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Abstract21

With the increased frequency and intensity of landslides in recent years,22

there is growing research on timely detection of the underlying subsurface23

processes that contribute to these hazards. Recent advances in machine24

learning have introduced algorithms for classifying seismic events associated25

with landslides, such as earthquakes, rockfalls, and smaller quakes. How-26

ever, the opaque, “black box” nature of deep learning algorithms has raised27

concerns of reliability and interpretability by Earth scientists and end-users,28

hesitant to adopt these models. Leveraging on recent recommendations on29

embedding humans in the Artificial Intelligence (AI) decision making process,30

particularly training and validation, we propose a methodology that incor-31

porates data labelling, verification, and re-labelling through a multi-class32

convolutional neural network (CNN) supported by Explainable Artificial In-33

telligence (XAI) tools, specifically, Layer-wise Relevance Propagation (LRP).34

To ensure reproducibility, a catalogue of training events is provided as sup-35

plementary material. Evaluation from the French Seismologic and Geodetic36

Network (Résif) dataset, gathered in the Alps in France, demonstrate the37

effectiveness of the proposed methodology, achieving a recall/sensitivity of38

97.3% for rockfalls and 68.4% for quakes.39

Preprint submitted to Remote Sensing of Environment November 19, 2024
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1. Introduction44

Seismic signal analysis is based on collecting, processing and performing45

inference on seismic signals with the goal of detecting, understanding, clas-46

sifying and locating seismic events, including not only earthquakes, but also47

rockfalls and smaller quakes or tremors that characterise landslides and their48

severity. The devastating effects of landslides on humans and infrastructure49

have been making headlines, and more recently have been often attributed50

to extreme weather and/or human activities. Seismometers provide accurate51

recordings of mechanical waves originating from various sources, but due to52

their high sensitivity, distinguishing between mechanical waves originating53

from tectonic activities and any other signals contained in the recordings54

(e.g., rainfall, animals, traffic, natural noise, machinery, etc.) is not an easy55

task. Manually identifying events based on recordings of seismometers is a56

time-consuming and subjective task, prone to errors and bias. Thus, manual57

detection has gradually been replaced by methods that automatically detect58

and classify seismic events. With higher availability in seismic recordings and59

advances in AI, seismic signal analysis has become a very much data-driven60

field and has spread well beyond seismology and geoscience, as it is now of61

interest to much broader research communities [1].62

Deep learning has been shown to be achieve excellent detection and clas-63

sification performance for a range of applications where sufficient amount of64

labelled data is available, including automated road extraction [2], pneumo-65

nia diagnosis from medical imaging [3], satellite image analysis [4], [5], and66

car detection [6]. Due to the availability of many well-maintained datasets,67

the number of deep learning approaches used in seismology has also sky-68
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rocketed in recent years (see Fig. 1 in [1]) using enormous amounts of data69

to train the models. Consequently, recent literature is dominated by deep70

learning techniques applied to diverse tasks such as seismic event labelling71

using Residual Neural Network (ResNet) [7], magnitude estimation using72

a network that combines CNN and Recurrent Neural Networks (RNN) [8],73

event localization using CNN architectures [9], multitask learning for classifi-74

cation with velocity models [10] and tackling seismic inversion problems with75

conditional Generative Adversarial Networks (GAN) [11]. A detailed review76

of deep learning architectures, specifically proposed, for event classification77

from seismic recordings can be found in [12].78

For example, CNN-based model ‘DeepQuake’ [13] has demonstrated ro-79

bust performance for high-magnitude earthquakes, though it has limitations80

with microseismic events, as demonstrated in [12]. In [14], RockNet, taking81

both 3-channel time series window and a spectrogram of the vertical channel82

of the window as inputs, is proposed for classifying rockfalls and earthquakes.83

The deep learning models achieve state-of-the-art performance in detecting84

and classifying seismic signals avoiding cumbersome manual feature gener-85

ation, selection and extraction process, with their ability to automatically86

learn most discriminative features from raw recordings. However, this also87

means that these models are limited by the used training set, and may learn88

specifically spurious correlations with the prediction target [15], [16]. Fur-89

thermore, the fact that the feature engineering task is taken away from the90

designer, makes deep learning models opaque, and hence often referred to as91

“black box”, which limits their use. Indeed, geoscientists are still reluctant92

to use them and rather rely on less complex interpretable methods based93

on hand-crafted features [17] that ensure that relevant physical features are94

used for detection and classification (see, e.g., Table I in [17] and Table A195

in [18]).96

Explainable artificial intelligence (XAI) [19], [20], is a research direction97

that provides human-interpretable explanations that can potentially enhance98

3
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training process, correct manual data annotation, improve models, and con-99

tribute towards building trust in AI-generated outputs [21], [22]. XAI tools00

have been extensively used in computer vision (e.g., [23]) and time-series sig-01

nal analysis problems (e.g., [24]); however, the work on explaining the output02

of deep learning models for seismic signal analysis, and using these explana-03

tions to improve confidence in data labelling, model training and building04

trust in inferred outputs, is still in its infancy.05

In order to pave the way towards a regulatory framework for ensuring06

trust in AI, the European Commission has published seven principles of07

Trustworthy AI [25], which include Human Agency and Oversight, Technical08

Robustness and Safety, Privacy and Data Governance, Transparency, Di-09

versity, Non-discrimination and Fairness, Societal and Environmental Well-10

Being and Accountability.11

Depending on how the AI-based seismic analysis will be used, from un-12

derstanding the subsurface processes and mechanics to hazard and disaster13

management, the AI systems can be seen as minimal risk to high risk, and14

therefore subject to strict oversight before they can be used to ensure infras-15

