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FROM NASH TO COURNOT-NASH VIA Γ CONVERGENCE

JOÃO MIGUEL MACHADO, GUILHERME MAZANTI, AND LAURENT PFEIFFER

Abstract. In this work we study the question of when will Nash equilibria of N -player
games converge to a suitable notion of equilibrium of a game with a continuum of players.
This is a central question in Mean Field Games theory, but instead we consider the notion
of Cournot-Nash equilibrium. When such a game has a so-called potential structure, we
give a complete characterization of equilibria as the stationary points of a functional,
which we call a potential function. In particular, its minimizers are equilibria. In the
sequel, we focus on the case that the players interact pair-wise; in this case we show
that the original sequence of N -player games also admit a potential structure and prove
that their corresponding potential functions converge in the sense of Γ-convergence to
the potential function of the game with a continuum of players. This allows us to answer
positively to the question of convergence of equilibria.
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1. Introduction

The goal of this work is to consider a class of N -player games with pairwise interactions
and rigorously show that Nash equilibria of this class of games converge, as N goes to
infinity, to Cournot-Nash equilibria (see Definition 1.1 below) of a game with a continuum
of players.

Let X and Y be Polish spaces, that is separable and metrizable, representing the space
of types of players and of admissible strategies. Given a tuple (xi)Ni=1 ⊂ X , where xi
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corresponds to the type of player i, the goal of each player is to minimize a cost depending
on their own type and the mean pair-wise interaction with other players. In the described
situation, player i seeks to

(1) minimize
yi∈Y

gN (yi; y−i)
def.= c(xi, yi) + L(yi) + 2

N

∑
i 6=j

H(yj , yi),

where, as standard notation in game theory, y−i = (yj)j 6=i. For the game in mixed
strategies, we replace the Y with P(Y), the space of Radon probability measures over Y,
and each player seeks to

(2) minimize
νi∈P(Y)

gN (νi; ν−i)
def.=
∫
Y

(c(xi, yi) + L(yi)) dνi(yi) + 2
N

∑
i 6=j

∫
Y×Y

Hdνj ⊗ νi.

Such types of N -player games become rapidly intractable as N grows, hence one hopes
that a suitable notion of equilibrium in a setting with infinitely many players will provide
information for the behavior of equilibria when N is large but still finite. In many eco-
nomic and social scenarios, the number of agents acting in the game reaches this regime
of intractability, hence it is of great theoretical and practical importance to be able to
rigorously describe the model with infinitely many players as the limit of a sequence of
N -players games.

In the category of differential games, i.e. when players are constrained by controlled
dynamics and hence solve an optimal control problem each, the notion of equilibrium in
a setting with a continuum of players has been established by Larsy and Lions as Mean
Field Games in their seminal papers [35–37]. In their formulation, an equilibrium becomes
the solution of a pair of coupled PDEs, one describing the evolution of the probability
distribution of players and another describing the optimality conditions of the underlying
optimal control problem solved by each player. Although the convergence question was
one of the primary motivations since the inception of the Mean Field Games theory in the
lectures of Pierre-Louis Lions at Collège de France, see also the notes of Cardaliaguet [13],
we still do not have a complete answer to this question.

On the other hand, the notion of games with a continuum of players is much older and
has been studied in the economics literature since the 60’s by Aumann [5, 6]. Although
Aumann formulated his notion of equilibrium with preference relations, as was noted
in [39], an equivalent way of defining equilibria in the continuous setting is to consider
a cost function, indexed by the player and depending on the collective distribution of
plays. The game then consists of finding an equilibrium between each player trying to
minimize the cost despite the effects of the collective distribution. In [45], Schmeidler was
interested in a similar model with a continuum of players, but more specifically he wanted
to obtain existence of equilibria in pure strategies. He described a profile of strategies as a
measurable function from the space of players to the space of admissible strategies. Later
on, this notion of equilibrium was relaxed, for instance in [29, 39], defining equilibria as
probability measures over the space of admissible strategies, introducing the notion that
is now known as Cournot-Nash equilibrium, see Definition 1.1 below.

This relaxation also played an important part in the development of the optimal trans-
portation problem, described as follows: given two Polish spaces (X , dX ) and (Y, dY),
a pair of Borel probability measures µ ∈ P(X ), ν ∈ P(Y) and a transportation cost
c : X × Y → R, one seeks to minimize the following

(3) Wc(µ, ν) def.= inf
T]µ=ν

∫
X
c(x, T (x))dµ = min

γ∈Π(µ,ν)

∫
X×Y

c(x, y)dγ.

The infimum on the left is known as Monge’s formulation [40] and is taken over all mea-
surable maps T that transport µ to ν, in the sense that for all measurable sets B ⊂ Y it
holds that T]µ(B) def.= µ(T−1(B)) = ν(B), where T]µ is called the push-forward measure.
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The minimum on the right side is called Kantorovitch formulation [33], which is taken
among all couplings of µ and ν,

(4) Π(µ, ν) def.= {γ ∈P(X × Y) : (πX )]γ = µ, (πY)]γ = ν} ,
that is the probability measures in the product space whose marginals are µ and ν.

Back to our interpretation from games (1)(2), where X is the space of types of players,
let µ ∈P(X ) be a fixed distribution of players and Y is the space admissible strategies for
said players, with distribution given by ν ∈ P(Y). A coupling γ ∈ Π(µ, ν) now becomes
the joint distribution of players and strategies. In other words, given A × B ⊂ X × Y,
the quantity γ(A × B) represents the probability that a player with type in A chooses a
strategy in B.

Given a function Φ : X × Y ×P(Y) → R ∪ {+∞}, let Φ(x, y, ν) denote the cost of a
player of type x to choose the strategy y, in a mean field of strategies represented by the
distribution ν, we obtain the notion of Cournot-Nash equilibrium.

Definition 1.1. A probability measure γ ∈ Π(µ, ν) is a Cournot-Nash equilibrium for the
game referent to the cost Φ : X × Y ×P(Y) if it satisfies the equilibrium condition

(5) γ

({
(x, y) ∈ X × Y : y ∈ argmin

y′∈Y
Φ(x, y′, ν)

})
= 1,

it is called an equilibrium of finite social cost if

(6)
∫
X×Y

Φ(x, y, ν)dγ < +∞.

An equilibrium γ is called pure if it can be written as γ = (id, T )]µ, where T : X → Y is
a measurable map.

Results guaranteeing the existence of equilibria have been established with fixed point
methods in the above-mentioned works. This approach relies strongly on the continuity
of the cost function. In [9], whenever Φ has a potential structure, i.e. it can be written as

(7) Φ(x, y, ν) = c(x, y) + δE
δν

[ν](y),

the sum of an individual continuous cost c(x, y) and the first variation of a functional E ,
Blanchet and Carlier showed that if γ ∈ Π(µ, ν) is an optimal transportation plan for the
cost c and
(8) ν ∈ argmin

ν′∈P(Y)
Wc(µ, ν ′) + E(ν),

then γ is a Cournot-Nash equilibrium in the sense of Definition 1.1. The advantage of their
approach is twofold: firstly, as their proof of existence is of variational nature it provides
a natural approach to compute equilibria numerically, as done in [8,9], see also [10] for an
approach using entropic regularization of the OT term. The characterization via optimal
transport also gives information about the existence of pure Cournot-Nash equilibria,
the original motivation of Schmeidler, that is at first glance abandoned when we define
equilibria as couplings instead of maps. Since equilibria are described as optimal solutions
to an optimal transport problem with first marginal given by µ, one can then use the
well established conditions from OT to conclude that equilibria are pure, under suitable
assumptions on µ and c, see for instance [16,27] or the recent monograph [43].

It is worth noting that definition 1.1 deviates from the literature, for instance from the
one from [9], as we also require the finite social cost condition. It is not restrictive to
the analysis from [9],where the cost c is assumed continuous and the underlying spaces
compact, so that (6) holds trivially. In economic modeling we want to take into account
that not all strategies are accessible to all types of individuals. Richer individuals have
access to better education, health care and financial products and services. On the other
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hand, it is not reasonable that they benefit from governmental aids. For such reasons it is
pertinent to allow c(x, y) to be +∞ to model the fact that not all strategies are attainable
for all players, so that (6) is no longer trivially satisfied.

1.1. Contributions of this work. In this paragraph we describe more precisely the
setting and the results obtained in this work. Before passing to the convergence question,
we give a full characterization of Cournot-Nash equilibria for costs having the potential
structure from (7), where we assume only lower semi-continuity of c and E . Instead of
working with the energy ν 7→ Wc(µ, ν) + E(ν), used in [9], we use a lifted energy over the
space of transportation plans with fixed marginal µ, which is defined as

(9) J (γ) def.=


∫
X×Y

c(x, y)dγ + E(ν), if γ ∈ Π(µ, ν),

+∞ if γ 6∈Pµ(X × Y),

where

(10) Pµ(X × Y) def.=
{
γ ∈P(X × Y) : (πX )]γ = µ

}
.

We show in Theorem 3.3 that γ is a Cournot-Nash equilibrium if, and only if, it is an
extremal point of the energy J , see Definition 3.1. As the cost c can now be any l.s.c.
function, we cannot resort to the same techniques from [9], as the latter relies strongly on
the continuity of the cost to have uniqueness of solutions of the dual problem.

In the sequel we focus our attention to the case that E can be decomposed into a mean
individual and interaction energies as follows

(11) E(ν) = L(ν) +H(ν, ν), where L(ν) =
∫
Y
Ldν and H(ν, ν) =

∫
Y×Y

Hdν ⊗ ν,

where the first variation of the energy can be explicitly computed as

(12) δE
δν

(ν) = L+ 2
∫
Y
H(·, y)dν(y),

whenever H is symmetric. We make the following assumptions on these functionals
(H1) µ ∈P(X ) is atomless.
(H2) L : Y → R̄+ is lower semi-continuous and H : Y × Y → R̄+ is Borel measurable.
(H3) H is symmetric, i.e., H(y, ỹ) = H(ỹ, y) for every (y, ỹ) ∈ Y × Y.
(H4) The function Y×Y 3 (y, ỹ) 7→ L(y)+L(ỹ)+H(y, ỹ) ∈ R̄+ is lower semi-continuous.
(H5) L has compact level sets, i.e. for every κ > 0, the set {L ≤ κ} is compact.
Under these conditions the characterization of Cournot-Nash equilibria holds, and we

focus our attention to a stability result for the minimization of the energy J with respect
to the marginal µ. In particular, under additional assumption (H6), in Theorem 3.10 we
show a Lipschitz dependence of the value function for the 1-Wasserstein distance.

Once we understand the structure of the game with a continuum of players, we wish to
answer the following question:

Given a sample of players following a continuous distribution, when will a
sequence of Nash equilibria for the associated finite game will converge to
a Cournot-Nash equilibrium?

More precisely, let (Xi)i∈N be an i.i.d. sequence of random variables with law µ ∈P(X ),
representing a sample of players, and we let the N first elements represent the type of the
agents in our N -player game. Consider the probability space (Ω,F ,P) induced by the
sample (Xi)i∈N, so that Ω represents all the possible realizations of this sampling, F is
the σ-algebra generated by the random variables Xi and, P = µ⊗N. We can think of two
types of information structure for our game.
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Closed loop. The first and more natural one is a closed loop information structure, where
each player knows their type before choosing their strategy. In other words, given an event
ω = (Xi = xi)i∈N, each player seeks to

(13)

minimize
νi∈P(Y)

Jω,i(νi, ν−i)
def.=
∫
Y
c(xi, y)dνi +

∫
Y
Ldνi + 2

N

∑
j 6=i

∫
Y×Y

Hdνi ⊗ νj

=
∫
Y
c(xi, y)dνi + L(νi) + 2

N

∑
j 6=i
H(νi, νj).

Open loop. The second one is an open loop information structure, where each player
chooses a strategy before having the knowledge of the realization of the sample, in other
words each player chooses an optimal execution strategy conditioned to the realization
of their random variable. In this case, an admissible strategy is given by a measurable
family (νx)x∈X ⊂P(Y), which is equivalent to considering a random probability measure
ν ∈PΩ(Y), see Section 2.2 or [19,32], and the cost of player i becomes

(14) min
νi∈PΩ(Y)

JΩ,i (νi,ν−i)
def.= EP

∫
Y
c(Xi, y)dνXii + L(νXii ) + 2

N

∑
i 6=j
H
(
νXii , ν

Xj
j

) ,
where νi = νXii for some measurable family (νxi )x∈X .

