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Abstract

With the increased frequency and intensity of landslides in recent years,
there is growing research on timely detection of the underlying subsurface
processes that contribute to these hazards. Recent advances in machine
learning have introduced algorithms for classifying seismic events associated
with landslides, such as earthquakes, rockfalls, and smaller quakes. How-
ever, the opaque, “black box” nature of deep learning algorithms has raised
concerns of reliability and interpretability by Earth scientists and end-users,
hesitant to adopt these models. Leveraging on recent recommendations on
embedding humans in the Artificial Intelligence (AI) decision making process,
particularly training and validation, we propose a methodology that incor-
porates data labelling, verification, and re-labelling through a multi-class
convolutional neural network (CNN) supported by Explainable Artificial In-
telligence (XAI) tools, specifically, Layer-wise Relevance Propagation (LRP).
To ensure reproducibility, a catalogue of training events is provided as sup-
plementary material. Evaluation from the French Seismologic and Geodetic
Network (Résif) dataset, gathered in the Alps in France, demonstrate the
effectiveness of the proposed methodology, achieving a recall/sensitivity of
97.3% for rockfalls and 68.4% for quakes.

Preprint submitted to Remote Sensing of Environment November 19, 2024
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1. Introduction

Seismic signal analysis is based on collecting, processing and performing
inference on seismic signals with the goal of detecting, understanding, clas-
sifying and locating seismic events, including not only earthquakes, but also
rockfalls and smaller quakes or tremors that characterise landslides and their
severity. The devastating effects of landslides on humans and infrastructure
have been making headlines, and more recently have been often attributed
to extreme weather and/or human activities. Seismometers provide accurate
recordings of mechanical waves originating from various sources, but due to
their high sensitivity, distinguishing between mechanical waves originating
from tectonic activities and any other signals contained in the recordings
(e.g., rainfall, animals, traffic, natural noise, machinery, etc.) is not an easy
task. Manually identifying events based on recordings of seismometers is a
time-consuming and subjective task, prone to errors and bias. Thus, manual
detection has gradually been replaced by methods that automatically detect
and classify seismic events. With higher availability in seismic recordings and
advances in Al, seismic signal analysis has become a very much data-driven
field and has spread well beyond seismology and geoscience, as it is now of
interest to much broader research communities [1].

Deep learning has been shown to be achieve excellent detection and clas-
sification performance for a range of applications where sufficient amount of
labelled data is available, including automated road extraction [2], pneumo-
nia diagnosis from medical imaging [3], satellite image analysis [4], [5], and
car detection [6]. Due to the availability of many well-maintained datasets,

the number of deep learning approaches used in seismology has also sky-
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rocketed in recent years (see Fig. 1 in [1]) using enormous amounts of data
to train the models. Consequently, recent literature is dominated by deep
learning techniques applied to diverse tasks such as seismic event labelling
using Residual Neural Network (ResNet) [7], magnitude estimation using
a network that combines CNN and Recurrent Neural Networks (RNN) [§],
event localization using CNN architectures [9], multitask learning for classifi-
cation with velocity models [10] and tackling seismic inversion problems with
conditional Generative Adversarial Networks (GAN) [11]. A detailed review
of deep learning architectures, specifically proposed, for event classification
from seismic recordings can be found in [12].

For example, CNN-based model ‘DeepQuake’ [13] has demonstrated ro-
bust performance for high-magnitude earthquakes, though it has limitations
with microseismic events, as demonstrated in [12]. In [14], RockNet, taking
both 3-channel time series window and a spectrogram of the vertical channel
of the window as inputs, is proposed for classifying rockfalls and earthquakes.
The deep learning models achieve state-of-the-art performance in detecting
and classifying seismic signals avoiding cumbersome manual feature gener-
ation, selection and extraction process, with their ability to automatically
learn most discriminative features from raw recordings. However, this also
means that these models are limited by the used training set, and may learn
specifically spurious correlations with the prediction target [15], [16]. Fur-
thermore, the fact that the feature engineering task is taken away from the
designer, makes deep learning models opaque, and hence often referred to as
“black box”, which limits their use. Indeed, geoscientists are still reluctant
to use them and rather rely on less complex interpretable methods based
on hand-crafted features [17] that ensure that relevant physical features are
used for detection and classification (see, e.g., Table I in [17] and Table Al
in [18]).