tructure and human safety. Therefore, the following principles are important16

for seismic analysis. First, AI systems should empower decision makers when17

it comes to hazard assessment or infrastructure planning, allowing them to18

make informed decisions from the AI system outputs. The principle of Hu-19

man Agency and Oversight caters for proper oversight mechanisms that need20

to be ensured, which can be achieved through human-on-the-loop and human-21

in-command approaches. Second, the principle of technical robustness and22

safety, in part states that AI systems need to be accurate, reliable and re-23

producible to ensure unintentional harm can be minimised and prevented.24

Accuracy refers to the ability to correct predictions based on AI models and25

can be implemented via rigorous evaluation and indication of likelihood of po-26

tential errors. Reproducibility describes whether an AI experiment exhibits27

the same behaviour when repeated under the same conditions. A reliable AI28

4
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system is one that works properly with a range of inputs and in a range of29

situations. Third, the principle of privacy and data governance enables users30

to trust the data gathering process and that it does not contain inaccuracies,31

errors or mistakes, especially with respect to labelling or cataloguing by ex-32

pert geoscientists. Fourth, the principle of transparency states that the data33

and AI system should be transparent through traceability mechanisms in the34

form of documentation of datasets and processes that yielded in decision, in-35

cluding data gathering, data labelling and algorithms used. Furthermore,36

transparency also includes explainability, that is, AI systems and their deci-37

sions should be explained in a manner adapted to the stakeholder concerned.38

This includes XAI. Fifth, transparency also states that humans need to be39

aware that they are interacting with an AI system, and must be informed of40

the system’s capabilities and limitations. Finally, the social and environmen-41

tal well-being principle state that the AI systems should be sustainable and42

environmentally friendly - this can be through taking into considering the43

resource usage and energy consumption for training the models. Moreover,44

they should consider the societal impact. Monitoring, understanding, mod-45

elling and predicting landslide processes due to climate change, especially46

rainfall, tackle United Nations (UN) Sustainable Development Goal (SDG)47

13 on Climate Action [26]. As explained in [27], shearing and friction be-48

tween the soil grains results in release of seismic energy within the landslide49

body. Therefore, passive seismic monitoring is a good approach to monitor50

and mitigate slope instabilities, as it provides high temporal resolution data51

in near real time that relate to the dynamics of the landslide. This means52

that the transition (and rapid transformation) of the landslide from slow53

rate sliding into a rapid slope failure may be detected and therefore mitigate54

associated hazards.55

5
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2. Literature review on Trustworthy AI for Seismic Signal Analysis56

To ensure trust and expert’s control of the decision process, machine57

learning-based seismic signal analysis has been performed either in a semi-58

automated manner [28] using continuous expert oversight and monitoring59

(human-on-the-loop), using interpretable models [17], or using non-interpretable60

models (such as Random Forests) but with numerous hand-crafted features61

[29] to ensure that the inference is made on signal characteristics identified62

by experts as important. In [18] a detailed study of feature importance is63

presented where 119 features are constructed based on seismic signal liter-64

ature and their importance tested using four different feature importance65

methods and different classifiers based on Support Vector Machine, Random66

Forest, and three graph signal processing based semi-supervised approaches.67

The features are experimentally ranked showing time-, frequency-, cepstrum68

and polarity features that are of highest importance in inference making per69

studied class. The results show that out of 119 constructed features only70

a subset contributed significantly to the decision. Note that this study was71

based on quantifying the importance of hand-crafted features in accurately72

classifying multiple event classes from continuous data, thus deep learning73

networks were not considered.74

In [13], convolutional neural networks (CNNs) are used to classify isolated75

catalogued seismic events into noise, earthquake and other events. The au-76

thors developed a heatmap-based visualisation tool to explain model outputs77

via the outputs of activation functions of each filter in the convolutional lay-78

ers and then overlapping the result with the raw input signal. However, this79

study has several weaknesses when it comes to gaining trust in model out-80

puts. Firstly, it is not clear how explanations are formed by fusing outputs81

of the activation functions from different layers. Secondly, only binary clas-82

sification is considered, i.e., identifying relatively well-defined earthquakes83

from other signals. Thirdly, the approach does not exploit advanced XAI84

methods, and it is not used to explain any false predictions.85

6
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In [30], the authors proposed a Dual-Channel CNN Module where one86

channel contains raw time-domain waveforms, and the other channel con-87

tains frequency-domain information by Discrete Cosine Transform (DCT) to88

classify input seismic waveform into rock fracturing and noise, together with89

an explanation module, EUG-CAM (Elaborate Upsampling-based Gradient-90

weighted Class Activation Mapping). It builds upon the principles of the91

gradient weighted class activation mapping (GradCAM) [31], harnessing the92

influence of feature map values and gradients to elucidate the importance of93

diverse features in the last convolutional layer. Recognizing the discrepancy94

between feature map sizes and input data dimensions, EUG-CAM uses a95

strategic amalgamation of transposed convolution, unpooling, and interpo-96

lation, to generate feature mappings from a coarse localization map. This97

results in an explanation feature map that effectively encapsulates class acti-98

vation, learning insights, and network architecture considerations. However,99

the model’s limitation is in classifying only two classes (rock fracturing vs.00

noise) and its confinement to binary classification. Furthermore, the reliance01

on a 1-D CNN model facilitates explanations primarily within the time do-02

main, possibly neglecting the benefits of frequency-domain insights garnered03

from the DCT. Additionally, the visualization maps cannot show the ad-04

verse input signal influence (negative contribution) on classification results,05

hampering a comprehensive and well-rounded comprehension of the model’s06

decision-making process.07

In [12], the authors present CNN models with six channel inputs for08

multi-class classification of earthquakes, quakes, rockfalls and noise and use09

visualization of feature maps to understand the network’s internal work-10

ings. The authors examine feature maps at various convolutional layers and11

the second fully connected (FC) layer, gaining insights into feature extrac-12

tion. Different models, including time-series, Short-time Fourier Transform13

(STFT) and Continuous Wavelet Transform (CWT)-based designs, highlight14

the network’s focus on time, frequency, and wavelet characteristics. The main15

7
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observation is that early layers locate event positions and extract basic fea-16

tures, while deeper layers refine these features into abstract representations17

for classification. The second FC layer’s feature distributions vary across18

seismic events, indicating the network’s capability to distinguish three event19

types from noise based on learned features. In addition, Layer-wise Rele-20

vance Propagation (LRP) showed promising results in identifying the most21

relevant features for each class, further enhancing the interpretability of the22