In (13) and (14) we have excluded the cross terms H(νi, νi) for two reasons. From a
modeling perspective, it makes sense that agents do not interact with themselves, which is
exactly what this term represents. In addition, this formulation makes sense in pure strate-
gies even in the case where the pairwise interaction diverges in the diagonal,H(y, y) = +∞,
for instance the case of an electrostatic interaction, see e.g. example 3.7. If we had kept
the self-interaction in this case, any pure strategy would yield the player the value +∞.
We shall also consider the case that the pairwise interaction vanishes in the diagonal, i.e.
H(y, y) = 0. For the formulation in pure strategies this does not affect the cost func-
tions of each player, but in mixed plays the diagonal terms H(νi, νi) can be included, see
Proposition 4.9.

We prove in Propositions 4.9 and 4.2 that both formulations admit a potential func-
tional, that is a functional whose minimizers give Nash equilibria to their corresponding
game. In the closed loop case it is obtained by averaging the cost of each player

(15) Jω,N (γN ) def.=



∫
X×Y

cdγN + 1
N

N∑
i=1
L (νxi)

+ 1
N2

∑
j 6=i
H (νxi , νxj ) ,

if γN = 1
N

N∑
i=1

δxi ⊗ νxi ,

+∞, otherwise.

For the open loop formulation, a potential functional can be analogously defined as

(16) JΩ,N (γN ) def.=


EP [Jω,N (γN )] , if γN = 1

N

N∑
i=1

δXi ⊗ νx,

+∞, otherwise.
To prove the convergence of Nash to Cournot-Nash equilibria, we show that both fami-

lies of functionals converge in a variational sense to J , the potential functional that yields
Cournot-Nash equilibria. This variational sense is the so called notion of Γ-convergence,
proposed by De Giorgi (see Section 2.3 and the references therein) for its fundamental
property, which states that if a sequence of minimizers to some family of functionals that
Γ converge has a limit, then this limit is a minimizer of the Γ-limit. This convergence
combined with the potential structure of both the sequences of N -player games and that
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of Cournot-Nash equilibria, immediately implies the desired convergence of equilibria ob-
tained via the minimization of Jω,N and JΩ,N . With slightly stronger assumptions, that
H is continuous and bounded, we can prove that limits of any sequence of Nash equilib-
ria satisfy the stationarity condition of the functional J , which is equivalent to being a
Cournot-Nash equilibrium.

We start with the open loop case in Section 4.1, since the Γ-convergence of JΩ,N to J is
more straight forward. However, it has the additional difficulty of being the convergence
of a functional over random measures to a functional over deterministic inputs. This issue
is overcome with Lemma 4.3, by noticing that the stochasticity of the measures in the
domain of (16) is restricted to the first marginal, which is an empirical measure and so
converges with full probability to the common law of the sample. For the closed loop case,
one can only hope to have a convergence result with full probability, hence in Lemma 4.10
we show a preliminary result that gives a weaker criterion for Γ-convergence with full
probability. In the sequel, we show in Theorem 4.12, we conclude our convergence proof
using this Lemma.

1.2. Related work. In this paragraph we describe previous results from the literature
that are similar to ours thematically or in terms of the tools employed.

Convergence of Nash equilibria. As mentioned before, the convergence of Nash equilibria
to equilibria in a continuous setting is a reoccurring idea in the Game Theory literature.
Next we give a non-exhaustive list of advancements in this direction:

• in [15], the authors study the convergence question in the framework of MFGs by
means of the Master equation, an equation in the space of probability measures
that give global information on the optimality of the MFG system, which can then
be viewed as the limit of the equilibrium conditions of N -player differential games.
The analysis therein assumes that the coupling in the MFG system is non-local
and promotes enough regularization to pass the gradients of the value function in
the limit;
• the case of a local coupling was later treated in [14]. Both of these impressive
works have a very fine analysis of the PDE system associated with the games, and
therefore they concern the convergence of optimality conditions for the involved
games and not necessarily the convergence of equilibria, which is largely open.
This way, our approach allows to extract more information for a problem with
more structure;
• the study of convergence of Nash to Cournot-Nash equilibria was conducted in [7],
under the assumption that the sequence of functions defining the problem ΦN :
X × Y ×P(Y), as in Definition 1.1, are uniformy Lipschitz in the topology of
(dX , dY ,W1) and converge uniformly to Φ. While our problem enjoys the pairwise
(and also potential) structure, our regularity assumptions are minimal and allow
the treatment of many examples, c.f. subsection 1.3.

Γ-convergence for points clouds. Concerning the continuum limits of particle systems,
our methods are conceptually close to those of Serfaty in [46] for the study the limits of
particle systems under Coulomb type interactions. The major difference lies in the further
complexity that the first marginal constraint, which is natural to our problem to fix the
distribution of players µ (or µN in the N-players case), otherwise an elegant application of
the probabilistic method1 would give a simple proof of the Γ-convergence result as done
in the recent lecture notes [47].

Concerning the probabilistic side of our Γ-convergence results we must mention [28],
which concerns the continuum limit of the total variation functional defined on graphs

1Developed in the context of random graph theory [1]
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induced by i.i.d. point clouds. Given is a rescaled convolution kernel η and an i.i.d. sample
(Xi)i∈N with continuous law ρ,the authors prove that the functional

GTVN,εN (u) def.= 1
εN

1
N2 ηεN (Xi −Xj)|u(Xi)− u(Xj)|,

converges with full probability, in the sense of Γ-convergence, to the weighted total vari-
ation functional TV(u; ρ), which for u ∈ W 1,1 is given by TV(u; ρ) =

∫
|∇u|ρ2dx. Their

results are conditional to a good scaling of the parameter εN , so that εN � W∞(ρ, ρN ),
that is the maximal distance of the optimal matching problem between the empirical mea-
sure ρN of a sample with common distribution ρ, which can be precisely estimated as
N →∞ with full probability. This is the only probabilistic element in their analysis, and
afterwards their methods become purely deterministic.

1.3. Examples. In this paragraph we discuss multiple examples that are covered by our
model and their relevance in the literature.

Potential Cournot-Nash equilibria [9]. The first clear example is the model proposed by
Blanchet and Carlier in [9]. As discussed above, they proposed a variational principle to
find equilibria as in Definition 1.1 and gave plenty of examples of economic applications
for this model as the holiday choice and technology choice models. The distinctions from
ours is that, for them c had to be a continuous cost in order to give the variational
characterization of equilibria using the OT problem as in equation (8). We do not need
this assumption since we propose the lifting to the space of transportation plans γ ∈
Pµ(X × Y). This lift is purely technical and the characterization via the value of the
associated OT problem still holds in our case and is useful for numerical purposes, since one
can use the dual formulation of the OT problem as a dimensionality reduction technique.
On the other hand, taking c to be lower semi-continuous allows us to make a link with the
next class of examples.

Abstract Lagrangian Mean Field Games [44]. Consider a crowd motion, where the starting
point of each agent is distributed by a probability measure µ and the final goal of each
agent is to reach a target set while minimizing a cost depending on their own trajectory
and on the distribution of trajectories of all agents Q. One can think of the target set as the
exit of a metro, for instance. In [44], Santambrogio and Shim propose a model where each
agent chooses their trajectory among all possible continuous curves respecting their given
initial condition. In this case, X = Ω is a compact subset of Rd and Y = C0([0, T ]; Ω).
Each agent then tries to find a curve σ, such that σ(0) = x0, the given initial condition,
while minimizing an energy of the form

F (σ,Q) def.=
∫ T

0

(
|σ′(t)|2 +

∫
Y
η(σ(t)− σ̃(t))|σ′(t)− σ̃′(t)|2dQ(σ̃)

)
dt+ Ψ(γ(T ))

Here Ψ is an end point cost and η is an interaction kernel of Cucker-Smale type in order
to observe a phenomenon of consensus of the velocities as in the seminal paper [20].
The measure Q corresponds to the distribution of trajectories of all agents so that the
integral term becomes a mean interaction cost and the initial condition is then imposed
by the constraint (e0)]Q = µ. They defined equilibria as measures Q ∈ P(Y) such that
(e0)]Q = µ and

(17)
∫
Y
F (σ,Q)dQ <∞, and F (σ,Q) = inf

σ̃(0)=σ(0)
F (σ̃, Q), for all σ ∈ suppQ.

In [42], this model was generalized into an abstract model, where F is given by

F (σ,Q) def.= L(σ) +
∫
Y
H(σ, σ̃)dQ(σ̃),
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where L : Y → R is an individual cost, H(·, ·) : Y ×Y → R is a symmetric cost of pairwise
interaction, where Y is an abstract space of admissible strategies, being a Polish space. The
players are now labelled by some x ∈ X , another Polish space of types of players following
a distribution µ ∈P(X ). The initial condition map is now replaced by a continuous map
π : Y → X , and we consider measures Q ∈ P(Y) such that π]Q = µ. Their notion of
equilibrium is the same as in (17), but they show that equilibria are critical points of the
following functional

Q 7→
∫
Y
LdQ+

∫
Y×Y

HdQ⊗Q.

This suggests a link with the previous model of Cournot-Nash equilibria and indeed,
for c(x, y) = χπ−1(y)(x) we can rewrite the constraints as

π]ν = µ⇐⇒Wc(µ, ν) <∞, since Wc(µ, ν) =
{

0, if π]ν = µ,

+∞, otherwise.

Conversely, if we propose the lifted energy to the space of transportation plans (9), the
variational criterion for Cournot-Nash equilibria from Blanchet and Carlier is of the same
form as the one for Lagrangian MFGs.

Wasserstein gradient flows (JKO schemes). For the final example, let X = Y = Ω be a
compact subset of Rd. We wish to discuss the case of Wasserstein gradient flows, also
known as JKO schemes in reference to the seminal paper of Jordan, Kinderlehrer, and
Otto [31], where the authors proposed a variational formulation of the Fokker–Planck
equation. Their ideas were later generalized to other evolution equations, for instance
in [3], see also [43, Chap. 8]. The scheme consists in solving the following variational
problem iteratively

(18) min
ρ∈P(Ω)

1
2τ W

2
2 (ρk, ρ) + F(ρ) = min

γ∈Pρk(Ω×Ω)

1
2τ

∫
Ω×Ω
|x− y|2dγ + F(π2,]γ)

where W 2
2 corresponds to the value of the OT problem with c(x, y) = |x − y|2. By

solving this sequence of variational problems, one obtains a sequence (ρk)k∈N and define
an interpolation depending on the parameter τ as

ρτ (t) def.= ρk if t ∈ [kτ, (k + 1)τ).
For a variety of choices of F , it can be shown that ρτ converges as τ → 0 to a solution of
the evolution equation

(19) ∂tρ+ div
(
ρ∇δF

δρ
(ρ)
)

= 0, ρ(0) = ρ0,

with no-flux boundary conditions.
The case, see [17,18],

F(ρ) =
∫

Ω
V (x)dρ(x) +

∫
Ω×Ω

W (x− y)dρ⊗ ρ(x, y),

corresponds to an advection plus aggregation phenomenon, that is covered by our Γ-
convergence results.

1.4. The organization of this paper: in Section 2 we review the major tools of mea-
sure theory, optimal transport and Γ-convergence that are used throughout the present
manuscript. In Section 3 we prove the full characterization of Cournot-Nash equilibria in
our potential setting and pass to stability question of the value function of our problem
w.r.t. the distribution of players, which is of independent interest. Finally, in Section 4
we prove our main Γ-convergence results our sequences of open and closed loop N -player
games. In Section 5 we give our concluding remarks and possible directions.
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2. Preliminaries in measure theory and optimal transport

In this section we review the mathematical tools we require and also to fix the notation
to be used throughout the text. The first two paragraphs are dedicated to the topologies
of spaces of probability measures and the optimal transportation problem. Next, we
introduce the space of random probability measures and the compactness properties à la
Prokhorov that it enjoys. We finish with a brief discussion about Γ-convergence that is
the main ingredient of our proofs.

2.1. Topologies on spaces of Radon measures. In this paper, we shall work with
general Polish spaces (X , dX ), that is a complete separable space equipped with a metric
topology. We letMb(X ) denote the space of finite Radon measures over X , the space of
all Borel measures µ such that µ(K) <∞ whenever K is compact. We let P(X ) denote
the subspace of probability measures over X , i.e. positive measures with unitary total
mass.