Explainable artificial intelligence (XAI) [19], [20], is a research direction

that provides human-interpretable explanations that can potentially enhance
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training process, correct manual data annotation, improve models, and con-
tribute towards building trust in Al-generated outputs [21], [22]. XAI tools
have been extensively used in computer vision (e.g., [23]) and time-series sig-
nal analysis problems (e.g., [24]); however, the work on explaining the output
of deep learning models for seismic signal analysis, and using these explana-
tions to improve confidence in data labelling, model training and building
trust in inferred outputs, is still in its infancy.

In order to pave the way towards a regulatory framework for ensuring
trust in Al, the European Commission has published seven principles of
Trustworthy AI [25], which include Human Agency and Oversight, Technical
Robustness and Safety, Privacy and Data Governance, Transparency, Di-
versity, Non-discrimination and Fairness, Societal and Environmental Well-
Being and Accountability.

Depending on how the Al-based seismic analysis will be used, from un-
derstanding the subsurface processes and mechanics to hazard and disaster
management, the Al systems can be seen as minimal risk to high risk, and
therefore subject to strict oversight before they can be used to ensure infras-
tructure and human safety. Therefore, the following principles are important
for seismic analysis. First, Al systems should empower decision makers when
it comes to hazard assessment or infrastructure planning, allowing them to
make informed decisions from the Al system outputs. The principle of Hu-
man Agency and Oversight caters for proper oversight mechanisms that need
to be ensured, which can be achieved through human-on-the-loop and human-
in-command approaches. Second, the principle of technical robustness and
safety, in part states that Al systems need to be accurate, reliable and re-
producible to ensure unintentional harm can be minimised and prevented.
Accuracy refers to the ability to correct predictions based on AI models and
can be implemented via rigorous evaluation and indication of likelihood of po-
tential errors. Reproducibility describes whether an Al experiment exhibits

the same behaviour when repeated under the same conditions. A reliable Al
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system is one that works properly with a range of inputs and in a range of
situations. Third, the principle of privacy and data governance enables users
to trust the data gathering process and that it does not contain inaccuracies,
errors or mistakes, especially with respect to labelling or cataloguing by ex-
pert geoscientists. Fourth, the principle of transparency states that the data
and Al system should be transparent through traceability mechanisms in the
form of documentation of datasets and processes that yielded in decision, in-
cluding data gathering, data labelling and algorithms used. Furthermore,
transparency also includes explainability, that is, Al systems and their deci-
sions should be explained in a manner adapted to the stakeholder concerned.
This includes XAI. Fifth, transparency also states that humans need to be
aware that they are interacting with an Al system, and must be informed of
the system’s capabilities and limitations. Finally, the social and environmen-
tal well-being principle state that the Al systems should be sustainable and
environmentally friendly - this can be through taking into considering the
resource usage and energy consumption for training the models. Moreover,
they should consider the societal impact. Monitoring, understanding, mod-
elling and predicting landslide processes due to climate change, especially
rainfall, tackle United Nations (UN) Sustainable Development Goal (SDG)
13 on Climate Action [26]. As explained in [27], shearing and friction be-
tween the soil grains results in release of seismic energy within the landslide
body. Therefore, passive seismic monitoring is a good approach to monitor
and mitigate slope instabilities, as it provides high temporal resolution data
in near real time that relate to the dynamics of the landslide. This means
that the transition (and rapid transformation) of the landslide from slow
rate sliding into a rapid slope failure may be detected and therefore mitigate

associated hazards.



156 2. Literature review on Trustworthy Al for Seismic Signal Analysis

157 To ensure trust and expert’s control of the decision process, machine
18 learning-based seismic signal analysis has been performed either in a semi-
150 automated manner [28] using continuous expert oversight and monitoring
160 (human-on-the-loop), using interpretable models [17], or using non-interpretable
11 models (such as Random Forests) but with numerous hand-crafted features
12 [29] to ensure that the inference is made on signal characteristics identified
163 by experts as important. In [18] a detailed study of feature importance is
16 presented where 119 features are constructed based on seismic signal liter-
s ature and their importance tested using four different feature importance
16 methods and different classifiers based on Support Vector Machine, Random
17 Forest, and three graph signal processing based semi-supervised approaches.
s The features are experimentally ranked showing time-, frequency-, cepstrum
10 and polarity features that are of highest importance in inference making per
wo studied class. The results show that out of 119 constructed features only
i a subset contributed significantly to the decision. Note that this study was
12 based on quantifying the importance of hand-crafted features in accurately
3 classifying multiple event classes from continuous data, thus deep learning
17+ networks were not considered.