model [32].23

2.1. Contributions24

The goal of this paper is to provide comprehensive explanations to iden-25

tify key features learnt by a deep neural network for multi-class classification,26

demonstrate that these features are in agreement with the physical properties27

of seismic signals and common hand-crafted features used in the literature28

[17]. The generated explanations are then used to explain instances of mis-29

classifications and correct errors in manual labelling, jointly with a geoscien-30

tist, who verified the corrected labels of the classified events and the features31

associated with these events. This builds trust in the models confirming that32

the learnt feature representations agree with expert knowledge.33

We use state-of-the-art XAI tools to explain deep learning models for34

detection and classification of micro-seismic signals and show how these35

explanations can be used to improve the designs and explain correct and36

wrong predictions. In particular, we use a CNN-based architecture with a37

frequency-domain input, for detection and classification of seismic signals38

into four classes: earthquake, micro-earthquake referred to as quake, rock-39

fall and noise. These are the same classes as used in [12] and [29]. There40

are three inputs to the CNN, each comprising continuous recordings from41

the channels of a typical three-component seismometer, usually deployed for42

seismic monitoring.43

Our models are trained and tested on a publicly accessible dataset Résif44

[33] that has over 1000 labelled events, including earthquakes, quakes, rock-45

8
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falls and anthropological noise. After classification, we use Layer-wise Rel-46

evance Propagation (LRP) [34] to explain the decision making process. We47

analyse the basis of the model for event classification and communicate the48

reasons for misclassification of individual events. Furthermore, if the pre-49

dicted class is different to the expert label, and after inspection of the fil-50

tered signal, its STFT and LRP map, the event is sent back to the expert51

for re-labelling. This protocol is used to correct possible labelling mistakes52

in the large annotated seismic dataset.53

In summary, our main contributions are:54

1. ensuring data integrity by leveraging on a well-maintained ongoing seis-55

mological data portal releasing checked seismic recordings publicly, as56

well as cataloguing/labelling by expert geoscientists – this aspect is by57

nature transdisciplinary58

2. traceability to enable transparency by leveraging on public datasets,59

where data gathering, labelling and performance with different algo-60

rithms are well documented61

3. an additional catalogue of 829 labelled events for a period of 3 days,62

classified by the CNN, verified by an expert and labels corrected -63

provided as supplementary material64

4. reproducibility by releasing the catalogue of 822 manually selected high65

quality training events as supplementary material66

5. designing a multi-classifier robust to noisy continuous recordings for67

high performance but also indicating likelihood of potential errors68

6. reliability of design by ensuring that the multiclassifier design works for69

a continuous input stream with noisy signals and low signal to noise70

ratio events71

7. explainability for transparency by providing explanations of the multi-72

classifier outputs via XAI LRP maps73

8. communication for transparency by clearly identifying the level of per-74

formance and limitations75

9
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9. tackling the UN SDG 13 by accurately detecting landslide related76

events that helps build trust in precursors to landslides such as rockfalls77

and quakes78

The first three contributions are presented in Section 3, where we describe79

the dataset used and data pre-processing. Contributions (4)-(5) are covered80

in Section 4, where the proposed CNN-based architecture, the sliding-window81

continuous detection method, the proposed post-processing and explainabil-82

ity tools used are described. Section 5 demonstrates our contributions (6)-(8).83

The significance of this work, i.e., contribution (9) was discussed above and is84

demonstrated in Section 5. Finally we conclude in Section 6 with suggestions85

for further work.86

3. Dataset87

In this section we provide details about the data management, including88

collection, storage, release and labelling /cataloguing, describing the first89

three contributions of this paper.90

3.1. Data gathering and context91

Our raw seismometer recordings are obtained from the publicly accessible92

Résif Seismological Data Portal, acquired by the French Landslide Observa-93

tory OMIV (Observatoire Multi-disciplinaire des Instabilités de Versants).94

In particular, we focus on the Super-Sauze (SZ) slow moving landslide mon-95

itoring array, acquired by the Super-Sauze C (SZC) station of the French96

Landslide Observatory on the Permanent seismological records on unstable97

slopes which are installed at the centre of the Super-Sauze landslide deposit98

in Southeast France (Latitude: 44.34787◦N, Longitude: 6.67805◦E). The lo-99

cation of the SZC station is shown on the map in Figure 1. The seismometer00

array consist of one central three-component sensor and three vertical one-01

component sensors (organized as equilateral triangle), all recording at 250Hz02

10
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sampling rate. In this project, we used data from the three-component sen-03

sor. This choice aligns with common practices in seismic waveform classi-04

fication, where a 3-channel input is standard, such as EQ-transformer [35]05

and DeepQuake [13]. Additionally, it facilitates transfer learning, as many06

seismometers employ three-component sensors, ensuring compatibility with07

various seismic datasets and applications. Using 3 channels also reduces the08

number of false positives which can occur with arrival mismatches and re-09

duces the computational demand. The seismometers recorded three periods:10

from 11 Oct. to 19 Nov. 2013; from 10 Nov. to 30 Nov. 2014; and from 911

June to 15 Aug. 2015.12

Figure 1: Map showing the location of the Super-Sauze C (SZC) station.