It follows from Riesz’ representation theorem thatMb(X ) is the topological dual space
of C0(X ), the continuous functions converging to 0 at infinity, see [25, Chap.1]. This
defines a norm inMb(X ), the total variation norm, and also its weak-? topology. We can
define other notions of weak topology by changing the set of test functions.

Definition 2.1. Given a suitable space of functions K, we say a sequence of measures
(µn)n∈N converges in the narrow topology to µ if∫

X
φdµn −−−→

n→∞

∫
X
φdµn for every φ ∈ Cb(X ),

where Cb(X ), is the set of continuous and bounded functions, and we write µn −−−⇀
n→∞

µ.

Notice that if µn converges to µ in the weak-? topology, there is no guaranteeing that
µ(X ) = limn→∞ µn(X ), the norm | · |(X ) is only l.s.c. for this notion of convergence.
For the narrow convergence, however, as it is in duality with Cb(X ), we can consider the
constant 1 as test function and obtain the convergence of the total masses. This implies
that P(X ) is closed for the narrow topology, but not for the weak-?, unless X is compact.
Besides this, we also have a nice criterion of compactness for the narrow topology.

Theorem 2.2 (Prokhorov). Let F ⊂ P(X ) be a family of probability measures over X .
Then F is compact for the narrow topology, if and only if, it is a tight family, i.e. for all
ε > 0 there is a compact set K such that

µ(X \K) < ε, for all µ ∈ F .

Actually, the set K = Cb(X ) is not the minimal set for which we can define a weak
topology that yields the narrow convergence. This is clear since we can always approximate
functions in Cb(X ) with Lipschitz functions, but we can even construct a countable set of
test functions yielding the narrow convergence.

Proposition 2.3 ([3, Chapter 5]). There exists a countable set K = (fk)k∈N of Lipschitz
functions, such that any sequence (µn)n∈N converges narrowly to µ, if and only if,∫

X
fkdµn −−−→

n→∞

∫
X
fkdµ, for all k ∈ N.

Now consider a pair of Polish spaces (X , dX ) and (Y, dY) and let X 3 x 7→ νx ∈P(Y)
be a measure-valued map.

Definition 2.4. We say (νx)x∈X is measurable if for any Borel set B ⊂ Y, the function
x 7→ νx(B) is Borel measurable.
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Now given µ ∈ P(X ) we can define a new probability measure γ ∈ P(X × Y) in the
product space through duality as∫

X×Y
f(x, y)dγ(x, y) def.=

∫
Y

(∫
X
f(x, y)dνx(y)

)
µ(x),

and we use the notation γ = µ ⊗ νx. It turns out that all measures γ ∈ P(X × Y) can
be written in this way as a consequence of the disintegration theorem, see [48, Thm. 1.1.6]
for a proof in Polish spaces.

Theorem 2.5. Let X0 and X1 be Polish spaces, and two probability measures µ0 ∈P(X0)
and µ1 ∈ P(X1). If π : X0 → X1 is a measurable map such that π]µ0 = µ1, then there
exists a µ1-a.e. uniquely determined Borel family (µx1

0 )x1∈X1
⊂P(X0) such that

µx1
0 (X0 \ π−1(x1)) = 0 for µ1-a.e. x1 ∈ X1,

and for every measurable function f : X0 → [0,+∞] if holds that∫
X0
f(x0)dµ0(x0) =

∫
X1

(∫
π−1(x1)

f(x0)dµx1
0 (x0)

)
dµ1(x1).

Any such (µx1
0 )x1∈X1

is called a disintegration family and we write µ0 = µx1
0 ⊗ µ1.

Whenever γ ∈ Π(µ, ν), we apply the previous theorem with X0 = X × Y, X1 = X
and π = πX to write γ = µ ⊗ νx. We could also consider the disintegration w.r.t. the
second marginal, in which case we write γ = µy ⊗ ν. One of the most useful, yet simple,
applications of the disintegration theorem is the gluing lemma.

Lemma 2.6. [3, Lemma 5.3.2] Let X1,X2,X3 be Polish spaces, γ1,2 ∈ P(X1 × X2) and
γ1,3 ∈P(X1 ×X3) such that

(πX1)]γ1,2 = (πX1)]γ1,3 = µ1.

Then there exists γ1,2,3 ∈P(X1 ×X2 ×X3) such that
(πX1,X2)]γ1,2,3 = γ1,2 and (πX1,X3)]γ1,2,3 = γ1,3.

Proof. The proof consists on taking the disintegration families γ1,2 = γx1
1,2⊗µ1(x1), γ1,3 =

γx1
1,3 ⊗ µ1(x1) and defining the new measure as

γ1,2,3
def.=
∫
X1
γx1

1,2 ⊗ γ
x1
1,3dµ1(x1).

�

2.2. Random probability measures and their weak topologies. We will also use in
this work, the notion of random probability measure. The simplest example of this kind
of object is a sequence of empirical measures, that is, given an i.i.d. sample of random
variables (Xi)i∈N we define the measures

µN
def.= 1

N

N∑
i=1

δXi .

Clearly, for each realization of the random variables we obtain a different discrete measure.
For a random sample of agents (Xi)i∈N, we will describe a profile of strategies with the
measures

γN = 1
N

N∑
i=1

δXi ⊗ νi,

where νi ∈P(Y) represents the strategy, possibly in mixed plays, of player i. In general,
a random measure is defined as follows.
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Definition 2.7. Given a probability space (Ω,F ,P) and a Polish space X , a random
measure µ is a map from Ω into the space of Radon measures

µ : Ω 3 ω 7→ µ(ω) ∈Mb(X ),
which is measurable for the Borel σ-algebra defined with respect to the narrow topology,
in duality with Cb(X ). We let MΩ(X ) denote the space of all random measures, and
PΩ(X ) is the convex subset ofMΩ(X ) consisting of all P(X )-valued random probability
measures.

Given µb ∈PΩ(X ), the map

Cb(X ) 3 φ 7→ E
[∫
X
φdµ(ω)

]
,

is a bounded linear map over Cb(X ), so from Riesz’ representation theorem this defines a
non-random measure via duality, the expectation measure Eµ ∈P(X ) as

(20)
∫
X
φdEµ

def.= E
[∫
X
φdµ(ω)

]
.

In particular, a random measure can be identified by a non-random measure if, and only
if, it coincides with its expectation almost surely.

The Glivenko-Cantelli law of large numbers, also known as the Glivenko-Cantelli the-
orem [22], states that the empirical measures µN converge in the narrow topology to µ
with probability 1. Hence, in order to give a topology to PΩ(X ), the first naive candidate
would be to consider P-a.s. convergence of the random measures in the narrow topology.
However, this topology would not be metrizable, and it also does not enjoy good compact-
ness properties as Prokhorov’s Theorem [23]. For these reasons, we consider the narrow
topology in PΩ(X ).

Definition 2.8. We say that an f : Ω×X → R is a random bounded continuous function,
and we let CΩ(X ) denote the class of all such functions, if2

(1) x 7→ f(ω, x) ∈ Cb(X ) almost surely;
(2) ω 7→ f(ω, x) is F-measurable for all x ∈ X ;
(3) ω 7→ ‖f(ω, ·)‖L∞(X ) is integrable with respect to P.

The narrow topology of random measures is then the weakest topology that makes

PΩ(X ) 3 µ 7→ EP

[∫
X
f(ω, x)dµω(x)

]
continuous for all f ∈ CΩ(X ).

Since the functions of the form
N∑
i=1

1Ai(ω)fi(x), for Ai P-measurable and fi ∈ Cb(X ),

are dense in CΩ(X ), it follows that P-a.s. convergence implies convergence in the narrow
topology of PΩ(X ). The advantage is that the latter enjoys compactness properties
analogous to Prokhorov’s Theorem 2.2. This is extremely useful since, even if one can
show that a sequence of random probability measures is tight almost surely and apply the
classical version of Prokhorov’s Theorem, for each event ω will be associated a subsequence
where narrow convergence holds, but we cannot in general obtain a single subsequence that
converges P-almost surely. Hence the usefulness of the following result, see [19, Thm. 4.29].

Theorem 2.9 (Random Prokhorov’s Theorem). A family of random measures F ⊂
PΩ(X ) is pre-compact for the narrow topology of random measures, if and only if, it
is tight: for any ε > 0 there is a compact set Kε such that

E [µ(X \Kε)] ≤ ε for every µ ∈ F .
2In [4] the random continuous functions are also called Carathéodory integrands.
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2.3. Γ-convergence. The key idea in order to prove the convergence of certain Nash
equilibria, associated with potential games, to Cournot-Nash equilibria is to exploit the
fact that one can obtain such objects through the minimization of a family of energies
indexed by the number of players. The main argument consists in showing that these
energies converge in the sense of Γ convergence to the potential function that describes
Cournot-Nash equilibria. This notion of convergence is defined as follows.

Definition 2.10. Let (X , dX ) be a complete metric space, a sequence of functionals
Fn : X → R ∪ {+∞} Γ-converges to F , if

• Γ− lim inf: for every sequence xN
dX−−−−→

N→∞
x in X , it holds that

F (x) ≤ lim inf
N→∞

FN (xN ).

• Γ− lim sup: for every x ∈ X , there is a sequence xN
dX−−−−→

N→∞
x such that

lim sup
N→∞

FN (xN ) ≤ F (x),

(xN )N∈N is called the recovery sequence of x.

The notion of Γ-convergence was introduced by De Giorgi in order to have good prop-
erties concerning the limits of minimizers of variational problems, see for instance [21].
In this sense, the fundamental property that makes it interesting is the fact that cluster
points of minimizers of a sequence of minimizers of FN , which Γ-converges to F , are min-
imizers of F . Indeed, let (xN )N∈N be a sequence of minimizers of (FN )N∈N converging to
x. For an arbitrary x′ ∈ X , let x′N be a corresponding recovery sequence, then it follows
that

F (x) ≤ lim inf
N→∞

FN (xN ) by the Γ− lim inf inequality
≤ lim inf

N→∞
FN (x′N ) by the minimality of xN

≤ lim sup
N→∞

FN (x′N ) ≤ F (x′) since x′N is a recovery sequence.

As x′ was an arbitrary point of X , it follows that x is a minimizer of F .
Equivalently, given a sequence of functionals FN , we define the lower and upper Γ

limits, respectively, as

(21)
Γ- lim inf FN (x) def.= inf

{
lim inf
N→∞

FN (xN ) : xN −−−−⇀
N→∞

x

}
,

Γ- lim sup FN (x) def.= inf
{

lim sup
N→∞

FN (xN ) : xN −−−−⇀
N→∞

x

}
.

From [11, Prop. 1.28], both Γ upper and lower limits are lower semi-continuous and
FN

Γ−−−−→
N→∞

F if and only if Γ- lim inf FN = Γ- lim sup FN = F .

3. Potential structure and stability of the value function

In this section, our objective is twofold, first we extend the results of Blanchet and
Carlier about the potential structure for Cournot-Nash equilibria, allowing for individual
costs c that are l.s.c. instead of continuous. In the sequel we show a stability result of the
value function w.r.t. the fixed marginal µ.
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3.1. Potential structure for Cournot-Nash equilibria. The goal of this section is
to characterize equilibria in the sense of Definition 1.1 as critical points of an energy
functional. For now, we assume that the optimization problem a player of type x ∈ X
tries to solve among a mean field of plays ν ∈P(Y) is given by

(22) min
y∈Y

Φ(x, y, ν) def.= c(x, y) + δE
δν

(ν)(y),

where c is l.s.c. and the second term can be written as the first variation of an energy
E : P(ν)→ R, which is defined below.

Definition 3.1. We say that a functional F defined over the probability measures P(X )
over a Polish space X admits a first variation at µ0 ∈P(X ) if there exists a measurable
function f : X → R such that f is µ−µ0 integrable for all µ in the domain of F and such
that

(23) d
dε

∣∣∣
ε=0+
F(µ0 + ε(µ− µ0)) = 〈f, µ− µ0〉

def.=
∫
X
fd(µ− µ0),

and we write f = δF
δµ

(µ0). In addition, we say that µ0 is a critical point of F if〈
δF
δµ

(µ0), µ− µ0

〉
≥ 0 for all µ ∈ domF .

It is clear that the first variation as in Definition 3.1 cannot be unique, since summing a
constant to a function satisfying (23) will still satisfy the same relation, as the integration
is taken against µ− µ0, which integrates to 0. It is, however, unique up to a constant.