175 In [13], convolutional neural networks (CNNs) are used to classify isolated
e catalogued seismic events into noise, earthquake and other events. The au-
177 thors developed a heatmap-based visualisation tool to explain model outputs
s via the outputs of activation functions of each filter in the convolutional lay-
9 ers and then overlapping the result with the raw input signal. However, this
1o study has several weaknesses when it comes to gaining trust in model out-
11 puts. Firstly, it is not clear how explanations are formed by fusing outputs
12 of the activation functions from different layers. Secondly, only binary clas-
183 sification is considered, i.e., identifying relatively well-defined earthquakes
18« from other signals. Thirdly, the approach does not exploit advanced XAI

185 methods, and it is not used to explain any false predictions.
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In [30], the authors proposed a Dual-Channel CNN Module where one
channel contains raw time-domain waveforms, and the other channel con-
tains frequency-domain information by Discrete Cosine Transform (DCT) to
classify input seismic waveform into rock fracturing and noise, together with
an explanation module, EUG-CAM (Elaborate Upsampling-based Gradient-
weighted Class Activation Mapping). It builds upon the principles of the
gradient weighted class activation mapping (GradCAM) [31], harnessing the
influence of feature map values and gradients to elucidate the importance of
diverse features in the last convolutional layer. Recognizing the discrepancy
between feature map sizes and input data dimensions, EUG-CAM uses a
strategic amalgamation of transposed convolution, unpooling, and interpo-
lation, to generate feature mappings from a coarse localization map. This
results in an explanation feature map that effectively encapsulates class acti-
vation, learning insights, and network architecture considerations. However,
the model’s limitation is in classifying only two classes (rock fracturing vs.
noise) and its confinement to binary classification. Furthermore, the reliance
on a 1-D CNN model facilitates explanations primarily within the time do-
main, possibly neglecting the benefits of frequency-domain insights garnered
from the DCT. Additionally, the visualization maps cannot show the ad-
verse input signal influence (negative contribution) on classification results,
hampering a comprehensive and well-rounded comprehension of the model’s
decision-making process.

In [12], the authors present CNN models with six channel inputs for
multi-class classification of earthquakes, quakes, rockfalls and noise and use
visualization of feature maps to understand the network’s internal work-
ings. The authors examine feature maps at various convolutional layers and
the second fully connected (FC) layer, gaining insights into feature extrac-
tion. Different models, including time-series, Short-time Fourier Transform
(STET) and Continuous Wavelet Transform (CWT)-based designs, highlight

the network’s focus on time, frequency, and wavelet characteristics. The main
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observation is that early layers locate event positions and extract basic fea-
tures, while deeper layers refine these features into abstract representations
for classification. The second FC layer’s feature distributions vary across
seismic events, indicating the network’s capability to distinguish three event
types from noise based on learned features. In addition, Layer-wise Rele-
vance Propagation (LRP) showed promising results in identifying the most
relevant features for each class, further enhancing the interpretability of the
model [32].

2.1. Contributions

The goal of this paper is to provide comprehensive explanations to iden-
tify key features learnt by a deep neural network for multi-class classification,
demonstrate that these features are in agreement with the physical properties
of seismic signals and common hand-crafted features used in the literature
[17]. The generated explanations are then used to explain instances of mis-
classifications and correct errors in manual labelling, jointly with a geoscien-
tist, who verified the corrected labels of the classified events and the features
associated with these events. This builds trust in the models confirming that
the learnt feature representations agree with expert knowledge.

We use state-of-the-art XAl tools to explain deep learning models for
detection and classification of micro-seismic signals and show how these
explanations can be used to improve the designs and explain correct and
wrong predictions. In particular, we use a CNN-based architecture with a
frequency-domain input, for detection and classification of seismic signals
into four classes: earthquake, micro-earthquake referred to as quake, rock-
fall and noise. These are the same classes as used in [12] and [29]. There
are three inputs to the CNN, each comprising continuous recordings from
the channels of a typical three-component seismometer, usually deployed for
seismic monitoring.

Our models are trained and tested on a publicly accessible dataset Résif

[33] that has over 1000 labelled events, including earthquakes, quakes, rock-
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falls and anthropological noise. After classification, we use Layer-wise Rel-

evance Propagation (LRP) [34] to explain the decision making process. We

analyse the basis of the model for event classification and communicate the

reasons for misclassification of individual events. Furthermore, if the pre-

dicted class is different to the expert label, and after inspection of the fil-

tered signal, its STF'T and LRP map, the event is sent back to the expert

for re-labelling. This protocol is used to correct possible labelling mistakes

in the large annotated seismic dataset.