The description of the SZ slope deformation, together with the challenges13

of detecting the microseismic events is well documented in [36]. Additionally,14

description of how the catalogue of events was generated is documented in15

[29], where events were detected by the STA/LTA algorithm applied in the16

frequency domain, and manually labelled into four classes: earthquake, quake17

11
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(micro-earthquake events), rockfall and natural/anthropogenic (N/A) noise.18

All events except noise are classed as microseismic according to [27].19

Rockfalls mainly occur at the main scarp of the landslide, where the rigid20

block falls from the steep slope (height > 100m). The quake is likely to21

be triggered by material damage, surface cracks and openings within the22

landslide main flow. The earthquakes class includes regional seismic events23

in this area and the teleseisms (global large magnitude earthquakes). N/A24

noise events include all anthropogenic and environmental noise, due to, e.g.,25

transportation, pedestrian walking, heavy rain, animals, strong wind, etc. It26

does not include noise in the form of instrumentation error.27

3.2. Labelling28

The SZ recordings over the data gathering duration described in the pre-29

vious subsection were labelled as described in [29], using STA/LTA in the30

frequency domain to pick events, and manual labelling of these events by an31

expert based on their amplitude, duration, spectrogram and location. The32

number of labels in this catalogue, which will be referred to as the origi-33

nal catalogue, for each class, is reported in [18] and [12], where the events34

were classified on continuous recordings with classifiers using manual feature35

generation, and deep-learning-based classifiers with automated feature ex-36

traction, respectively. Since detection and classification were performed on37

the continuous data stream, the Normalised Graph Laplacian Regularisation38

(normGLR)-based [18] and CNN-based [12] classifiers also reported classifi-39

cation of hundreds of additional non-catalogued events, with a high density40

of events in the period 25th to 28th Nov. 2014, which coincided with a period41

of high activity on the SZ slope [37].42

As reported in [18], all four types of events are present in this 4-day43

time period, and in addition to the 120 events (65 rockfalls, 18 quakes, 2344

earthquakes and 14 noise) labelled in the original catalogue, 17 quakes, 8945

earthquakes and 92 rockfalls events were detected and classified by the nor-46

mGLR classifier whereas an additional 260 quakes, 174 earthquakes and 3247
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rockfalls were detected and classified with the CNN approach of [12]. These48

algorithms only missed 1 earthquake, 1 rockfall and 2 noise events that were49

present in the original catalogue.50

All events detected by the normGLR classifier, the CNN classifier and51

an additional classifier based on Siamese networks [38] were reviewed by52

an expert for labelling following the methodology used to build the original53

catalogue, which is based on the seismic signal waveform and spectrogram54

features. The final outcome of the expert reviews for this 4-day period were 6955

quakes, 29 earthquakes and 126 rockfalls. Note that the normGLR classifier56

was too sensitive, overestimating the number of earthquakes[18]. The CNN-57

based 6-channel input multi-classifier of [12] was too sensitive for quakes and58

earthquakes but missed a number of rockfalls.59

This exercise demonstrated the value of machine learning-based classifi-60

cation on continuous streaming recordings, since it is tedious for experts to61

manually review continuous data streams, as well as pick up the microseismic62

events, especially quakes and rockfalls, that are often “hidden” or “unclear”63

within ambient noise present in the recordings. These newly detected and64

expert-labelled events during the period 25th to 28th Nov. 2014, not present65

in the original catalogue, are released with this paper and are focus of this66

study.67

4. Methodology68

In this section, we describe our methodology. First, building on our prior69

work [12], we propose an improved multi-class CNN-based classifier that uti-70

lizes 3-channel inputs and a modified training strategy (see Section 4.3) to71

enhance precision in detecting quakes and earthquakes, as well as improve72

recall/sensitivity rates for rockfalls. Second, we analyse the outputs of the73

improved multi-classifier, as part of our human-on-the-loop contribution to74

verify instances of labelling error, likely to occur for large volumes of continu-75

ous streaming seismic recordings. This is carried out via the XAI-based LRP76
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tool to visualise the features of misclassifications, which are then queried for77

re-evaluation by the expert.78

4.1. Proposed CNN-based architecture79

An STFT-based CNN model, inspired by VGGNet [39] and adapted from80

[12], is used. The influence of seismometer characteristics such as sensitivity,81

frequency band, and axis configuration on the reliability and effectiveness of82

our results was explored in [12], whereby good transferability was demon-83

strated with recordings from different seismometers with varying sensitivity84

levels and sampling rates, and geographic location. Additionally, we exam-85

ined the performance impact of different seismometer configurations, compar-86

ing one-axis (single-channel) seismometers with multi-channel inputs during87

training. We use STFT maps as inputs for the CNN model, as these inputs88

were shown to provide better results on average compared to directly feeding89

time-series signals. Additionally, the generalisabity and robustness of this90

architecture across different sites has been demonstrated in prior work [12].91

Particularly, as evidenced by the recent trend in CNN-based architectures for92

analysis of seismic recordings, such networks excel in extracting hierarchical93

and discriminative features from complex data, making them highly effective94

for seismic event classification. The value of binary vs multi-class networks in95

terms of how multi-class models are able to achieve similar performance while96

requiring less models to be trained and run, and hence lower overall com-97

plexity, was demonstrated in [12]. Multi-class CNN models offer enhanced98

feature extraction, adaptability to various data patterns that are often indis-99

tinguishable (such as local quakes and rockfalls), and improved classification00

performance compared to state-of-the-art DL approaches for seismic analysis,01

discussed in Introduction Section, that mostly focus on binary classification.02

The architecture of the model is composed of convolutional layers, max03

pooling layers and FC layers, adapted to the input shapes and output cate-04

gories, as shown in Figure 2. Convolutional layers perform feature represen-05

tation and extraction, followed by max-pooling layers that downsample the06
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extracted feature into a feature map with smaller size.07

Figure 2: STFT-based CNN for seismic classification. Kr denotes the number of kernels,
and ‘Flatten’ function transforms the input data into a 1D array.