For the rest of this paragraph, we let E be an l.s.c. functional over P(Y), and we
consider the energy

(24) J (γ) def.=


∫
X×Y

c(x, y)dγ + E(ν), if γ ∈ Π(µ, ν),

+∞ if γ 6∈Pµ(X × Y),

with a general functional E , so that

Φ(x, y, ν) = δJ
δγ

(γ) for ν = (πY)]γ.

Our goal is to show that critical points of this energy are Cournot-Nash equilibria,
notice however that satisfying the equilibrium condition (5) is independent of having a
finite social cost (6), we can have bad equilibria that represents a society with infinite
poverty, for instance if a non-negligible part of the population is infinitely poor. For this
we make the following definition.

Definition 3.2. A measure % ∈ P(Y) is a distribution of finite social cost for the dis-
tribution µ if there is a function κ ∈ L1(µ) such that for µ-a.e. x ∈ X there is yx ∈ Y
satisfying

Φ(x, yx, %) ≤ κ(x).

The main result of this section is the following.

Theorem 3.3. Assume that 0 ≤ E admits a first variation given by an l.s.c. function with
compact sub-level sets over Y and let Φ be as (22). It follows that

(i) γ ∈ Pµ(X × Y) is a Cournot-Nash equilibrium in the sense of Definition 1.1, if
and only if it is a critical point of J defined in (24). If in addition, ν = (πY)]γ is
a distribution of finite social cost, then γ is a Cournot-Nash equilibrium of finite
social cost.
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(ii) if J admits a minimizer, then
min

γ∈Pµ(X×Y)
J (γ) = min

ν∈P(Y)
Wc(µ, ν) + E(ν),

and it is a Cournot-Nash equilibrium.

Proof. The proof is inspired by the arguments in [42, Thm. 4.5.1] for the case of an abstract
Lagrangian Mean Field Game and [38, Appendix A].

First suppose that γ ∈Pµ(X × Y) is a critical point, and define the function

φ(x) def.= inf
Y

Φ(x, ·, ν).

It follows that φ is Borel measurable since it is lower semi-continuous as we prove next.
Take xk −−−→

k→∞
x such that lim inf φ(xk) is finite, otherwise there is nothing to prove,

and assume up to the extraction of a subsequence that the lim inf is a limit. Consider
yk ∈ argmin Φ(xk, ·, ν) so that Φ(xk, ·, ν) ≤ C is uniformly bounded. Therefore, as c ≥ 0
it holds that

(yk)k∈N ⊂
{
δE
δν

(y) ≤ C
}
,

which is a compact set. Up to another extraction, we may assume that yk → y, so that
the lower semi-continuity of Φ gives

φ(x) ≤ Φ(x, y, ν) ≤ lim inf
k→∞

Φ(xk, yk, ν) = lim inf
k→∞

φ(xk).

To prove item (i), if suffices to show that the set
A = {(x, y) ∈ X × Y : φ(x) < Φ(x, y, ν)}

is γ-negligible. Suppose this is not the case, and our goal is to construct a Borel measurable
selection of the argmin operator, that is a Borel function T : X → Y such that

T (x) ∈ argmin
Y

Φ(x, ·, ν) for all x ∈ X.

From [12, Thm. 1] it holds that if E ⊂ X × Y is a Borel set with the property that
Ex

def.= {y ∈ Y : (x, y) ∈ E} is σ-compact for all x ∈ πX (E), then there is a Borel
measurable selection T : πX (E)→ πY(E). And from [12, Cor. 1], the measurable selection
of the argmin operator can be obtained since A is a Borel set, as φ and Φ are Borel
measurable, and the sub-level sets of the first variation of E are compact, so that

Y =
⋃
n∈N

{
y : δE

δν
(y) ≤ n

}
, is σ-compact.

In the sequel, we use it to define a transportation plan given by

γ̄
def.= γ (X × Y \A) + (πX , T ◦ πX )]γ A.

Recalling that Φ is precisely the first variation of J evaluated at γ, we have

0 ≤
〈
δJ
δγ

(γ), γ̄ − γ
〉

=
∫
X×Y

Φ(x̄, ȳ, ν)dγ̄ −
∫
X×Y

Φ(x, y, ν)dγ

=
∫
A

(Φ(x, T (x), ν)− Φ(x, y, ν))︸ ︷︷ ︸
<0

dγ ≤ 0.

This contradicts the fact that γ(A) > 0, and we conclude that γ is a Cournot-Nash
equilibrium.

Conversely, suppose that γ is an equilibrium, from Def. (1.1) and it follows that∫
X×Y

φ(x)dγ =
∫
X×Y

Φ(x, y, ν)dγ.
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Hence, for any other admissible transportation plan γ̄ ∈Pµ(X × Y), it holds that∫
X×Y

Φ(x, y, ν)dγ̄ ≥
∫
X×Y

φ(x)dγ̄ =
∫
X
φ(x)dµ =

∫
X×Y

Φ(x, y, ν)dγ.

From the fact that Φ(x, y, ν) = δJ
δγ

(γ), we conclude that γ is a critical point of J .
Given γ ∈ Π(µ, ν) that is a critical point of J , hence is also a Cournot-Nash equilibrium,

suppose in addition that ν is a distribution of finite social cost. By definition, µ-a.e. we
have that φ(x) ≤ κ(x) so that∫

X×Y
Φ(x, y, ν)dγ =

∫
X
φ(x)dµ ≤

∫
X
κ(x)dµ < +∞.

As any minimizer is a critical point, item (ii) follows. �

In the previous Theorem, the condition that the infimum is finite is non-trivial and
should be verified for each problem. Imposing further conditions on E , such as strict
convexity, this can be verified as done in [9]. For the rest of this work, and specially for
the proof of convergence of Nash to Cournot-Nash equilibria, we shall concentrate on a
case where E is given as the sum of a linear and an interaction term, as in [9, 44] and
Mazanti et al. That is, when E can be written as follows

(25) E(ν) = L(ν) +H(ν, ν), where L(ν) =
∫
Y
Ldν and H(ν, ν) =

∫
Y×Y

Hdν ⊗ ν,

hence being the sum of an individual cost L and an interaction cost. In this case, the
lifted energy from (24) becomes

(26) J (γ) def.=
∫
X×Y

cdγ + L(ν) +H(ν, ν)

and game with a continuum of players that we are interested is described by the cost

(27) Φ:

X × Y ×P(Y) → R+ ∪ {+∞}
(x, y, ν) 7→ c(x, y) + L(y) + 2

∫
Y
H(y, y′)dν(y′).

In addition, we recall that we assume hypothesis (H1)-(H5) from the introduction. In
particular, assumption (H1) that µ does not contain atoms is not restrictive, as discussed
in Remark 3.4 bellow.

Remark 3.4. If µ has atoms, we can work in the lifted space

X ′ = [0, 1]×X and µ′ ∈ Π(L1 [0, 1], µ),

that is a coupling between the Lebesgue measure on the interval [0, 1] and µ. On the other
hand, there is a map T ′ : X ′ → X such that T ′]µ′ = µ, simply given by the projection
T ′ = πX . Then we can formulate a new game with c replaced by c′(x′, y) = c(πX (x′), y),
which remains l.s.c. in the product space X ′ × Y. This new game will then satisfy all
hypothesis (H1)-(H5).

As the integral of l.s.c. functionals, both L and H are l.s.c. as functionals over P(Y),
see for instance [43, Prop. 7.1]. Since the level sets of L are compact, we would be able
to prove existence of minimizers for J , were it not for the term H that can be +∞, for
instance if H diverges in the diagonal.
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3.2. On the finiteness of the infimum. In the case of a potential of the form (27), we
can characterize the cases where there the infimum is finite, and hence when we have exis-
tence, with a measure defined with the individual transportation cost c and the interaction
energy H as follows: For K ⊂ Y compact, define

(28) capc,H(K) def.=
(

inf
%∈Pc,µ(K)

∫
Y×Y

Hd%⊗ %
)−1

,

where Pc,µ(K) def.= {% ∈P(K) : Wc(µ, %) < +∞}. The capacity of an open set U ⊂ Y
can then be defined through outer regularity

capc,H(U) def.= sup
{

capc,H(K) : K ⊂ U
}
,

and for a general set A as the inf of the same quantity among all the open sets U containing
A. This defines a monotone set function that can be used to characterize when the infimum
of J is finite.

Lemma 3.5. Under hypotheses (H2)–(H5), it holds that
inf J < +∞⇐⇒ capc,H({L < +∞}) > 0.

Proof. Starting with the direct implication, suppose that there exists γ ∈Pµ(X ×Y) such
that J (γ) < +∞. In particular, letting ν denote the second marginal of γ, it follows that
Wc(µ, ν) < +∞ and supp ν ⊂ {L < +∞}. It then follows that

capc,H({L < +∞}) ≥ J (γ)−1 > 0.
Conversely, if capc,H({L < +∞}) > 0, there is some N ∈ N such that

capc,H({L ≤ N}) > 0.
Hence there is a measure % concentrated over the compact set {L ≤ N} such that
Wc(µ, %) < +∞ and H(%, %) < +∞. Taking γ as an optimal transportation plan be-
tween µ and % gives that J (γ) < +∞. �

The previous Lemma seems almost tautological, but in some particular cases there are
strong results in the literature that characterize exactly which are the sets with positive
capacity. In examples 3.6 and 3.6 we treat two models whose particular properties allow
to verify the capacity criterion from Lemma 3.5.

Example 3.6. In the Lagrangian mean field game of Mazanti et.al. the interaction term
is shown to be bounded by the individual cost, that is, there is a constant C > 0 such
that for all ν ∈P(Y) it holds that H(ν, ν) ≤ C(1 + 2L(ν)), which trivializes the capacity
condition since L is not identically +∞.

Example 3.7. Consider now a simpler case where X = Y = Rd,
c ∈ Cb(Rd × Rd), and H(y, ȳ) = |y − ȳ|−α for some 0 < α < d.

The condition that c is bounded implies that the set Pc,µ(Rd) = P(Rd) since the optimal
transportation problem Wc(µ, %) is finite for any probability measure %. This way, the
capacity condition becomes

capα({L < +∞}) > 0,
where caps denotes the usual capacity, with H(y, ȳ) = |y − ȳ|−α. In this case, Frostman’s
Lemma, see [24, Chap. 4.3] and [41, Appendix B] or the original thesis of Frostman [26],
gives a charaterization of sets with strictly positive α-capacity in Rd. Indeed, for a general
Borel set A ⊂ Rd it holds that

dH(A) = inf {s ≥ 0 : caps(A) = 0} ,
where dH(A) denotes the Haussdorff dimension of the set A.
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It follows that, in order to satisfy the capacity condition, it suffices to verify that the
set {L < +∞} is of dimension bigger than α.
Remark 3.8. Example 3.7 above motivates the characterization of sets with strictly
positive capc,H for more general choices of c and H. As mentioned above the first difficulty
is to choose a class of pairs (c,H) that do not make the infimum in the capacity +∞. We
have trivialized this question by considering c bounded, but it excludes the examples of
Lagrangian Mean Field Games where c(x, σ) = +∞ if σ(0) 6= x.
3.3. Stability of the value function. In this paragraph our primary goal is to show,
assuming some additional hypothesis (H6), the following estimate

(29)
∣∣∣∣∣ inf
γ∈Pµ0 (X×Y)

J − inf
γ∈Pµ1 (X×Y)

J
∣∣∣∣∣ ≤ CW1(µ0, µ1) for some C > 0,

where µ0, µ1 ∈P(X ) are two distribution of agents and

W1(µ0, µ1) def.= min
γ∈Π(µ0,µ1)

∫
X⊗X

dX (x0, x1)dγ,

is the 1-Wasserstein, or Kantorovitch-Rubinstein, distance, see [49].
The stability result (29) is of independent interest, in particular it gives some regularity

for the value function in the Wasserstein topology and allows to estimate the value with
arbitrary approximations of a given reference distribution µ, instead of for only empirical
measures covered by our Γ-convergence results from Section 4. However, it is important to
emphasize that, contrary to Γ-convergence, this result says nothing about the convergence
of minimizers for the problems referent to a sequence µn converging to µ. Another potential
application would be to the construction of ε-equilibria, which could be done with a
suitable approximation of a given reference measure. However, this cannot be done for
instance in an euclidean space with an empirical measure since we expect that

W1(µN , µ) ≈ N−1/d

if µ ∈P(Rd) and µN is a suitable sequence of empirical measures. Recalling that the cost
minimized by each player behaves as N ×J (γN ), this estimate does not give information
on weather the minimization of J over PµN (X × Y) yield ε-Nash equilibria for the N -
player game. But it might be useful in this direction with estimates of µ with better
convergence rates.