In summary, our main contributions are:

1.

ensuring data integrity by leveraging on a well-maintained ongoing seis-
mological data portal releasing checked seismic recordings publicly, as
well as cataloguing/labelling by expert geoscientists — this aspect is by

nature transdisciplinary

. traceability to enable transparency by leveraging on public datasets,

where data gathering, labelling and performance with different algo-

rithms are well documented

. an additional catalogue of 829 labelled events for a period of 3 days,

classified by the CNN, verified by an expert and labels corrected -

provided as supplementary material

. reproducibility by releasing the catalogue of 822 manually selected high

quality training events as supplementary material

. designing a multi-classifier robust to noisy continuous recordings for

high performance but also indicating likelihood of potential errors

. reliability of design by ensuring that the multiclassifier design works for

a continuous input stream with noisy signals and low signal to noise

ratio events

. explainability for transparency by providing explanations of the multi-

classifier outputs via XAI LRP maps

. communication for transparency by clearly identifying the level of per-

formance and limitations



276

277

278

279

280

281

282

283

284

286

287

289

290

291

292

293

294

295

297

298

299

300

301

302

9. tackling the UN SDG 13 by accurately detecting landslide related
events that helps build trust in precursors to landslides such as rockfalls

and quakes

The first three contributions are presented in Section 3, where we describe
the dataset used and data pre-processing. Contributions (4)-(5) are covered
in Section 4, where the proposed CNN-based architecture, the sliding-window
continuous detection method, the proposed post-processing and explainabil-
ity tools used are described. Section 5 demonstrates our contributions (6)-(8).
The significance of this work, i.e., contribution (9) was discussed above and is
demonstrated in Section 5. Finally we conclude in Section 6 with suggestions

for further work.

3. Dataset

In this section we provide details about the data management, including
collection, storage, release and labelling /cataloguing, describing the first

three contributions of this paper.

3.1. Data gathering and context

Our raw seismometer recordings are obtained from the publicly accessible
Résif Seismological Data Portal, acquired by the French Landslide Observa-
tory OMIV (Observatoire Multi-disciplinaire des Instabilités de Versants).
In particular, we focus on the Super-Sauze (SZ) slow moving landslide mon-
itoring array, acquired by the Super-Sauze C (SZC) station of the French
Landslide Observatory on the Permanent seismological records on unstable
slopes which are installed at the centre of the Super-Sauze landslide deposit
in Southeast France (Latitude: 44.34787°N, Longitude: 6.67805°E). The lo-
cation of the SZC station is shown on the map in Figure 1. The seismometer
array consist of one central three-component sensor and three vertical one-

component sensors (organized as equilateral triangle), all recording at 250Hz

10



33 sampling rate. In this project, we used data from the three-component sen-
sa sor. This choice aligns with common practices in seismic waveform classi-
s fication, where a 3-channel input is standard, such as EQ-transformer [35]
w5 and DeepQuake [13]. Additionally, it facilitates transfer learning, as many
7 seismometers employ three-component sensors, ensuring compatibility with
w8 various seismic datasets and applications. Using 3 channels also reduces the
;00 number of false positives which can occur with arrival mismatches and re-
si0 - duces the computational demand. The seismometers recorded three periods:
su from 11 Oct. to 19 Nov. 2013; from 10 Nov. to 30 Nov. 2014; and from 9
sz June to 15 Aug. 2015.
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Figure 1: Map showing the location of the Super-Sauze C (SZC) station.

313 The description of the SZ slope deformation, together with the challenges

3

et

s+ of detecting the microseismic events is well documented in [36]. Additionally,
s description of how the catalogue of events was generated is documented in
s [29], where events were detected by the STA/LTA algorithm applied in the

7 frequency domain, and manually labelled into four classes: earthquake, quake
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(micro-earthquake events), rockfall and natural/anthropogenic (N/A) noise.
All events except noise are classed as microseismic according to [27].
Rockfalls mainly occur at the main scarp of the landslide, where the rigid
block falls from the steep slope (height > 100m). The quake is likely to
be triggered by material damage, surface cracks and openings within the
landslide main flow. The earthquakes class includes regional seismic events
in this area and the teleseisms (global large magnitude earthquakes). N/A
noise events include all anthropogenic and environmental noise, due to, e.g.,
transportation, pedestrian walking, heavy rain, animals, strong wind, etc. It

does not include noise in the form of instrumentation error.