Compared to [12], to effectively process long-duration seismic events within08

continuous data streams, we increase the input window of the CNN model to09

15 seconds (from 10 seconds). We also reduce convolution kernels and neural10

nodes in each layer, achieving a balance between model complexity and per-11

formance. Moreover, recognising the prevalence of waveforms captured by12

three-component sensors, the input to the network is 3-channel input data,13

in contrast to 6-channel used in [12], which significantly expands the model’s14

applicability across a wider range of scenarios.15

15
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4.2. Sliding window-based detection16

Raw signals recorded by 3-channel (North, East and vertical direction)17

seismic recorders are used. Since the classes of interest are 5-60Hz bandwidth,18

we first use a band-pass filter to remove low frequency noise (denoising) as19

in [12]. To allow prediction on a continuous stream of signals, a sliding win-20

dow method is used to segment the continuous stream into smaller windows21

as in [40], [41]. The window size and overlap are selected based on the tem-22

poral resolution required for the events of interest. A window size of 375023

samples (i.e., 15 seconds) is used. The overlap between consecutive windows24

is set to 93% of window size (3500 samples (14 seconds)), which corresponds25

to a shift by 1 sec, allowing the CNN model to capture the temporal dynam-26

ics of the events of interest. For each window, the CNN model is used to27

predict the probabilities of each class being present.28

Furthermore, since the peak amplitude of signals belonging to different29

classes is large, to improve the learning ability of the models, we perform30

normalization of the filtered recordings. In particular, in order to enable the31

model to focus on classifying the input signals and facilitate the subsequent32

explanation of the classification results, we normalise each 15-second window33

by subtracting mean and dividing by the maximum of the absolute value of34

each input window.35

For the STFT map input, in order to get good time and frequency resolu-36

tion, ‘Boxcar’ window with length of 128 samples with 70% overlap is used.37

We perform STFT on denoised and normalized time series input window.38

Thus, the input shape for the STFT-based model is 65× 95× 3 samples.39

4.3. Training and testing40

The inputs to the model for both training and testing comprise STFT41

maps generated from the raw recordings as discussed in the previous sub-42

section. Our prior work in [12] demonstrate that CNN models tend to be43

overly sensitive. To address this, we refine the sensitivity of our CNN by44

16
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only using the high-quality events to train the model. Specifically, we visu-45

ally inspected and chose events from the original catalogue to ensure that the46

set used for training comprised only high-quality events based on signal clar-47

ity and high-SNR (Signal-to-Noise Ratio) for earthquake, quake and rockfall48

classes. All noise events originate from the original catalogue. In addition49

to the manually selected events, we utilise the labelled events from the 25th50

November 2014 (one day) to train the model further. These additional data51

allows us to augment the training set with events that are not included in the52

high-quality subset of the original catalogue and help to improve precision53

and recall.54

The list of all the high-quality events from the original catalogue as well55

as the events from the 25th November 2014 used for training can be found56

as supplementary material for the purposes of reproducibility, as the second57

principle of Trustworthy AI. During testing phase, we use STFT maps from58

26th to 28th Nov. 2014, which are not included in the training set. These59

labelled events are released with this paper as supplementary material.60

4.4. Post-processing61

While the sliding window technique enables continuous detection, it can62

introduce certain challenges. One of the main issues is that it may break63

the continuity of the event waveform, leading to potential inconsistencies or64

artefacts in the classification results. This occurs because the sliding window65

segments are treated independently, without considering the temporal con-66

text or smooth transitions between adjacent windows. To address this prob-67

lem, post-processing techniques are often employed to refine and enhance the68

detection output by taking into account the temporal relationships between69

adjacent windows.70

The proposed post-processing system is based on threshold filtering, me-71

dian filtering, and Gaussian kernel filtering of the softmax output of the72

CNN. In addition, a peak selection method is applied to resolve cases where73

two classes of events have very similar detection results. (1) Threshold fil-74
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tering: the softmax output of the CNN is filtered with a threshold value (set75

to 0.5), and all values below this threshold are set to zero. This is done to76

remove low-probability detections. (2) Median filtering: After the threshold77

filtering step, the probability distribution may contain isolated spikes. To78

remove these isolated spikes, we apply a median filter to each class sepa-79

rately. In addition to removing isolated spikes, the median filter can also80

merge spikes that are very close together, resulting in smoother and more81

continuous probability distributions. We set the size of the median filter to82

5. (3) Gaussian kernel filtering: a Gaussian kernel filter is applied to the me-83

dian filtered output to smooth the probability distribution. Gaussian kernel84

is defined with a sum of 1 and a length of 15. Its standard deviation is 5.85

(4) Peak selection: after using Gaussian kernel filtering, we select the high-86

est peak (i.e., the longest duration) as the final output. This peak selection87

method allows us to choose the class of the event with the longest duration,88

as it indicates a higher confidence level in the classification result.89

4.5. Explainability-informed re-labelling90

Unlike classifiers such as RF, SVM and (norm)GLR-based classifiers that91

take hand-crafted features as inputs and where feature importance was stud-92

ied in detail in [18], the CNN multi-classifier is essentially a “black box”93

since we do not know what features were deemed important. We therefore94

utilise LRP to understand feature importance for the deep-learning CNN95

multi-classifier.96

LRP [34] is a state-of-the-art XAI method, that shows the contribution97

of each sample in the input data to the classification results and can be98

implemented in the pre-trained model [42]. In this paper, LRP is used to99

help identify which parts of the seismic signal are most important in making00

the final classification decision. This helps understanding which features of01

the seismic signal are most relevant for seismic detection, and identify any02

potential biases in the model. In addition, LRP can provide interpretable03

and detailed explanations of the model’s decision-making process, which can04
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be useful for communicating the model’s results to human experts.05

The LRP method starts from the output of the model, sets the output06

value before activation function as relevance, and gradually back propagates07

relevance, iteratively, layer by layer, to the input nodes. In the backpropa-08

gation, relevance follows the conservation law, that is, a neuron’s relevance09

equal to the sum of relevance as it flows out toward all other neurons. Vari-10

ous propagation rules have been proposed, such as LRP-γ, LRP-ϵ and LRP-011

rule [22]. In this paper, we used LRP-ϵ rule which is suitable for convolutional12

layers and max pooling layers [43], and is defined as:13

Rj =
∑

k

ajwjk

ϵ+
∑

0,j ajwjk

Rk, (1)

where Rj represents an LRP relevance score assigned to neuron j, aj denotes14

an input activation, wjk is the weight connecting neuron j to neuron k in the15

layer above,
∑

0,j denotes that we sum over all neurons j in the lower layer16

plus a bias term w0k with a0 = 1. ϵ is a regularisation term, i.e., a small17

value that prevents the denominator from being 0.18

We generate LRP maps for all events whose CNN-based predicted class19

does not correspond to the event class label as provided by the expert via20

the procedure described in Subsection 3.2 (i.e., misclassification). Then, we21

ask the same expert to review the recording, this time together with the22

LRP feature importance map, to ensure trust in the labels. The “corrected”23

labels (those that the expert agrees were originally wrongly labelled) are24

then marked and released as part of the supplementary material together25

with their STFT and LRP maps. The whole process is shown in Figure 3.26

5. Results27

In this section, we first demonstrate our Contribution (5 & 6), by re-28

porting the performance of the proposed models on the test dataset using29

standard classification performance measures as in [12]. Then, we present30
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Figure 3: Flowchart of the proposed human-on-the-loop process.