To prove (29) we will exploit the gluing method, recently introduced in [38]. This method
depends on the existence of a gluing operator as described in the following assumption:
(H6) There exists an operator G : X × X × Y → Y such that:

• G is consistent: for every y ∈ Y and x ∈ X it holds that G(x, x, y) = y;
• there exists a positive constant C > 0 satisfying

(30)
c (x1,G(x1, x0, y)) ≤ c(x0, y) + CdX (x1, x0),
L (G(x1, x0, y)) ≤ L(y) + CdX (x1, x0),

H(G(x1, x0, y),G(x̃1, x̃0, ỹ)) ≤ H(y, ỹ) + C (dX (x1, x0) + dX (x̃1, x̃0)) .
for any pairs x0, x1 ∈ X and y, ỹ ∈ Y.

Essentially, hypothesis (H6) says that there is an operator that given some player of type
x0 choosing play y, any other player of type x1 can choose a strategy G(x1, x0, y) paying a
perturbation, of order dX (x0, x1), of the cost paid by the first player. With this assumption
we can prove that
Lemma 3.9 (Gluing method). Let µ0, µ1 be probability measures in P(X ) and γ0 ∈
Pµ0(X × Y). Under the hypothesis (H6), there exists a measure γ1 ∈ Pµ1(X × Y) such
that

J (γ1) ≤ J (γ0) + 4CW1(µ0, µ1),
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where W1 denotes the Kantorovitch-Rubinstein distance.

Proof. Given measures µ0, µ1 ∈P(X ) and let π1,0 ∈ Π(µ1, µ0) be an optimal transporta-
tion plan between µ0 and µ1, i.e.∫

X1×X1
dX (x1, x0)dπ1,0(x1, x0) = W1(µ1, µ0),

where X0 and X1 are identical copies of the space X .
Let Γ ∈P(X1 × X0 × Y) denote the gluing of π1,0 and γ0, so that (πX0,Y)]Γ = γ0 and

(πX1,X0)]Γ = π1,0, see for instance Lemma 2.6 or Lemma 5.3.2 and Remark 5.3.3 of [3].
The measure γ1 is then defined as γ1 := (πX1 ,G)]Γ. It follows from these definitions that

J (γ0) =
∫
X0×Y

(c+ L+H) dΓ⊗ Γ

J (γ1) =
∫
X1×Y

(c+ L+H) d
(
(πX1 ,G)]Γ

)
⊗
(
(πX1 ,G)]Γ

)
.

Using the definition of the gluing operator from (H6), we get the following estimates

J (γ1) =
∫
X1×Y

(c(x1,G(x1, x0, y)) + L(G(x1, x0, y))+

H(G(x1, x0, y),G(x̄1, x̄0, ȳ)))dΓ⊗ Γ

≤
∫
X0×Y

(c+ L+H) dΓ⊗ Γ + C

∫
X1×X0×Y

(3dX (x1, x0) + dX (x̃1, x̃0))dΓ⊗ Γ

= J (γ0) + 4C
∫
X1×X0

dX (x1, x0)dπ1,0

= J (γ0) + 4CW1(µ0, µ1).
The result follows. �

The previous Lemma 3.9 will also be useful in the proof of Γ convergence in the open
closed loop formulation. For now, we use it to prove the following:

Theorem 3.10. Under the hypothesis (H6), the stability inequality (29) for the value
function holds.

Proof. Let γ0 ∈Pµ0(X × Y) optimal, so that
J (γ0) = min

Pµ0 (X×Y)
J .

So let γ1 be the measure obtained from the gluing method in Lemma 3.9. It then holds
that

inf
Pµ1 (X×Y)

J − inf
Pµ0 (X×Y)

J ≤ J (γ1)− J (γ0) ≤ 4CW1(µ0, µ1),

where C is the constant from (H6). Changing the roles of µ0 and µ1, we conclude. �

Example 3.11 (Back to example 3.6). Let us now give further details for the Lagrangian
MFG discussed in example 3.6. We consider a model where a population of agents tries
to read a target set in minimal time under pair-wise interactions.

For simplicity, let Ω ⊂ Rd be a convex set, and let Γ ⊂ Ω be the target set of the players.
In this case X = Ω and Y = C(R+; Ω), the continuous functions with values in Ω. For
σ ∈ Y we set

τ(σ) def.= inf{t ≥ 0 : σ(t) ∈ Γ},
the minimal time to reach the target and

c(x0, σ) =
{

0, if σ(0) = x0,

+∞, otherwise.
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The individual and interaction energies are given by

L(σ) def.=
∫ τ(σ)

0
`(t, σ(t), σ̇(t))dt+ Ψ(στ ),

H(σ, σ̄) def.=
∫ τ(σ)∧τ(σ̄)

0
h(t, σ(t), σ̇(t), σ̄(t), ˙̄σ(t))dt.

For simplicity, we assume that ` and h are bounded non-negative functions, that σ remains
constant after reaching Γ for the first time and that if σ̇(t) = 0, then `(t, σ(t), σ̇(t)) =
h(t, σ(t), σ̇(t), σ̄(t), ˙̄σ(t)) = 0.

In order to have a small perturbation of the energies, the easiest way is to preserve the
stopping time, hence given σ such that σ(0) = x0 we search for a curve of the form

σx1(t) def.=


(
1− t

t0

)
x1 + t

t0
σ(t0), if t ∈ [0, t0],

σ(t), otherwise.

Therefore, choosing t0 ≤ min{τσ, |x0 − x1|} we obtain that

L(σx1(t)) ≤ L(σ) +
∫ t0

0
`(t, σx1(t), σ̇x1(t))dt ≤ L(σ) + C|x0 − x1|.

An analogous reasoning for H gives the required result.

4. Convergence of Nash to Cournot-Nash

In this section we prove our convergence results of Nash to Cournot-Nash equilibria.
For readability, we perform the analysis in the two cases separately, even if at the cost of
some repetition. This way both results can be read independently. We start by recalling
the definitions of each formulation described in the introduction and discuss then in more
details as well.

First let us recall the definition of Nash-equilibria and introduce some notation.

Definition 4.1 (Nash equilibrium in N -player game). An N -player game in pure strate-
gies is a tuple (gi, Si)Ni=1 where Si denotes the space of admissible plays for player i and
gi is a function

gi : Si × S−i 3 (xi, x−i) 7→ gi(xi, x−i) ∈ R where S−i
def.=

∏
j 6=i

Sj .

Given an admissible profile of strategies (xj)Nj=1, x−i corresponds to the tuple of strategies
deprived of xi and the quantity gi(xi, x−i) represents the cost of player i choosing xi given
that the remaining players choose x−i.

A game in mixed strategies, or mixed plays, is a tuple (gi,P(Si))Ni=1, such that

gi(νi, ν−i)
def.=
∫
Si×S−i

gi(xi, x−i)dνi ⊗ ν−i(xi, x−i),

where ν−i
def.= ν1 ⊗ · · · ⊗ νi−1 ⊗ νi+1 ⊗ νN .

Let us also recall the setting of our games. Given an i.i.d. sample of agents (Xi)i∈N
with common law µ ∈P(X ), where the first N elements represent the type of the agents
in our N -player game. Consider the probability space (Ω,F ,P) induced by the sample
(Xi)i∈N, so that Ω = X⊗N represents all the possible realizations of this sampling, F is
the σ-algebra generated by the random variables Xi and, P = µ⊗N.

4.1. Convergence in the open loop formulation.
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4.1.1. Potential struction in open loop. In the open loop formulation, as each player
chooses a strategy before having the knowledge of the realization of the sample, the type
of player i is better described by the random variable Xi and an admissible strategy must
be given by a measurable family (νx)x∈X ⊂ P(Y), being uniquely described with a ran-
dom probability measure, see Section 2.2 or [19, 32]. In other words, instead of choosing
a deterministic strategy, given a state x a player chooses a distribution of strategies νx.
The criterion that each player seeks to minimize is then

(31) min
νi∈PΩ(Y)

JΩ,i (νi,ν−i)
def.= EP

∫
Y
c(Xi, y)dνXii + L(νXii ) + 2

N

∑
i 6=j
H
(
νXii , ν

Xj
j

) ,
where νi = νXii for some measurable map (νxi )x∈X .

A profile (νi)Ni=1 is pure if each νi is a Dirac delta with full probability and can then
be described with a map as measures of the form νi = δTi(Xi). The formulation in pure
strategies can then be expressed as

(32) min
Ti
JΩ,i(Ti, T−i) = EP

c(Xi, Ti(Xi)) + L(Ti(Xi)) + 2
N

∑
i 6=j
H(Ti(Xi), Tj(Xj))

 .
As introduced in Section 2.2, we let µN ∈ PΩ(X ) be the random measure obtained

via the sample of random variables µN
def.= 1

N

N∑
i=1

δXi , and we define the space of random

transportation plans

PΩ,µN (X × Y) def.=
{

γN = µN ⊗ νx = 1
N

N∑
i=1

δXi ⊗ νXi : (νx)x∈X is measurable
}
.

where we recall the definition of measurable family of measures from Def. 2.4. The poten-
tial function in open loop formulation is defined as the average of the costs of each player,
assuming the form

(33) JΩ,N (γN ) def.=



EP

[∫
X×Y

cdγN + 1
N

N∑
i=1
L
(
νXi

)
+ 1
N2

∑
i 6=j
H
(
νXi , νXj

) , if γN ∈PΩ,µN (X × Y),

+∞, otherwise.

Observe that, by means of the disintegration Theorem (2.5) there is a canonical bijection
between the set of random measures PΩ,µ (X ) and the set of symmetric strategy pro-
files, obtained through the disintegration theorem, so that this lifted energy is a suitable
candidate to describe minimizers.

In addition, since c, L and H are l.s.c. and L has compact level sets, the potential
function 33 admits minimizers, which we shall prove to yield Nash equilibria for the cor-
responding game.

Proposition 4.2. Let

γN = 1
N

N∑
i=1

δXi ⊗ ν
Xi
i ∈ argminJΩ,N

then
(
νXii

)N
i=1

induce Nash equilibria for the game (31).
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Proof. Let νi = νXii and consider a deviation, so that player i chooses ν̄i instead. Consider
the new random transportation plan

γ̄N
def.= 1

N

∑
j 6=i

δXj ⊗ νj + 1
N
δXi ⊗ ν̄i.

First notice that from the symmetry of H we have∑
j 6=k

H(yj , yk) =
∑

j 6=k,j 6=i,k 6=i
H(yj , yk) +

∑
k 6=i

H(yi, yk) +
∑
j 6=i

H(yj , yi)

=
∑

j 6=k,j 6=i,k 6=i
H(yj , yk) + 2

∑
j 6=i

H(yj , yi),

so the minimality of γN gives

JΩ,N (γN ) = 1
N

E
∑
j 6=i

∫
Y

[c(xj , yj) + L(yj)]dνj + 1
N

∑
j 6=k,j,k 6=i

H(νj ,νk)

+ JΩ,i(νi,ν−i)


≤ 1
N

E
∑
j 6=i

∫
Y

[c(xj , yj) + L(yj)]dνj + 1
N

∑
j 6=k,j,k 6=i

H(νj ,νk)

+ JΩ,i(ν̄i,ν−i)


= JΩ,N (γ̄N ).

Canceling out the repeated terms we obtain that JΩ,i(νi,ν−i) ≤ JΩ,i(ν̄i,ν−i), meaning
that the profile (ν1, . . . ,νN ) is a Nash equilibria. �

4.1.2. Γ-convergence for the open loop formulation. The Γ convergence result relies on the
characterization of the cluster points of random measures in the set PΩ,µN (X ). Indeed,
since the stochasticity of this class of measures is contained in the first marginal given
by the empirical measure of an i.i.d. sample, we can expect that the limit will be a
non-random measure. This is proved in the following

Lemma 4.3. Let µN be a sequence of empirical measures of an i.i.d. sample of law µ.
Let γN be a sequence of random measures such that γN ∈ PΩ,µN (X × Y) for all N ∈ N
and converging in the narrow convergence of probability measures to a random measure γ.
Then γ is a deterministic measure in the sense that there is γ ∈ Pµ(X × Y) such that
γ(ω) = γ almost surely.

