentheses		-		-	•	

x(Z)	T _{eutexy} ε ₁ /K	T _{liquidus1} /K Experiment al	T _{liquidus1} /K Schröder eq.	$\Delta H \epsilon_1 / J g^{-1}$	Total enthalpy (eutexy + liquidus) /J g ⁻¹
1.00	-	-	385.5	0.00	-
0.96	363.0	385.0	384.0	10.69	87.45
0.85	363.0	383.0	379.5	23.06	87.01
0.74	362.0	379.0	374.6	57.47	88.99
0.61	363.0	374.0	367.9	74.46	89.14
0.49	363.0	367.0	360.6	86.42	92.96
0.47	364.0	367.0	359.3		88.98
0.37	363.0	368.0	368.8	88.00	91.00
0.22	363.0	375.0	376.3	60.79	86.74
0.10	363.0	381.0	381.5	26.55	89.93
0.00	-	385.4	385.4	0.00	-
Mean $T(\sigma)$	363.0(0.5)				

Table S10. DSC data of physical mixtures of the *E* and *Z* isomers of broparestrol as a function of the mole fraction of $Z(x_z)$ after annealing at 323 K for a week^a

^aOnset temperature and enthalpy of the eutectic equilibrium, ε_1 , the temperature of the DSC peak maximum for the liquidus curves and the total enthalpy of the eutectic and the liquidus.

Table S11. DSC data of melted E- and Z-isomer of broparestrol left to recrystallise at room
temperature for three years ^a

XZ	Teutexy &2 /K	T _{liquidus2} /K Experiment al	<i>T</i> _{liquidus2} /K Schröder eq.	$\Delta H \epsilon_2 / J g^{-1}$	Total enthalpy (eutexy + liquidus) /J g ^{.1}
1	-	385.5	385.5	0.00	
0.96	356.5	383.5	384.0	5.224	88.10
0.85	356.0	381.0	379.5	13.98	82.98
0.74	358.0	375.0	374.6	36.78	80.85
0.74	358.0	375.0	374.6	34.60	76.69
0.49	359.0	363.0	360.7	77.47	83.62
0.47	359.0	_b	359.3	80.08	82.28
0.444 ^c	358.1	358.1	357.5	82.94	82.94
0.444 ^c			357.5		
0.37	358.0	365.5	367.8	70.98	83.94
0.22	359.0	374.0	376.3	36.89	76.44
0.10	359.5	380.0	382.2	19.13	88.99
0.00	-	386.7	386.7	0.00	-
Mean $T(\sigma)$	358.1(1.1)				

^a Onset temperature and enthalpy of the eutectic equilibrium, ϵ_2 , the temperature of the DSC peak maximum for the liquidus curves and the total enthalpy of the eutectic and the liquidus.

^b The temperature of the liquidus could not be determined because the peak was convoluted with that of the eutectic event.

^c Mole fraction of the eutectic liquid obtained from the Tammann plot.

uuys					
XZ	Teutexy83 /K	Tliquidus3 /K Experimental	Tliquidus3 /K Schröder eq	$\Delta H_{ m \epsilon 3}$ /J g ⁻¹	Total enthalpy (from eutexy to isotropic liquid) /I g ⁻¹
1.00		385.5	385.5	0.00	
0.96	338.4	384.9	384.0	3.40	67.83 ^b
0.92	337.7	383.0	382.4	10.80	64.43 ^b
0.85	339.6	383.1	379.5	11.85	-
0.795	340.0	348.4	377.1	39.96	61.64
0.74	340.5	347.1	374.6	45.62	59.37 °
0.74	340.5	347.9		46.86	58.78 ^c
0.74	340.4	346.4	374.6	47.42	60.72 °
0.684	340.0	340.0		58.52	58.52 ^d
0.65	340.4	346.0	346.2	58.63	59.58
0.61	341.0	348.5	350.0	50.66	60.00
0.49	340.8	360.2	359.7	44.49	66.67
0.47	341.7	360.3	361.1	35.90	69.05
0.47	341.6	361.0	361.1	39.25	64.58
0.37	341.5	366.5	367.8	32.15	69.48
0.37	339.8	366.0		31.50	68.39
0.326	340.2	369.3	370.4	25.53	71.12
0.22	340.6	376.3	376.3	12.07	61.00
0.176	339.6	377.5	378.5	9.215	64.89
0.10	340.6	382.0	382.2	0.143	64.04
0.03		386.0	385.4	-	71.04
0.0		386.7	386.7	0	
Mean $T(\sigma)$	340.2(1.1)				

Table S12. DSC data of melted *E*- and *Z*-isomer of broparestrol left to crystallize for several days^a

^a Onset temperature and enthalpy of the eutectic equilibrium, ε_3 , the temperature of the DSC peak maximum for the liquidus curves and the total enthalpy of the eutectic and the liquidus.