our explainability results as per Contribution (7) and discuss main reasons31

behind misclassification (Contribution (8)).32

5.1. Analysis of classifier output33

Our models are implemented in Keras framework. Since the activation34

function of the output layer is softmax, we use categorical cross entropy as35

loss function. The used optimiser is Adam with an initial learning rate of36

0.0007. Adaptive learning rate adjustment is implemented, which reduces37

the learning rate by a factor of 0.9 when loss improvements plateau for 538

epochs. Training is performed over 100 epochs with a batch size of 128. For39

the second training session, utilizing the data from November 25, the model40

is trained over a total of 50 epochs. To prevent the risk of overfitting due41

to additional training, early stopping is implemented; that is, if the training42

accuracy did not exhibit significant improvement within 5 consecutive epochs,43

the training process is terminated early.44

In the 3-day testing period (26th-28th Nov.), the expert labelled 4645

quakes, 18 earthquakes, 74 rockfalls and 719 noise events. The confusion46
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matrix in Table 1 compares the output of the proposed CNN-based network,47

with post-processing (Sec. 4.4), to the expert labels. As is common practice48

for seismic signal classification on continuous data [29], the confusion matrix49

also includes recall/sensitivity values in brackets. Recall is the ratio of true50

positives to the sum of true positives and false negatives. In Section 3.2, it51

is demonstrated that during the 4-day period from November 25th to 28th,52

there are 6 additional earthquakes not labelled in the original catalogue [29].53

The model discussed in [12] detected a much larger number, specifically 17454

additional, earthquakes. This comparison shows the significant improvement55

in the precision of earthquake classification achieved by our model. Addi-56

tionally, our model achieved high recall (sensitivity) for rockfall events. As57

expected, quake and noise events can be confused with the other 3 classes, due58

to heterogeneity of the noise signal and very low signal amplitude of quake59

signals. Next, we leverage on LRP to explain the origin of misclassifications.60

Table 1: Confusion Matrix - Proposed CNN-based network with post-processing against
expert labels (the numbers in brackets indicate recall/sensitivity rates).

Model
Quake Earthquake Rockfall Noise

E
x
p
er
t Quake 26 (56.5%) 2 9 9

Earthquake 0 15 (83.3%) 1 2
Rockfall 2 0 72 (97.2%) 0
Noise 110 13 58 538 (75.1%)

5.2. Explainability61

The used package for embedding LRP into our models is iNNvestigate [44]62

which supports Keras framework in Python 3. Default parameters of the63

LRP-ϵ rule are used.64

Figure 4(a) shows an example of a correctly classified earthquake event.65

Positive and negative values of the LRP relevance represent positive and neg-66

ative contributions to the classification results, of the corresponding STFT,67
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respectively. The distribution of LRP relevance is focused on the high fre-68

quencies (about 40 to 50Hz) when the P-wave is picked as well as the low69

frequencies (around 15 to 20Hz) of the P-wave and, after roughly 5sec, the70

low frequencies of the S-wave with intermediate noise shown in light blue71

correctly identified as not contributing (negative contribution). This exam-72

ple shows that the model learnt, and uses as basis for its predictions, that73

the P-waves of earthquake events tend to have both high and low frequen-74

cies (around 50Hz and 20Hz, respectively) and that high energy content of75

S-Waves follows in time.76

Figure 4(b) shows an example of a correctly classified quake event. Quake77

events are of shorter duration than earthquakes, have lower amplitudes, and78

energy focused in low frequencies. LRP relevance is concentrated in the79

single peak (positive and negative) of the event waveform, suggesting that80

the normalised maximum amplitude is the key distinguishing feature. In the81

frequency domain, the LRP map clearly shows the importance of the peak82

that has energy mainly focused below 30Hz while there is also a small positive83

contribution between 30 to 40Hz.84

Figure 4(c) shows an example of a correctly classified rockfall event.85

While the relevance score of quake events is concentrated on a single peak, rel-86

evance of rockfall events is concentrated on multiple peaks, which also shows87

an important property of rockfall events − multiple significant peaks. Look-88

ing at the LRP map, relevance has multiple focused points corresponding to89

multiple short waves − a characteristic of rockfalls. In addition, although90

both rockfall and quake events have a frequency band between 10 to 30Hz,91

LRP relevance is mostly concentrated at frequencies greater than 20Hz for92

rockfalls and below 20Hz for quakes.93

Similar visualisation maps are produced for other correctly classified events.94

In summary, the model searches: (a) for P-wave and S-wave peaks and their95

corresponding frequency contributions to predict an earthquake; (b) a short96

wave with a single peak below 20Hz to decide quake; (c) multiple significant97
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(a) Correctly classified earthquake