Remark 4.4. The major difficulty of the following proof comes from the fact that the
conditional expectation is not continuous w.r.t. weak convergence in general. In order
words, if a sequence of measures (γN )N∈N converging weakly to γ has the following dis-
integration representation γN = µ⊗ νxN and γ = µ⊗ νx, it does not hold in general that
νxN −−−−⇀

N→∞
νx, not even for a.e. x.

Proof. If γN converges weakly to γ it is a priori just a random probability measure in
PΩ(X × Y). Hence, we first need to show that γ(ω) ∈ Pµ(X × Y) with probability 1.
For any f ∈ Cb(X ), we have∫

X
f(x)d(πX )]γ(ω) = lim

N→∞

∫
X
f ◦ πXdγN (ω) = lim

N→∞

∫
X
fdµN (ω) =

∫
X
fdµ,

where the last limit is true almost surely from the Glivenko-Cantelli law of large numbers.
As a consequence, by disintegration we have the following representation

γN = µN ⊗ νxN , γ = µ⊗ νx,

where (νxN )x∈X ⊂P(Y) is a sequence of measurable maps of deterministic measures and
(νy)y∈Y is a family of random measures in PΩ(X). Notice that while the stochasticity
of γN is concentrated in the X -marginal, we cannot say for now that the same is true for
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γ and our goal is precisely to show that the disintegration family (νx)x∈X is a family of
non-random probability measures.

Recall the definition of expectation measure in (20), for any ϕ ∈ Cb(X × Y), we have∫
X×Y

ϕdEγN = E
[∫
X×Y

ϕdγN

]
−−−−→
N→∞

E
[∫
X×Y

ϕdγ

]
=
∫
X×Y

ϕdEγ,

so that EγN −−−−⇀
N→∞

Eγ. In the sequel, we check that EγN = µ ⊗ νxN . Indeed, still using
duality, for ϕ ∈ Cb(X × Y) we have that∫

X×Y
ϕdEγN = 1

N

N∑
i=1

E
[∫
Y
ϕ(Xi, y)dνXiN

]
=
∫
X×Y

ϕd(µ⊗ νxN ).

To finish the proof it suffices to show that for any real valued, bounded and (Ω,F ,P)-
adapted random variable Θ and ϕ ∈ Cb(X × Y), it holds that

(34) ∆N,Θ
def.=
∣∣∣∣E [Θ ∫

X×Y
ϕdγN

]
− E [Θ]

∫
X×Y

ϕdEγN

∣∣∣∣ −−−−→N→∞
0,

since then we will have that

E
[
Θ
(∫
X×Y

ϕd(γ − Eγ)
)]

= 0

for any bounded random variable Θ, meaning that γ = Eγ almost surely.
For this, we will use Hoeffding’s inequality, which states that if Z1, . . . , ZN are i.i.d. real

variables such that a ≤ Zi ≤ b for all i almost surely, then

(35) P
(∣∣∣∣∣ 1
N

N∑
i=1

Zi − E[Z1]
∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− 2Nε2

(b− a)2

)
.

Notice that we can rewrite∫
X×Y

ϕdγN = 1
N

N∑
i=1

ϕ̃i,N where ϕ̃i,N
def.=
∫
Y
ϕ(Xi, y)dνXiN ,

so that (ϕ̃i,N )Ni=1 are i.i.d., |ϕ̃i,N | ≤ ‖ϕ‖L∞ and

Eϕ̃1,N =
∫
X×Y

ϕdµ⊗ νxN =
∫
X×Y

ϕdEγN .

So setting

Aε
def.=
{∣∣∣∣∣ 1
N

N∑
i=1

ϕ̃i,N − Eϕ̃1,N

∣∣∣∣∣ ≥ ε
}
,

we can use Hoeffding’s inequality to bound the LHS of (34)

∆N,Θ ≤ E
[
|Θ|

∣∣∣∣∣ 1
N

N∑
i=1

ϕ̃i,N − Eϕ̃1,N

∣∣∣∣∣
]

≤ ‖Θ‖L∞
∫
Aε

∣∣∣∣∣ 1
N

N∑
i=1

ϕ̃i,N − Eϕ̃1,N

∣∣∣∣∣ dP + ‖Θ‖L∞ ε

≤ 2 ‖Θ‖L∞ ‖ϕ‖L∞ P(Aε) + ‖Θ‖L∞ ε

≤ 4 ‖Θ‖L∞ ‖ϕ‖L∞ exp
(
− Nε2

2 ‖ϕ‖2L∞

)
+ ‖Θ‖L∞ ε

Choosing ε = N−1/3, we get that ∆N,Θ −−−−→
N→∞

0. We conclude that γ = Eγ. �

Remark 4.5. In fact we have shown that γN has a subsequence converging to γ in the
much stronger topology of narrow converge P almost surely.
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The previous Lemma is the crucial observation that allows the passage of the limit of
a sequence of stochastic variational problems to a deterministic one as we shall see in the
following Γ-convergence result.

Theorem 4.6. Given an i.i.d. sample (Xi)i∈N with law µ, let µN ∈PΩ(X ) the associated
sequence of empirical random measures. Let JΩ,N be the sequence of potential functionals
defined in (33), then it holds that

JΩ,N
Γ−−−−→

N→∞
JΩ(γ) def.=

{
J (γ), if γ = γ ∈Pµ(X × Y),
+∞, otherwise,

where the Γ-convergence is in PΩ(X × Y) equipped with the narrow topology of random
probability measures.

Proof. Starting with Γ-lim inf, consider a sequence (γN )N∈N converging to γ in the narrow
topology of random measures. From Lemma 4.3, it follows that γ is actually a non-random
measure γ ∈Pµ(X × Y). Without loss of generality we assume that

lim inf
N→∞

JΩ,N (γN ) <∞,

otherwise there is nothing to prove. Then, up to taking a subsequence attaining the lim inf,
one can assume that JΩ,N (γN ) ≤ C for all N ∈ N, so in particular γN ∈PΩ,µN (X × Y).

For an arbitrary M > 0, define the truncated interaction energy as

HM (ν, ν) def.=
∫
HMdν ⊗ ν, where HM def.= H ∧M

and the truncated total energies JM and JMΩ,N as in (26) and (33) by replacing H with
HM . Then it follows from Fubini’s Theorem that

JMΩ,N (γN ) = E

 1
N

N∑
i=1

∫
Y
c(Xi, y) + L(y)dνXiN + 1

N2

∑
i 6=j

∫
Y×Y
HM (νXiN , ν

Xj
N )


= E

[∫
X×Y

c+ LdγN +
∫
Y×Y

HMdγN ⊗ γN

]
− 1
N2

N∑
i=1

E
[
HM

(
νXiN , ν

Xj
N

)]

= JM (EγN )− 1
N2

N∑
i=1

E
[
HM (νXiN , νXiN )

]
︸ ︷︷ ︸

≤M

≥ JM (EγN )− M

N
,

where the last inequality was obtained from the fact that HM is bounded by M . For any
fixed M > 0, the sum on the right-hand side above vanishes as N → ∞ and hence since
EγN −−−−⇀

N→∞
γ, the lower semi-continuity of J gives that

lim inf
N→∞

JΩ,N (γN ) ≥ lim inf
N→∞

JM (EγN ) ≥ JM (γ).

Noticing that from the monotone convergence theorem H(ν, ν) = sup
M>0
HM (ν, ν), we get

lim inf
N→∞

JΩ,N (γN ) ≥ sup
M>0
JM (γ) = J (γ),

and the result follows.
To prove the Γ-limsup it suffices to construct recovery sequences only for non-random

transportation plans γ ∈ Pµ(X × Y). For any such measure, consider its disintegration
representation as γ = µ⊗ νx, and define a recovery sequence as

γN
def.= µN ⊗ νx,

where (µN )N∈N is the family of empirical random measures built from the i.i.d. sample
(Xi)i∈N of law µ. Let us show that γN −−−−⇀

N→∞
γ. We know from Lemma 4.3 that for any
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cluster point γ̃ of γN it holds that γ̃ is a deterministic measure, so for any convergent
subsequence we have

γNk −−−⇀k→∞
γ̃ = lim

N→∞
EγN = γ,

so that the whole sequence must converge to γ.
Next, for each N ∈ N, a simple computation yields

JΩ,N (γN ) =E

 1
N

N∑
i=1

(∫
Y
c(Xi, y)dνXi(y) +

∫
Y
L(y)dνXi(y)

)
+ 1
N2

∑
i 6=j

∫
HdνXi ⊗ νXj


= 1
N

N∑
i=1

∫
X

(∫
Y
c(xi, y)dνxi(y) +

∫
Y
L(y)dνxi(y)

)
dµ(xi)

+ 1
N2

∑
i 6=j

∫
X×X

(∫
Y×Y

Hdνxi ⊗ νxj
)

dµ⊗ µ(xi, xj)

= 1
N

N∑
i=1

∫
X×Y

(c+ L)dγ + 1
N2

∑
i 6=j

∫
Hdν ⊗ ν

=J (γ)− 1
N

∫
Y×Y

Hdν ⊗ ν ≤ J (γ).

Taking the lim sup as N →∞, the result follows. �

Now we use the properties of Γ convergence along with Prokhorov’s compactness The-
orem for random measures to show that cluster points of equilibria for the N -player game
are Cournot-Nash equilibria in the sense of Definition 1.1.
Theorem 4.7. Assume that inf

Pµ(X×Y)
J <∞, then if (γN )N∈N is a sequence of minimizers

of JΩ,N , then there exists a subsequence such that
γNk −−−−⇀Nk→∞

γ ∈Pµ(X × Y),

in the narrow topology of PΩ(X × Y), and in addition γ is a Cournot-Nash equilibrium
in the sense of Definition 1.1.

Assuming in addition that H ∈ Cb(Y×Y), for any sequence of Nash equilibria (γN )N∈N
from game (31), that is

(36) γN
def.= 1

N

N∑
i=1

δXi ⊗ νxi,N ∈PΩ,µN (X × Y),

converging to γ in the narrow topology of PΩ(X × Y), it holds that γ ∈Pµ(X × Y), and
it is a Cournot-Nash equilibrium in the sense of Definition 1.1.
Proof. To prove the first assertion, we know from the properties of Γ-convergence that

(37) inf
PΩ,µN (X×Y)

JΩ,N −−−−→
N→∞

inf
Pµ(X×Y)

J def.= C < +∞.

Hence, since the functionals JΩ,N are l.s.c. with compact level sets, for each N ∈ N it
admits a minimizer γN . So if this sequence has a cluster point, then it must also minimize
J , from Theorem 4.6. Hence, to finish the proof, it suffices to obtain such cluster point.
This will be done with the version of Prokhorov’s Theorem for random measures, see
Theorem 2.9, which states that a sequence of random measures is sequentially compact in
the narrow topology if and only if it is tight.

As µN −−−−⇀
N→∞

µ in the narrow topology of random measures it is a tight family, from
the Prokhorov’s Theorem, so for any ε > 0 there exists a compact set KX ,ε ⊂ X such that

E [µN (X \KX ,ε)] <
ε

2 .
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From (37) we get that, for N large enough,

E
[∫
Y
LdνN

]
≤ 2C,

so that, for some ε > 0 we obtain from Markov’s inequality that

E
[
νN

({
L ≤ 4C

ε

})]
≤

E
[∫
Y
LdνN

]
2C/ε ≤ ε

2 .

Since L has compact level sets, we set KY,ε = {L ≤ 4C/ε} and set Kε
def.= KX ,ε×KY,ε, so

that

E [γN (X × Y \Kε)] ≤ E [γN ((X \KX ,ε)× Y)] + E [γN (X × (Y \KY,ε))]
= E [µN ((X \KX ,ε)× Y)] + E [νN (X × (Y \KY,ε))] < ε.

We conclude that the sequence of random measures γN is tight, and hence admits a
convergent subsequence in the narrow topology of PΩ(X ×Y). As discussed above, from
Lemma 4.3 the limit of this subsequence belongs in Pµ(X × Y) and minimizes J . From
the variational characterization of equilibria given in Theorem 3.3, γ is a Cournot-Nash
equilibrium in the sense of Definition 1.1.