3.2. Labelling

The SZ recordings over the data gathering duration described in the pre-
vious subsection were labelled as described in [29], using STA/LTA in the
frequency domain to pick events, and manual labelling of these events by an
expert based on their amplitude, duration, spectrogram and location. The
number of labels in this catalogue, which will be referred to as the origi-
nal catalogue, for each class, is reported in [18] and [12], where the events
were classified on continuous recordings with classifiers using manual feature
generation, and deep-learning-based classifiers with automated feature ex-
traction, respectively. Since detection and classification were performed on
the continuous data stream, the Normalised Graph Laplacian Regularisation
(normGLR)-based [18] and CNN-based [12] classifiers also reported classifi-
cation of hundreds of additional non-catalogued events, with a high density
of events in the period 25th to 28th Nov. 2014, which coincided with a period
of high activity on the SZ slope [37].

As reported in [18], all four types of events are present in this 4-day
time period, and in addition to the 120 events (65 rockfalls, 18 quakes, 23
earthquakes and 14 noise) labelled in the original catalogue, 17 quakes, 89
earthquakes and 92 rockfalls events were detected and classified by the nor-

mGLR classifier whereas an additional 260 quakes, 174 earthquakes and 32

12
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rockfalls were detected and classified with the CNN approach of [12]. These
algorithms only missed 1 earthquake, 1 rockfall and 2 noise events that were
present in the original catalogue.

All events detected by the normGLR classifier, the CNN classifier and
an additional classifier based on Siamese networks [38] were reviewed by
an expert for labelling following the methodology used to build the original
catalogue, which is based on the seismic signal waveform and spectrogram
features. The final outcome of the expert reviews for this 4-day period were 69
quakes, 29 earthquakes and 126 rockfalls. Note that the normGLR classifier
was too sensitive, overestimating the number of earthquakes[18]. The CNN-
based 6-channel input multi-classifier of [12] was too sensitive for quakes and
earthquakes but missed a number of rockfalls.

This exercise demonstrated the value of machine learning-based classifi-
cation on continuous streaming recordings, since it is tedious for experts to
manually review continuous data streams, as well as pick up the microseismic
events, especially quakes and rockfalls, that are often “hidden” or “unclear”
within ambient noise present in the recordings. These newly detected and
expert-labelled events during the period 25th to 28th Nov. 2014, not present
in the original catalogue, are released with this paper and are focus of this

study.

4. Methodology

In this section, we describe our methodology. First, building on our prior
work [12], we propose an improved multi-class CNN-based classifier that uti-
lizes 3-channel inputs and a modified training strategy (see Section 4.3) to
enhance precision in detecting quakes and earthquakes, as well as improve
recall /sensitivity rates for rockfalls. Second, we analyse the outputs of the
improved multi-classifier, as part of our human-on-the-loop contribution to
verify instances of labelling error, likely to occur for large volumes of continu-

ous streaming seismic recordings. This is carried out via the XAl-based LRP
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tool to visualise the features of misclassifications, which are then queried for

re-evaluation by the expert.

4.1. Proposed CNN-based architecture
An STFT-based CNN model, inspired by VGGNet [39] and adapted from

[12], is used. The influence of seismometer characteristics such as sensitivity,
frequency band, and axis configuration on the reliability and effectiveness of
our results was explored in [12], whereby good transferability was demon-
strated with recordings from different seismometers with varying sensitivity
levels and sampling rates, and geographic location. Additionally, we exam-
ined the performance impact of different seismometer configurations, compar-
ing one-axis (single-channel) seismometers with multi-channel inputs during
training. We use STFT maps as inputs for the CNN model, as these inputs
were shown to provide better results on average compared to directly feeding
time-series signals. Additionally, the generalisabity and robustness of this
architecture across different sites has been demonstrated in prior work [12].
Particularly, as evidenced by the recent trend in CNN-based architectures for
analysis of seismic recordings, such networks excel in extracting hierarchical
and discriminative features from complex data, making them highly effective
for seismic event classification. The value of binary vs multi-class networks in
terms of how multi-class models are able to achieve similar performance while
requiring less models to be trained and run, and hence lower overall com-
plexity, was demonstrated in [12]. Multi-class CNN models offer enhanced
feature extraction, adaptability to various data patterns that are often indis-
tinguishable (such as local quakes and rockfalls), and improved classification
performance compared to state-of-the-art DL approaches for seismic analysis,
discussed in Introduction Section, that mostly focus on binary classification.