(b) Correctly classified quake

(c) Correctly classified rockfall

Figure 4: Correctly classified examples of earthquake, quake and rockfall: The first column
shows the time-series signal, middle column the STFT, and the right column is the LRP
relevance heatmap.
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frequency components around 25Hz to decide that the target signal is rock-98

fall. This is in accordance to the characteristics of the three signal classes99

[29], [17], [12]. Next, we will analyse misclassified events to explain why they00

occur and how they can be avoided.01

5.3. Explaining origin of misclassification02

In this section, we show how LRP can be used for model diagnosis. The03

confusion matrix presented in Table 1 shows that the quake signals are some-04

times misclassified as rockfalls. Interestingly, however, rockfall signals are05

rarely misclassified as quakes (only 2 misclassified events). To investigate06

this further, Figure 5(a) shows an example of a quake event misclassified as07

rockfall. In the LRP map, relevance distribution is very scattered. That08

is, the LRP relevance is not focused on the quake event’s peak, but instead09

picked up several consecutive peaks, where the positive relevance is correctly10

concentrated at 5 seconds. This indicates that the model correctly recog-11

nised a quake event’s peak appearing around 5 seconds, but there was a high12

energy signal in nearby frequency bands, influencing the final prediction.13

On the other hand, there are many positive relevancies at different times14

that correspond to frequencies between 20Hz to 30Hz, which is akin to the15

learnt rockfall ‘behaviour’. Thus, the main reason of misclassification be-16

tween quake and rockfall is that the signal-to-noise ratio of the quake event17

was very low, with a noise signal appearing immediately after, mimicking18

multiple peaks of rockfall events.19

In Figure 5(b), we show an instance in which a rockfall event is mis-20

classified as a quake. The rockfall event displays multiple peaks; however,21

these peaks, aside from the principal one, are of low magnitude and the event22

has a very short time span. Analysis of the LRP representation illustrates23

a concentration of positive effects (depicted in red) at the primary peak of24

the event. Conversely, numerous negative contributions (depicted in blue)25

are observed at the secondary peaks, suggesting that the presence of these26

multiple peaks is not taken into account due to their limited magnitudes;27
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(a) Quake misclassified as rockfall

(b) Rockfall misclassified as quake

(c) Quake misclassified as earthquake

(d) Earthquake misclassified as rockfall

(e) Noise misclassified as earthquake

Figure 5: Misclassified examples.
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hence, the model finally classifies this event as a quake.28

In Figure 5(c), we present an instance of a quake misclassified as an29

earthquake. This misclassification is evident in the LRP map, where both30

high-frequency and low-frequency components simultaneously exhibit posi-31

tive contributions around the 3-second period. Thus, the model interprets32

this segment as a P-wave. Furthermore, at approximately 5 seconds into the33

waveform, a positive contribution appears in the low-frequency range. Al-34

though the primary peak of this event occurs around 3 seconds, the spectro-35

gram reveals that the low-frequency component persists for an extended dura-36

tion. Moreover, the event is influenced by higher-frequency noise (exceeding37

30Hz), and this high-frequency noise coincides with the primary waveform38

peak around the 3 seconds. Consequently, this led the model to mistakenly39

identify it as a P-wave, with the prolonged low-frequency component be-40

ing mistakenly identify as a S-wave. These observations align with seismic41

features of earthquakes, thereby causing the model’s misclassification as an42

earthquake event.43

In Figure 5(d), we encounter an instance where an earthquake is mis-44

takenly classified as a rockfall. The LRP map highlights multiple spectral45

peaks, which is a feature of rockfall events. However, this event may have46

resulted from an earthquake occurring amidst background noise, exhibiting47

a distinctive multi-peak pattern. Thus, despite the presence of a P-wave48

at approximately 1 second and an S-wave at roughly 4 seconds, complex49

background noise caused misclassification.50

In Figure 5(e), the misclassification of noise as an earthquake is shown.51

The noise signal exhibits prominent peaks around 4 seconds and 5.5 sec-52

onds. Examination of the LRP map reveals the model’s recognition of low-53

frequency and high-frequency components (15-20Hz) around the 4-second54

mark, along with low-frequency signals at 5.5 seconds (15Hz). This aligns55

with the characteristic features of P-waves and S-waves in earthquake sig-56

nals, resulting in the model’s misclassification as an earthquake. The result57
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might have been different if time-series signals were inputted to the network58

instead of the STFT maps as can be seen from the left time-series plot that59

shows high level of noise throughout the signal.60

We can see from these examples that most misclassifications are due to61

high level of background noise. The next example highlights another origin62

of error related to the filtering process. Figure 6 displays an unfiltered earth-63

quake waveform with a frequency below 3 Hz, characteristic of low-frequency64

earthquakes that are rarely associated with active landslides [45]. Since our65

focus is on detecting local seismic events related to landslides, we apply a66

bandpass filter in the 5-60 Hz range (see Sec. 4.2), which excludes these low-67

frequency earthquakes. Consequently, this filter removed the low-frequency68

event’s waveform, leaving only background noise as input to the CNN. As il-69

lustrated in Figure 7, the LRP map indicates that the model failed to extract70

meaningful features from the filtered input, resulting in the earthquake being71

misclassified as noise. This misclassification can be attributed to the rarity72

and uniqueness of low-frequency earthquakes on landslides, as our filter in-73

advertently eliminated their distinctive waveforms, confounding the CNN’s74

classification process.75

Figure 6: Waveform (left) and STFT map (right) of the unfiltered low-frequency earth-
quake.
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Figure 7: Waveform (left), STFT map (middle) and the LRP map (right) of the filtered
low-frequency earthquake.

5.4. Re-labelling results76

Figure 8 shows three examples of misclassifications, which could be due77

to human error during expert labelling. The example shown in Figure 8(a), is78

an event classified by the model as noise, though the domain experts labelled79

it as a quake. In the STFT representation of the signal, no obvious peak80

corresponding to the event was discernible. Moreover, the LRP map exhibits81

a disordered distribution of relevance. Collectively, these findings lead to the82

argument that the event in question is more likely to be anthropogenic noise83

rather than a quake. Figure 8(b) illustrates a similar situation where the84

event is mistakenly labelled as an earthquake. There are no clear P-waves85

at both low and high frequencies, and there are no S-waves with high en-86

ergy content. For this earthquake event, we also examined the unfiltered raw87

signal, and it still did not exhibit any earthquake waveform characteristics.88

Figure 8(c) shows an example that was classified as a rockfall by the CNN89

model, while the expert labelled it as a seismic quake. It can be concluded90

from the LRP map that the model focused on multiple peaks in the event,91

with a frequency distribution centred around 30Hz, characteristics that align92

with typical rockfall patterns. In contrast, quakes tend to exhibit a single93

dominant peak, a feature that was notably absent in the input STFT map,94

where multiple peaks were discernible. Consequently, based on these dis-95

tinctive patterns and spectral features, it becomes evident that the event in96

question is more accurately classified as a rockfall.97

Here we list all corrections made to the expert catalogue, following above98
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(a) Noise mistakenly labelled as quake