To prove the second assertion, let γN be defined as in (47) and γ a limit point. From
Lemma 4.3, γ ∈ Pµ(X × Y), our goal is to verify that γ is a critical point of J , i.e. for
any γ̄ ∈Pµ(X × Y) we verify that〈

δJ
δγ

, γ̄ − γ
〉

=
∫
X×Y

(
c(x, y) + L(y) + 2

∫
Y
H(y, ȳ)dν(ȳ)

)
d(γ̄ − γ)(x, y) ≥ 0,

where ν = (πY)]γ. From Thm. 3.3, this will show that γ is a Cournot-Nash equilibrium.
Fix some γ̄ ∈ Pµ(X × Y), and recall the recovery sequence obtained from the Γ-

convergence proof; consider a disintegration family γ̄ = µ⊗ ν̄x so that

γ̄N
def.= 1

N

N∑
i=1

ν̄Xi −−−−⇀
N→∞

γ.

We consider a unilateral deviation of player i with the alternative strategy ν̄Xi , to the
profile

(
νX1

1,N , . . . , ν
XN
N,N

)
. Since the latter is a Nash equilibrium in mixed strategies, we get

that JΩ,i(ν̄Xi , ν
X−i
−i,N ) ≥ JΩ,i(νXii,N , ν

X−i
−i,N ), for JΩ,i defined in (31). This can be rewritten as

E

∫
Y
c(Xi, y) + L(y)dν̄Xi + 2

N

∑
j 6=i

∫
Y×Y

Hdν̄Xi ⊗ νXjj,N


≥ E

∫
Y
c(Xi, y) + L(y)dνXii,N + 2

N

∑
j 6=i

∫
Y×Y

HdνXii,N ⊗ ν
Xj
j,N

 .
Let us define the measures

γN,−i
def.= 1

N

∑
j 6=i

δXj ⊗ ν
Xj
j,N , and νN,−i

def.= (πY)]γN,−i,

so that evaluating the expectations, using the definition of the expectation measure we
obtain∫
X×Y

(c+L)dγ̄+2
∫
Hdγ̄⊗EγN,−i ≥ E

[∫
Y
c(Xi, y) + L(y)dνXii,N

]
+2

∫
HdE[νXii,N ]⊗EγN,−i.
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Rewriting γN,−i = γN − 1
N δXi ⊗ νXii,N and averaging over all i, we get that∫

X×Y
(c+ L)dγ̄ + 2

(
1− 1

N

)∫
Hdγ̄ ⊗ EγN

≥
∫
X×Y

(c+ L)dEγN + 2
∫
HdEγN ⊗ EγN −

2
N2

N∑
i=1

∫
HdEνXii,N ⊗ EνXii,N

As H ∈ Cb, the last term is a O(1/N) and hence vanishes as N →∞. In addition, since
EγN −−−−⇀

N→∞
γ, from the convergence of γN and Lemma 4.3, we get that

0 ≥ lim inf
N→∞

∫
X×Y

c+ Ld(EγN − γ̄) + 2(N − 1)
N

∫
HdEγN ⊗ (EγN − γ̄)

≥ lim inf
N→∞

∫
X×Y

c+ Ld(γ − γ̄) + 2
∫
Hdγ ⊗ (γ − γ̄) =

〈
δJ
δγ

, γ − γ̄
〉
.

From Thm. 3.3, γ is a Cournot-Nash equilibrium. �

4.2. Convergence in the closed loop formulation.

4.2.1. Potential structure for closed loop formulation. We recall that the closed loop for-
mulation described in the introduction can be described as follows: Given an event
ω = (xi)i∈N, each player seeks to

(38)

minimize
νi∈P(Y)

Jω,i(νi, ν−i)
def.=
∫
Y
c(xi, y)dνi +

∫
Y
Ldνi + 2

N

∑
j 6=i

∫
Y×Y

Hdνi ⊗ νj

=
∫
Y
c(xi, y)dνi + L(νi) + 2

N

∑
j 6=i
H(νi, νj).

Notice that we have written the relaxed formulation in mixed strategies and a profile in
pure strategies is just a tuple (νi)Ni=1 such that νi = δyi for all players.

Under assumption (H1), that µ has no atoms, with full P-probability, the event ω =
(xi)i∈N has distinct realizations, i.e. xi 6= xj for all i 6= j. For every such event, there is a
bijection between the strategy profiles (νi)Ni=1 and the measures γN ∈PµN (ω)(X × Y) by
means of the disintegration theorem, which guarantees that each such measure is uniquely
written as

(39) γN = 1
N

N∑
i=1

δxi ⊗ νxi

This representation can be seen as a lift of a profile of strategies (νi = νxi)Ni=1 to the space
of plans P(X × Y). We can define a potential function in the lifted space as

(40) Jω,N (γN ) def.=



∫
X×Y

cdγN + 1
N

N∑
i=1
L (νxi)

+ 1
N2

∑
j 6=i
H (νxi , νxj ) ,

if γN ∈PµN (ω)(X × Y),

+∞, otherwise,

where (νxi)Ni=1 denotes the unique profile obtained though the representation (39).
The formulation in pure strategies can then be obtained by considering the following

potential functional

(41) Jω,N (y1, . . . , yN ) def.= Jω,N

(
1
N

N∑
i=1

δ(xi,yi)

)
.
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This is equivalent to restricting Jω,N to the set

Ppure
µN

(X × Y) def.=
{
γN ∈PµN (X × Y) : γN = 1

N

N∑
i=1

δ(xi,yi)

}
.

Remark 4.8. Assumption (H1), that µ is atomless, is particularly relevant here in order
to make the disintegration representation uniquely well-defined with full probability. As
showed in Remark 3.4, this is not restrictive since we can replace the space X with X ′ =
[0, 1] × X . In the context of the sampling, we would obtain an i.i.d. sequence (X ′i)i∈N =
(Ti, Xi)i∈N with common law given by µ′ = L1 [0, 1] × µ, which has no atoms since the
Lebesgue measure is non-atomic. Therefore, any event ω′ = ((Ti, Xi) = (ti, xi))i∈N is such
that (ti, xi) 6= (tj , xj) with full probability.

As in the open loop case, the above potential functional admits minimizers since c, L
and H are l.s.c. and L has compact level sets. We shall prove that minimizers for each
potential functional yield Nash equilibria for the corresponding game and, in the case
that H vanishes in the diagonal and is strictly positive elsewhere, we can prove that any
minimizer induces a Nash equilibrium in pure strategies.

Proposition 4.9. The following assertions hold:
(i) It is equivalent to minimize Jω,N and Jω,N , minimizers of the latter are supported

on the set of minimizers of the former and it holds that
(42) min

YN
Jω,N = min

Ppure
µN

(X×Y)
Jω,N = min

PµN
(X×Y)

Jω,N .

(ii) Let

(yi)Ni=1 ∈ argmin Jω,N , γN = 1
N

N∑
i=1

δxi ⊗ νω,i ∈ argminJω,N

then (yi)Ni=1 and (νω,i)Ni=1 induce Nash equilibria for the game (38).
(iii) Suppose that H vanishes on the diagonal, that it is strictly positive outside it and

that we allow for self interaction in our game, i.e. we replace L with LH(γ) =
L(γ) +H(γ, γ). Then minimizers of Jω,N are of the form

(43) γN = 1
N

N∑
i=1

δ(xi,yi), where (y1, . . . , yN ) ∈ argmin Jω,N .

(iv) If H = +∞ in the diagonal, any minimizer of Jω,N is atomless.

Proof. The first equality in (42) comes from the bijection between the set of pure equilib-
rium measures and Y⊗N . The second is a direct consequence of the fact that the measures
γN in the domain of Jω,N can be written as

γN = 1
N

N∑
i=1

δxi ⊗ νi,

so that we can write

Jω,N (γN ) =
∫
Y⊗N

Jω,N (y1, . . . , yN )dν1 ⊗ · · · ⊗ νN .

Then for any admissible γN , we have
min

PµN (ω)(X×Y)
Jω,N (γ) ≥ min

Y⊗N
Jω,N .

Taking γN with second marginal supported on the set of minimizers of Jω,N gives the
result.

The proof of assertion (ii) is analogous to the proof of Proposition 4.2.
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To prove (iii), notice that from item (i) and the fact that H ≥ 0 it holds that

inf Jω,N ≥ inf Jω,N + 1
N2

N∑
i=1
H(νω,i, νω,i) ≥ inf Jω,N .

Which means that H(νω,i, νω,i) = 0 for all i = 1, . . . , N , and since H only vanishes in the
diagonal, it must hold that νω,i = δyi . From (i) and the previous argument, any minimizer
of J is of the form of (43).

With a dual reasoning, if γN has an atom, i.e. if there is a point where γN ({xi, yi}) > 0,
and H explodes in the diagonal, the self interaction term gives Jω,N (γN ) = +∞ and it
cannot be a minimizer. �

4.2.2. Γ-convergence for the closed loop formulation. Now we move on to the question of
the convergence of a sequence of Nash equilibria for the games in closed loop (38). In this
case we have a family of games indexed by the sample ω = (xi)i∈N of the players’ state
variables, therefore we can only expect a Γ convergence to hold with P-probability 1. We
start by showing a general Lemma that gives Γ-convergence with full probability.

Lemma 4.10. Given a probability space (Ω,F ,P) and a family of functionals (Fω,N )N∈N
ω∈Ω

and a functional F over a Polish space X such that
(1) there is a set Ω0 with full P-probability such that for any xN → x the Γ − lim inf

inequality for Fω,N holds

F (x) ≤ lim inf
N→∞

Fω,N (xN ), for all ω ∈ Ω0

(2) for each x ∈ X there is a set Ωx with full P-probability for which we can construct
recovery sequences of Fω,N

lim sup
N→∞

Fω,N (xN ) ≤ F (x), for all ω ∈ Ωx.

Under these conditions, there is a set Ω̄0 with full P-probability such that for any ω ∈ Ω̄0
the sequence Fω,N Γ-converges to F .

Proof. First we claim that there exists a countable and dense set D ⊂ X which is dense
in the energy F , i.e. for each x ∈ X there is (xn)n∈N ⊂ D such that

(44) xn −−−→
n→∞

x and F (xn) −−−→
n→∞

F (x).

See for instance [2, Lemma 11.12] for a constructive argument, a simple proof comes from
the fact that R×dom F is separable as an (arbitrary) subset of the separable space R×X ,
since subsets of second countable spaces are second countable.

Hence we can define the set Ω̄0 as

Ω̄0
def.= Ω0 ∩

⋂
x∈D

Ωx,

where Ω0 denotes the set where the Γ-lim inf holds for all points x ∈ X and Ωx denotes
the event in which we can construct recovery sequences for x. Since D is countable, it
holds that P(Ω̄0) = 1.

To prove the Γ-convergence for each ω ∈ Ω̄0, we recall the notions of lower and up-
per Γ limits from Section 2.3, and to conclude it suffices to prove for all ω ∈ Ω̄0 that
Γ- lim inf Fω,N = Γ- lim sup Fω,N = F . Indeed, item (1) shows that

F ≤ Γ- lim inf Fω,N , for all ω ∈ Ω̄0.

On the other hand, from item (2), it follows for any x ∈ D that

Γ- lim sup Fω,N (x) ≤ F (x), for all ω ∈ Ω̄0.
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Hence, for any ω ∈ Ω̄0 and an arbitrarily x ∈ X , let (xn)n∈N be a sequence in D satisfy-
ing (44), so that using the lower semi-continuity of the Γ upper limit we have that

Γ- lim sup
N→∞

Fω,N (x) ≤ lim inf
n→∞

(
Γ- lim sup

N→∞
Fω,N (xn)

)
≤ lim inf

n→∞
F (xn) = F (x)

which gives the Γ-convergence with full probability. �

To apply this Lemma, we know from the Glivenko-Cantelli law of large numbers that
empirical measures converge P almost surely. Hence, we consider the set

(45) Ω0
def.=
{
ω = (xi)i∈N ∈ suppP :

xi 6= xj , for i 6= j
µN (ω) −−−−⇀

N→∞
µ

}
.

The first condition above is so that the sequence of functionals Jω,N is well-defined for
any ω ∈ Ω0. From the fact that µ is atomless and the above discussion, P(Ω0) = 1.

While the Γ-liminf argument will be similar to the open loop information structure, for
the Γ-limsup we will use a construction depending on a sequence of random variations of
the form

(46)
1
N

N∑
i=1

Li + 1
N2

∑
i 6=j

Hi,j

where Li
def.= c(Xi, Yi) + L(Yi), Hi,j

def.= H(Yi, Yj),

where (Xi, Yi) ∼ γ. The first sum is fortunately an i.i.d. sequence, so that from the law
of large numbers it must converge to its mean. The second term however is not i.i.d., but
it is exchangeable as it can be written as a symmetric function of an i.i.d. sample. In the
following Proposition, whose proof is a synthesis of the ideas from [34, Chap. 12], we show
that such families of random variables also enjoy a law of large numbers.