The architecture of the model is composed of convolutional layers, max
pooling layers and FC layers, adapted to the input shapes and output cate-
gories, as shown in Figure 2. Convolutional layers perform feature represen-

tation and extraction, followed by max-pooling layers that downsample the
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Figure 2: STFT-based CNN for seismic classification. Kr denotes the number of kernels,
and ‘Flatten’ function transforms the input data into a 1D array.

Compared to [12], to effectively process long-duration seismic events within
continuous data streams, we increase the input window of the CNN model to
15 seconds (from 10 seconds). We also reduce convolution kernels and neural
nodes in each layer, achieving a balance between model complexity and per-
formance. Moreover, recognising the prevalence of waveforms captured by
three-component sensors, the input to the network is 3-channel input data,
in contrast to 6-channel used in [12], which significantly expands the model’s

applicability across a wider range of scenarios.
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4.2. Sliding window-based detection

Raw signals recorded by 3-channel (North, East and vertical direction)
seismic recorders are used. Since the classes of interest are 5-60Hz bandwidth,
we first use a band-pass filter to remove low frequency noise (denoising) as
in [12]. To allow prediction on a continuous stream of signals, a sliding win-
dow method is used to segment the continuous stream into smaller windows
as in [40], [41]. The window size and overlap are selected based on the tem-
poral resolution required for the events of interest. A window size of 3750
samples (i.e., 15 seconds) is used. The overlap between consecutive windows
is set to 93% of window size (3500 samples (14 seconds)), which corresponds
to a shift by 1 sec, allowing the CNN model to capture the temporal dynam-
ics of the events of interest. For each window, the CNN model is used to
predict the probabilities of each class being present.

Furthermore, since the peak amplitude of signals belonging to different
classes is large, to improve the learning ability of the models, we perform
normalization of the filtered recordings. In particular, in order to enable the
model to focus on classifying the input signals and facilitate the subsequent
explanation of the classification results, we normalise each 15-second window
by subtracting mean and dividing by the maximum of the absolute value of
each input window.

For the STFT map input, in order to get good time and frequency resolu-
tion, ‘Boxcar’ window with length of 128 samples with 70% overlap is used.
We perform STFT on denoised and normalized time series input window.
Thus, the input shape for the STFT-based model is 65 x 95 x 3 samples.

4.3. Training and testing
The inputs to the model for both training and testing comprise STEFT

maps generated from the raw recordings as discussed in the previous sub-
section. Our prior work in [12] demonstrate that CNN models tend to be

overly sensitive. To address this, we refine the sensitivity of our CNN by
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only using the high-quality events to train the model. Specifically, we visu-
ally inspected and chose events from the original catalogue to ensure that the
set used for training comprised only high-quality events based on signal clar-
ity and high-SNR (Signal-to-Noise Ratio) for earthquake, quake and rockfall
classes. All noise events originate from the original catalogue. In addition
to the manually selected events, we utilise the labelled events from the 25th
November 2014 (one day) to train the model further. These additional data
allows us to augment the training set with events that are not included in the
high-quality subset of the original catalogue and help to improve precision
and recall.

The list of all the high-quality events from the original catalogue as well
as the events from the 25th November 2014 used for training can be found
as supplementary material for the purposes of reproducibility, as the second
principle of Trustworthy Al. During testing phase, we use STF'T maps from
26th to 28th Nov. 2014, which are not included in the training set. These

labelled events are released with this paper as supplementary material.

4.4. Post-processing

While the sliding window technique enables continuous detection, it can
introduce certain challenges. One of the main issues is that it may break
the continuity of the event waveform, leading to potential inconsistencies or
artefacts in the classification results. This occurs because the sliding window
segments are treated independently, without considering the temporal con-
text or smooth transitions between adjacent windows. To address this prob-
lem, post-processing techniques are often employed to refine and enhance the
detection output by taking into account the temporal relationships between
adjacent windows.