(b) Noise mistakenly labelled as earthquake

(c) Rockfall mistakenly labelled as quake

Figure 8: Three examples of events with labels corrected.
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explainability and queries. Specifically, 7 quakes were relabelled as noise99

as per example Figure 8(a), 1 earthquake was relabelled as noise (shown in00

Figure 8(b)), and 1 quake as rockfall (Figure 8(c)). In addition, some noise01

events were labelled by the expert though these events occurred very close to02

earthquake, quake and rockfall events, which potentially caused confusion.03

Hence, we removed all noise events that occurred in close proximity (within04

30s) to the earthquake, quake and rockfall events - this way 38 noise events05

were removed.06

Thus, after this relabelling there are 38 quakes, 17 earthquakes, 75 rock-07

falls and 689 anthropogenic noise events in total. The verified catalogue of08

events is provided as supplementary material to this paper, as a contribu-09

tion to address the second and third principles of Trustworthy AI, related to10

reproducibility and data access. Specifically, the 260 verified events on the11

25th Nov. 2015 are listed in the Training events supplementary material,12

identified by the date. The 819 verified events on 26th to 28th Nov. 201413

are listed in the Additional 3-day catalogue supplementary material. In or-14

der for other researchers to enable benchmarking, Table 2 and Table 3 show15

the confusion matrix and classification performance after the re-labelling, re-16

spectively. Although the F1-score for quake events is low, we have a high17

recall but precision is low because of 8 instances of false positives for rockfall.18

There are relatively few instances of quake and earthquake, which explains19

why the F1-score is not the best indicator of performance and the confusion20

matrix provides a more explainable and trustworthy measure of performance.21

Table 2: The confusion matrix after label correction. The numbers in the brackets show
the recall values.

Model
Quake Earthquake Rockfall Noise

E
x
p
er
t Quake 26 (68.4%) 2 8 2

Earthquake 0 15 (88.2%) 1 1
Rockfall 2 0 73 (97.3%) 0
Noise 95 11 37 546 (79.2%)
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Table 3: The classification performance after label correction.

Precision Recall F1-score
Quake 0.21 0.68 0.32

Earthquake 0.54 0.88 0.67
Rockfall 0.61 0.97 0.75
Noise 0.99 0.79 0.88

6. Conclusions and Future Work22

The paper discusses the significance of the 7 principles of Trustworthy23

AI, including human oversight, technical robustness, data governance and24

transparency to the challenging problem of micro-seismic signal analysis. To25

this effect, we propose a human-on-the-loop microseismic multi-class classi-26

fication method together with LRP to shed light on feature importance in27

order to in turn verify any possible human labelling error.28

We demonstrate that the generated LRP maps assist human experts in29

manual event classification. LRP clearly identifies properties of the signals30

extracted by the network when making decisions. Based on this, we con-31

cluded, for example, that the main reason why quake events are often mis-32

classified as rockfall is due to appearance of a noise signal at multiple higher33

frequencies that mimics rockfalls. Due to human error, experts may occa-34

sionally mislabel events in the catalogue due to the similarity of event char-35

acteristics, complexity of seismic data and large volume of data that needs to36

be processed. However, the availability of LRP maps as a visual aid can offer37

a valuable tool to verify and refine the expert’s classifications. This collabo-38

rative synergy between automated and manual classification can enhance the39

accuracy of microseismic catalogues, contributing to a better understanding40

of geological processes.41

Besides assisting with event labelling, another application of the LRP42

maps is improving the model’s performance. Indeed, by observing the in-43

sights gained through XAI tools, we discern specific features of input events44

that are prone to misclassification by the CNN, which is instrumental in en-45
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hancing the robustness and generalisability of the model that can be achieved46

by adding more events in the training set that closely resemble the challenging47

input patterns identified through XAI. For example, when we discover that48

certain event features consistently lead to misclassifications, we collect and49

add more events with similar attributes into the training dataset. This tar-50

geted data augmentation approach has the potential to improve the model’s51

ability to distinguish between challenging seismic events, thereby increasing52

model’s robustness and classification performance.53

Since LRP assigns relevance scores to highlight the most influential fea-54

tures for each classification, it is important to determine if these relevance55

patterns remain stable across various geographic areas and seismometer char-56

acteristics, such as sensitivity, sampling rate, and axis configurations. This57

evaluation will help ascertain the reliability of LRP explanations across di-58

verse equipment types and environments. In future work, we plan to test our59

system in various geographic regions and with different seismometer config-60

urations to assess the consistency and robustness of LRP interpretability,61

enhancing the broader applicability and trustworthiness of our approach.62

Given the potential variability in expert interpretations, it is important63

to explore how different experts’ insights may affect labeling. Future studies64

could employ a multi-expert assessment framework that incorporates confi-65

dence levels, based on the methodologies proposed by [46], to better under-66

stand this variability and further enhance the reliability of the classification67

process.68

Since classification of quakes remains challenging, the current model could69

be adapted to classify a broader range of events, including low frequency70

events and types of anthropogenic noise, by expanding the training set and71

retraining the model, with LRP providing the explanations. To maximize72

accuracy and trust in AI-driven seismic signal analysis, integrating human73

expertise with AI models is important. Developing interactive explainability74

tools that facilitate iterative feedback from geoscientists could lead to con-75
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tinuous improvements in model performance and foster greater confidence in76

AI-generated outputs.77
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els and data used for classification, as well as algorithms for explainable01

visualization.02

References03

[1] S. M. Mousavi, G. C. Beroza, Deep-learning seismology, Science04

377 (6607) (2022) eabm4470.05
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