Proposition 4.11. Let
(
H̄n

)
n∈N

be a sequence of random variables obtained as the sym-
metric image of an i.i.d. sample, that is let it be the enumeration of the family of random
variables

(Φ(Xi, Xj))i 6=j∈N,

where Φ : X × X → R is a symmetric function and (Xi)i∈N is an i.i.d. sample. Then

1
N

N∑
n=1

H̄n −−−−→
N→∞

E[H̄1], with probability 1.

For the sake of readability of the main ideas employed to prove the Γ-convergence result,
we include the proof of the previous proposition in Appendix A.

Theorem 4.12. With full P-probability, the sequence of functionals Jω,N convergence to
J in the sense of Γ convergence in the narrow topology of P(X × Y).

Proof. It suffices to verify the hypothesis of Lemma 4.10. To prove (1), consider ω ∈ Ω0
defined above in (45), and let (γN )N∈N be a sequence such that γN ∈ PµN (X × Y) and

converging to γ. So we can assume that γN can be written as γN = 1
N

N∑
i=1

δxi ⊗ νxi ,

where νxi ∈ P(Y) and for any ω ∈ Ω0, it follows from the continuity w.r.t. convergence
of marginals that γ ∈Pµ(X × Y).
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For an arbitrary M > 0, define HM (ν, ν) def.=
∫
H ∧Mdν ⊗ ν, and it follows that

Jω,N (γN ) ≥
∫
X×Y

cdγN + 1
N

N∑
i=1
L(νxi)︸ ︷︷ ︸

=L(νN )

+ 1
N2

∑
i,j

HM (νxi , νxj )

︸ ︷︷ ︸
=HM (νN ,νN )

− 1
N2

N∑
i=1
HM (νxi , νxi)

=
∫
X×Y

cdγN + L(νN ) +HM (νN , νN )− 1
N2

N∑
i=1
HM (νxi , νxi)

≥
∫
X×Y

cdγN + L(νN ) +HM (νN , νN )− M

N
.

The sum on the RHS vanishes as N → ∞ for each M > 0 and hence the lower semi-
continuity of the remaining terms w.r.t. narrow convergence, as integrals of l.s.c. inte-
grands, for every M > 0 gives

lim inf
N→∞

Jω,N (γN ) ≥ lim inf
N→∞

∫
X×Y

cdγN + L(νN ) +HM (νN , νN )

≥
∫
X×Y

cdγ + L(ν) +HM (ν, ν).

Noticing that from the monotone convergence theorem H(ν, ν) = sup
M>0
HM (ν, ν), the Γ-

lim inf follows.
To verify property (2) from Lemma 4.10, given some γ ∈ Pµ(X × Y), let ν = (πY)]γ.

By an application of the disintegration theorem one can write γ = νx ⊗ µ for some Borel
map (νx)x∈X , i.e.∫

X×Y
ϕ(x, y)dγ =

∫
X

(∫
Y
ϕ(x, y)dνx(y)

)
dµ(x), for all ϕ ∈ Cb(X × Y).

This disintegration family is only µ-a.e.uniquely defined, but we can fix one such family
and define a new transportation plan as γN

def.= µN ⊗ νx. Since we have fixed one disinte-
gration family, γN ∈ PµN (X × Y) is well-defined for every event ω = (xi)i∈N. From the
definition, it then holds that∫

X×Y
φ(x, y)dγN

def.= 1
N

N∑
i=1

∫
φ(xi, y)dνxi , for all φ ∈ Cb(X × Y).

Hence γN ∈ Π(µN , νN ) where µN = 1
N

N∑
i=1

δxi , νN = 1
N

N∑
i=1

νxi .

Let us prove that γN converges narrowly to γ; indeed from Prop. 2.3 we know there is a
countable set K ⊂ Cb(X), such that to prove narrow convergence it suffices to verify that∫

X×Y
f(x, y)dγN −−−−→

N→∞

∫
X×Y

f(x, y)dγ, for all f ∈ K.

For each f ∈ K, we compute∫
X×Y

f(x, y)dγN = 1
N

N∑
i=1

∫
X×Y

f(xi, y)dνxi(y).

Hence, each term of the sum on the right is a realization of the i.i.d. sequence of random
variables Fi

def.=
∫
Y
f(Xi, ·)dνXi . From the strong law of large numbers, it holds with
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probability 1 that ∫
X×Y

fdγN = 1
N

N∑
i=1

Fi(ω) −−−−→
N→∞

EP [F1] =
∫
X
fdγ.

Let Ωγ,f denote the set of probability 1, which depends on γ and f , where the above
converge holds. Then defining

Ω̃γ =
⋂
f∈K

Ωγ,f ,

we have that P(Ω̃γ) = 1 and for any ω ∈ Ω̃γ it holds that γN −−−−⇀
N→∞

γ.
We now apply a similar argument to the convergence of the energies. Indeed, writing

Jω,N (γN ) = 1
N

N∑
i=1

∫
Y

(c(xi, y) + L(y)) dνxi(y) + 1
N2

∑
j 6=i

∫
Y×Y

Hdνxi ⊗ νxj .

We see that the first sum is the empirical average of the i.i.d. sequence of random variables
Li

def.=
∫
Y

(c(Xi, y) + L(y))dνXi(y) while the double sum can be written in terms of the

sequence Hi,j
def.=
∫
HdνXi⊗νXj . As a consequence, applying once again the strong law of

large numbers, there is a set ΩL,γ with probability 1, such that for any ω ∈ ΩL,γ it holds
that

1
N

N∑
i=1

Li(ω) −−−−→
N→∞

EP[L1] =
∫
X

[∫
Y

(c(x, y) + L(y))dνx(y)
]

dµ(x)

=
∫
X×Y

(c(x, y) + L(y))dγ =
∫
X×Y

cdγ + L(ν).

For the second term, the random variables (Hi,j)i 6=j are no longer i.i.d., but satisfy the
hypothesis of Thm. 4.11 with Φ given by

Φ(x1, x2) def.=
∫
Y×Y

Hdνx1 ⊗ νx2 ,

which is symmetric and measurable from the measurability of the family (νx)x∈X . We
conclude that there is another set ΩH,γ with probability 1 such that for all ω ∈ ΩH,γ it
holds that

1
N2

∑
j 6=i

∫
Y×Y

Hdνxi ⊗ νxj −−−−→
N→∞

EP[H1,2] = H(ν, ν).

Finally, the set Ωγ
def.= Ω̃γ ∩ΩL,γ ∩ΩH,γ has probability 1 and satisfies all the properties

of item (2).
From the thesis of Lemma 4.10, the Γ convergence with full P-probability follows �

As in the closed loop case, with an analogous proof to the open loop case, we ob-
tain a result assuring, with full P-probability, the convergence of a particular sequence
of Nash equilibria to equilibria of Cournot-Nash type, and whenever H is continuous the
convergence of any sequence of Nash equilibria.

Theorem 4.13. Assume that inf
Pµ(X×Y)

J < ∞, then there are sequences of Nash equi-

libria for the game (38), described by transportation plans (γN )N∈N such that, with full
P-probability, converge up to a subsequence in the narrow topology to a Cournot-Nash
equilibrium γ ∈Pµ(X × Y), in the sense of Definition 1.1.
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Assuming in addition that H ∈ Cb(Y × Y), with P-full probability, for any sequence of
Nash equilibria (γN )N∈N from game (38), that is

(47) γN
def.= 1

N

N∑
i=1

δxi ⊗ νi,N ∈PµN (ω)(X × Y),

converging to γ in the narrow topology of P(X × Y), it holds that γ ∈ Pµ(X × Y), and
it is a Cournot-Nash equilibrium in the sense of Definition 1.1.

5. Conclusion

If anything, the convergence of Nash to Cournot-Nash equilibria demonstrates how dif-
ficult the convergence question in the context of Mean Field Games is. The Γ-convergence
approach relies entirely on the fact that a variational description of equilibria in provided
in Thm. 3.3 and is not useful to other games, for which we have only fixed point techniques
at disposal. The following questions then present themselves:

• Can we consider other types of energy? The analysis seems very specific to an
energy that is the sum of an individual and a pair-wise interaction costs.
– Using the characterization of convex functions as the envelope of all linear

functions below it, one could try to adapt the arguments of the linear term
to the case of an individual convex energy.

– In principle, the arguments treating the pair-wise interaction term could be
extended to a k-wise interaction, as long as the number of players interacting
remains uniformly bounded, as in this case an analogous law of large numbers
from Appendix A should hold.

• Another direction would be to derive a large deviations principle for the Gibbs
measures associated with the potential function of theN -player games, whose Nash
equilibria converge to Cournot-Nash equilibria, in accordance with the statistical
mechanics intuition that motivated the original name Mean Field Games.
• In games where the underlying space X is euclidean and the cost c is a contin-
uous and convex function, the connections with optimal transport described in
the introduction allows us to conclude that minimizers of the potential function
are equilibria in pure strategies. However, we cannot apply these results to the
very natural case of Lagrangian MFGs, since c becomes the indicator function of
satisfying prescribed initial conditions, see example 3.6. Can we obtain conditions
guaranteeing that solutions are of pure strategies type?

Appendix A. The law of large numbers for symmetric functions of an i.i.d.
sample

In this appendix we prove Proposition 4.11. The ideas are a minor modification of the
presentation of [34], hence our goal is to make it as self-contained as possible to readers
less familiarized with probability theory, but we hope it can be useful in other contexts as
well. We also observe that this proof remains true if one considers Φ : X⊗k → R, for any
k ∈ N. With this we can now proceed with our Γ-convergence type result.

Proposition A.1. Let (Hi,j)i 6=j∈N be a sequence of random variables obtained as

Hi,j = (Φ(Xi, Xj))i 6=j∈N,

where Φ : X × X → R is a symmetric function and (Xi)i∈N is an i.i.d. sample. Then
1
N2

∑
1≤i,j≤N
i 6=j

Hi,j −−−−→
N→∞

E[H1,2], with probability 1.
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Proof of Prop. 4.11. First, define the exchangeable σ-algebra as follows: we say a func-
tion f : R⊗N → R is n-symmetric if it is symmetric w.r.t. permutations of at most n
indexes. In other words, for any permutation σ : N→ N swapping at most n indexes, then
f
(
(xσ(n))n∈N

)
= f

(
(xn)n∈N

)
. We then define the exchangeable σ-algebra as

E∞
def.=

⋂
n∈N
En, where En

def.= σ

({
f
(
(Xi)i∈N

)
:
f : R⊗N → R
is n-symmetric and Borel

})
,

where σ
(
{Fi}i∈I

)
is defined as the smallest σ-algebra that makes the hole family of random

variables (Fi)i∈I measurable.
Take g : R⊗N → R, bounded and n-symmetric function, for all i ≤ n, it holds from

exchangeability that

E [Hi,jg (X·)] = E [Φ(Xi, Xj)g (X1, X2, X3, . . . , Xi−1, Xi, Xi+1, . . . , Xj−1, Xj , Xj+1, . . . )]
= E [Φ(X1, X2)g (Xi, Xj , X3, . . . , Xi−1, X1, Xi+1, . . . , Xj−1, X2, Xj+1, . . . )]
= E [H1,2g (X·)]

In particular, taking g = 1A for an arbitrary set A ∈ En and averaging the above equality
for all 1 ≤ i, j ≤ n with i 6= j, we obtain that

E

 1
n(n− 1)

∑
i 6=j

Hi,j1A

 = E [H1,21A] , so that 1
n(n− 1)

∑
i 6=j

Hi,j = E [H1,2| En] ,

by the definition of conditional expectation for L1 random variables. This means that
1

n(n−1)
∑
i 6=j Hi,j is a backwards martingale for the filtration (En)n∈N and a suitable mar-

tingale convergence Theorem, [34, Thm. 12.14], gives that
1

n(n− 1)
∑
i 6=j

Hi,j −−−→
n→∞

E [H1,2| E∞] with convergence a.s. and in L1.

Since (Xi)i∈N is i.i.d., the Hewitt-Savage 0− 1 law, see [34, Cor. 12.19] and [30], states
that E∞ is a trivial σ-algebra, so that for any set A ∈ E∞, P(A) is either 0 or 1. Hence, as
E [H1,2| E∞] is an E∞-adapted random variable, it must be given by a constant given by
its mean E [E [H1,2| E∞]] = E [H1,2], and the result follows. �
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