The proposed post-processing system is based on threshold filtering, me-
dian filtering, and Gaussian kernel filtering of the softmax output of the
CNN. In addition, a peak selection method is applied to resolve cases where

two classes of events have very similar detection results. (1) Threshold fil-
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tering: the softmax output of the CNN is filtered with a threshold value (set
to 0.5), and all values below this threshold are set to zero. This is done to
remove low-probability detections. (2) Median filtering: After the threshold
filtering step, the probability distribution may contain isolated spikes. To
remove these isolated spikes, we apply a median filter to each class sepa-
rately. In addition to removing isolated spikes, the median filter can also
merge spikes that are very close together, resulting in smoother and more
continuous probability distributions. We set the size of the median filter to
5. (3) Gaussian kernel filtering: a Gaussian kernel filter is applied to the me-
dian filtered output to smooth the probability distribution. Gaussian kernel
is defined with a sum of 1 and a length of 15. Its standard deviation is 5.
(4) Peak selection: after using Gaussian kernel filtering, we select the high-
est peak (i.e., the longest duration) as the final output. This peak selection
method allows us to choose the class of the event with the longest duration,

as it indicates a higher confidence level in the classification result.

4.5. Ezplainability-informed re-labelling
Unlike classifiers such as RF, SVM and (norm)GLR-based classifiers that

take hand-crafted features as inputs and where feature importance was stud-
ied in detail in [18], the CNN multi-classifier is essentially a “black box”
since we do not know what features were deemed important. We therefore
utilise LRP to understand feature importance for the deep-learning CNN
multi-classifier.

LRP [34] is a state-of-the-art XAI method, that shows the contribution
of each sample in the input data to the classification results and can be
implemented in the pre-trained model [42]. In this paper, LRP is used to
help identify which parts of the seismic signal are most important in making
the final classification decision. This helps understanding which features of
the seismic signal are most relevant for seismic detection, and identify any
potential biases in the model. In addition, LRP can provide interpretable

and detailed explanations of the model’s decision-making process, which can
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be useful for communicating the model’s results to human experts.

The LRP method starts from the output of the model, sets the output
value before activation function as relevance, and gradually back propagates
relevance, iteratively, layer by layer, to the input nodes. In the backpropa-
gation, relevance follows the conservation law, that is, a neuron’s relevance
equal to the sum of relevance as it flows out toward all other neurons. Vari-
ous propagation rules have been proposed, such as LRP-v, LRP-¢ and LRP-0
rule [22]. In this paper, we used LRP-¢ rule which is suitable for convolutional

layers and max pooling layers [43], and is defined as:

a; Wik
R=Y —S R, (1)
J zk: €+ zO,j AWk

where R; represents an LRP relevance score assigned to neuron j, a; denotes
an input activation, wj is the weight connecting neuron j to neuron k in the
layer above, 207 ; denotes that we sum over all neurons j in the lower layer
plus a bias term wq, with ayp = 1. € is a regularisation term, i.e., a small
value that prevents the denominator from being 0.

We generate LRP maps for all events whose CNN-based predicted class
does not correspond to the event class label as provided by the expert via
the procedure described in Subsection 3.2 (i.e., misclassification). Then, we
ask the same expert to review the recording, this time together with the
LRP feature importance map, to ensure trust in the labels. The “corrected”
labels (those that the expert agrees were originally wrongly labelled) are
then marked and released as part of the supplementary material together

with their STFT and LRP maps. The whole process is shown in Figure 3.

5. Results

In this section, we first demonstrate our Contribution (5 & 6), by re-
porting the performance of the proposed models on the test dataset using

standard classification performance measures as in [12]. Then, we present
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Figure 3: Flowchart of the proposed human-on-the-loop process.

our explainability results as per Contribution (7) and discuss main reasons

behind misclassification (Contribution (8)).

5.1. Analysis of classifier output

Our models are implemented in Keras framework. Since the activation
function of the output layer is softmax, we use categorical cross entropy as
loss function. The used optimiser is Adam with an initial learning rate of
0.0007. Adaptive learning rate adjustment is implemented, which reduces
the learning rate by a factor of 0.9 when loss improvements plateau for 5
epochs. Training is performed over 100 epochs with a batch size of 128. For
the second training session, utilizing the data from November 25, the model
is trained over a total of 50 epochs. To prevent the risk of overfitting due
to additional training, early stopping is implemented; that is, if the training
accuracy did not exhibit significant improvement within 5 consecutive epochs,
the training process is terminated early.