^b The exothermic part of the DSC curve was subtracted from the endothermic part.

^c Results of three measurements

^d Extrapolated using the Tammann plot in Figure S9c

FIGURES

Figure S1. (A) Experimental (a) and calculated (b, from the known crystal structure) powder Xray diffraction patterns of the as-received monoclinic *E*-broparestrol II_E and (B) from the triclinic *Z*-broparestrol I_Z .

Figure S2. Experimental (red) and fitted diffraction pattern black) of the new polymorph of *E*-broparestrol, I_E, with residuals (blue) and tick marks (black) for the peak positions

Figure S3. Powder X-ray diffraction patterns of *E*-broparestrol. (A) as-received monoclinic sample II_{E_r} (D) the new polymorph, I_{E_r} and (B and C) patterns obtained at room temperature soon after recrystallization from the melt, which correspond to mixtures of the known polymorph II_E (peaks marked by '°') and the new polymorph I_E (peaks marked by '*') in different ratios.

Figure S4a. Projection of the unit-cell of form I_E of *E*-broparestrol on the bc plane with black: carbon, pink: hydrogen, and brown: bromine

Figure S4b. Molecular structure and atom numbering of *E*-broparestrol form I_E; black: carbon, pink: hydrogen, brown: bromine.

Figure S5. Topological *P*-*T* phase diagram presenting the stability regions of form I_E (grey area) and of form I_E of *E*-broparestrol with triple points 1: I_E -liquid-vapour (stable), 2: II_E -liquid-vapour (metastable), 3: I_E -II $_E$ -liquid (stable), and 4: I_E -II $_E$ -vapour (stable) and two-phase equilibrium lines 1-4: I_E -vapour, 2-4: II_E -vapour, 1-3: I_E -liquid, 2-3: II_E -liquid, 3-4: I_E -II $_E$, and 1-2: liquid-vapour with solid lines: stable phase equilibria and dashed lines: metastable. Such a diagram is topologically the same as the *P*-*T* diagram for the dimorphism of elemental sulfur.

Figure S6a. Temperature-composition data for the *T*-*x* phase diagram involving the two isomers of broparestrol. The first series of DSC curves obtained with mixtures of form II_E and triclinic *Z*-broparestrol after annealing at 323 K for one week. *x*(*Z*) is the mole fraction of *Z*-broparestrol. A eutectic equilibrium ε_1 is observed at 363 K (onset).

Figure S6b. The Tammann plot of the eutectic equilibrium ε_1 (red and blue filled circles) observed at 363 K and the total endothermic effect obtained by summing over the eutexy and liquidus peaks (filled diamonds).

Figure S7a. Temperature-composition data for the *T*-*x* phase diagram involving the two isomers of broparestrol. The second series of DSC curves obtained with mixtures of form I_E and triclinic *Z*-broparestrol melted and then recrystallized during annealing for three years at room temperature. *x*(*Z*) is the mole fraction of *Z*-broparestrol. A eutectic equilibrium ε_2 is observed at 358.1 K (onset).

Figure S7b. The Tammann plot of the eutectic equilibrium ε_2 (red and blue filled circles) observed at 358.1 K and the total endothermic effect obtained by summing over the eutexy and liquidus peaks (filled diamonds).

Figure S8a. Temperature-composition data for the *T*-*x* phase diagram involving the two isomers of broparestrol. The third series of DSC curves obtained with mixtures of form I_E and triclinic *Z*-broparestrol melted and recrystallized for a few days at room temperature. x(Z) is the mole fraction of *Z*-broparestrol. A eutectic equilibrium ε_3 is observed at 340 K (onset) for most mixtures except for $x_Z = 0.03$.

Figure S8b. Close-ups from Figure S8a showing the exothermic recrystallization (above the dashed baseline) into the stable *Z*-isomer polymorph from metastable states in which the metastable polymorph of the *Z*-isomer plays a role.

Figure S8c. The Tammann plot of the eutectic equilibrium ε_3 (red and blue filled circles) observed at 340 K and the total endothermic effect obtained by summing over the eutexy and liquidus peaks (green and violet filled diamonds). The two lines cross at 0.684 with an enthalpy of 58.52 J g⁻¹. Together with the eutectic point (see values in bold in Table S12), the total enthalpies of the *Z*rich side were fitted to a straight line: $\Delta H = 35.828 + 32.279 x_Z$ ($r^2 = 0.92$). With this equation, a tentative value of 68.1 J g⁻¹ is found for the melting enthalpy of the metastable form of the *Z*isomer.

Figure S9. Close-up of the *E*-rich side of the ideal *T*-*x* phase diagram demonstrating the intersection of the two ideal liquidus curves in equilibrium with forms I_E (red) and form II_E (blue) at about 377 K. The violet horizontal line corresponds to the invariant 3-phase equilibrium involving ideal pure polymorphs I_E , II_E and the liquid phase. This line separates two 2-phase regions: I_E + liquid (light-red area) and II_E + liquid (light-blue area).

Figure S10. Qualitative drawing of the *E*-rich side of the *T*-*x* phase diagram between *E*- and *Z*-isomers of broparestrol showing the magnified extent of the limited solid solutions of form I_E (blue area) and form II_E (red area). The green area corresponds to the *T*-*x* range where the two polymorphs as solid solutions are in equilibrium with each other.

1: melting temperature of pure form I_E , 2: temperature of transition from pure form I_E to pure form I_E on heating, line 3-4-5: metatectic equilibrium between solid solution form II_E (point 3), solid solution form I_E (point 4) and the metatectic liquid (point 5), line 6-7: part of the eutectic equilibrium between solid solution form II_E (point 6), form I_Z (not shown) and the eutectic liquid (point 7). No x_Z values have been provided as the graph is qualitative and the exact concentrations of the solid solutions in equilibrium with the liquid are not known.

EQUATIONS

Tammann plot fits for the eutectic ε_1 :

Z-rich side: $\Delta H_{\varepsilon_{1-Z}}$ /Jg⁻¹ = 178.39 – 175.97 × x_Z (r^2 = 0.97) (S1a)

E-rich side:
$$\Delta H_{\varepsilon_{1-E}}$$
 /Jg⁻¹= 2.3521 + 240.48 × x_Z (r^2 = 0.99) (S1b)

Tammann plot fits for the eutectic ε_2 :

Z-rich side: $\Delta H_{\varepsilon 2-Z}$ /Jg⁻¹= 151.84 – 155.19 × x_Z (r^2 = 0.996) (S2a)

E-rich side:
$$\Delta H_{\varepsilon^2 - E} / Jg^{-1} = -0.77996 + 188.58 \times x_Z (r^2 = 0.996)$$
 (S2b)

Tammann plot fits for the eutectic ε_3 :

Z-rich side: $\Delta H_{\epsilon_3 - Z} / \text{Jg}^{-1} = 190.26 - 192.64 \times x_Z (r^2 = 0.991)$ (S3a)

E-rich side: $\Delta H_{\epsilon 3-E}$ /Jg⁻¹= -3.2623 + 90.942 × x_Z (r^2 = 0.988) (S3b)

Empirical equations for the experimental and ideal liquidus curves of the stable *T-x* phase diagram involving the two isomers of broparestrol

In **Figure 10**, the stable *T*-*x* phase diagram has been drawn using experimental liquidus curves obtained with three series of experiments:

Curve 1: the *E*-rich side liquidus from the first measurement series (see **Table S10** for the liquidus in equilibrium with form II_{*E*}),

Curve 2: the *E*-rich side liquidus curve from the third measurement series (see **Table S12** for the compositions of the liquidus in equilibrium with form I_E), and

Curve 3: the *Z*-sided liquidus curve from the second measurement series (see **Table S11** for the compositions of the liquidus in equilibrium with form I_{*Z*}).

These experimental curves were fitted to empirical quadratic functions:

Curve 1 – liquidus II _E : T/K = 385.26 – 38.447 × x_Z – 29.71 × x_Z^2	$(r^2 = 0.995)$	(S4),
Curve 2 – liquidus I _E : <i>T</i> /K = 386.49 – 37.286 × x_Z – 40.72 × x_Z^2	(<i>r</i> ² = 0.995)	(S5),
Curve 3 – liquidus I _z : <i>T</i> /K = 323.46 + 94.313 × x_z – 32.511 × x_z^2	$(r^2 = 0.995)$	(S6).

By setting the equations of curves 1 and 2 equal (**Eqs. S4** and **S5**), the composition of the liquid of the horizontal equilibrium curve I_{E} -II_E-liquid is $x_Z = 0.391$ at a temperature $T(I_E$ -II_E-liquid) = 365.7 K (see horizontal line 3-4-5 in **Figure S10**).

By setting the equations of curves 1 and 3 equal (**Eqs. S4** and **S6**), the intersection -which corresponds to the stable eutectic liquid- is found at $x_z = 0.470$ and $T\varepsilon = 360.6$ K (see horizontal line 6-7 in **Figure S10**).