In the 3-day testing period (26th-28th Nov.), the expert labelled 46

quakes, 18 earthquakes, 74 rockfalls and 719 noise events. The confusion
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matrix in Table 1 compares the output of the proposed CNN-based network,
with post-processing (Sec. 4.4), to the expert labels. As is common practice
for seismic signal classification on continuous data [29], the confusion matrix
also includes recall/sensitivity values in brackets. Recall is the ratio of true
positives to the sum of true positives and false negatives. In Section 3.2, it
is demonstrated that during the 4-day period from November 25th to 28th,
there are 6 additional earthquakes not labelled in the original catalogue [29].
The model discussed in [12] detected a much larger number, specifically 174
additional, earthquakes. This comparison shows the significant improvement
in the precision of earthquake classification achieved by our model. Addi-
tionally, our model achieved high recall (sensitivity) for rockfall events. As
expected, quake and noise events can be confused with the other 3 classes, due
to heterogeneity of the noise signal and very low signal amplitude of quake
signals. Next, we leverage on LRP to explain the origin of misclassifications.

Table 1: Confusion Matrix - Proposed CNN-based network with post-processing against
expert labels (the numbers in brackets indicate recall /sensitivity rates).

Model
Quake Earthquake | Rockfall Noise
Quake 26 (56.5%) 2 9 9
é Earthquake 0 15 (83.3%) 1 2
iz Rockfall 2 0 72 (97.2%) 0
Noise 110 13 58 538 (75.1%)

5.2. Ezplainability
The used package for embedding LRP into our models is iNNvestigate [44]

which supports Keras framework in Python 3. Default parameters of the
LRP-¢ rule are used.

Figure 4(a) shows an example of a correctly classified earthquake event.
Positive and negative values of the LRP relevance represent positive and neg-

ative contributions to the classification results, of the corresponding STFT,
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respectively. The distribution of LRP relevance is focused on the high fre-
quencies (about 40 to 50Hz) when the P-wave is picked as well as the low
frequencies (around 15 to 20Hz) of the P-wave and, after roughly 5sec, the
low frequencies of the S-wave with intermediate noise shown in light blue
correctly identified as not contributing (negative contribution). This exam-
ple shows that the model learnt, and uses as basis for its predictions, that
the P-waves of earthquake events tend to have both high and low frequen-
cies (around 50Hz and 20Hz, respectively) and that high energy content of
S-Waves follows in time.

Figure 4(b) shows an example of a correctly classified quake event. Quake
events are of shorter duration than earthquakes, have lower amplitudes, and
energy focused in low frequencies. LRP relevance is concentrated in the
single peak (positive and negative) of the event waveform, suggesting that
the normalised maximum amplitude is the key distinguishing feature. In the
frequency domain, the LRP map clearly shows the importance of the peak
that has energy mainly focused below 30Hz while there is also a small positive
contribution between 30 to 40Hz.

Figure 4(c) shows an example of a correctly classified rockfall event.
While the relevance score of quake events is concentrated on a single peak, rel-
evance of rockfall events is concentrated on multiple peaks, which also shows
an important property of rockfall events — multiple significant peaks. Look-
ing at the LRP map, relevance has multiple focused points corresponding to
multiple short waves — a characteristic of rockfalls. In addition, although
both rockfall and quake events have a frequency band between 10 to 30Hz,
LRP relevance is mostly concentrated at frequencies greater than 20Hz for
rockfalls and below 20Hz for quakes.

Similar visualisation maps are produced for other correctly classified events.
In summary, the model searches: (a) for P-wave and S-wave peaks and their
corresponding frequency contributions to predict an earthquake; (b) a short

wave with a single peak below 20Hz to decide quake; (c¢) multiple significant
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Figure 4: Correctly classified examples of earthquake, quake and rockfall: The first column
shows the time-series signal, middle column the STFT, and the right column is the LRP
relevance heatmap.
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frequency components around 25Hz to decide that the target signal is rock-
fall. This is in accordance to the characteristics of the three signal classes
[29], [17], [12]. Next, we will analyse misclassified events to explain why they

occur and how they can be avoided.

5.3. Ezplaining origin of misclassification

In this section, we show how LRP can be used for model diagnosis. The
confusion matrix presented in Table 1 shows that the quake signals are some-
times misclassified as rockfalls. Interestingly, however, rockfall signals are
rarely misclassified as quakes (only 2 misclassified events). To investigate
this further, Figure 5(a) shows an example of a quake event misclassified as
rockfall. In the LRP map, relevance distribution is very scattered. That
is, the LRP relevance is not focused on the quake event’s peak, but instead
picked up several consecutive peaks, where the positive relevance is correctly
concentrated at 5 seconds. This indicates that the model correctly recog-
nised a quake event’s peak appearing around 5 seconds, but there was a high
energy signal in nearby frequency bands, influencing the final prediction.
On the other hand, there are many positive relevancies at different times
that correspond to frequencies between 20Hz to 30Hz, which is akin to the
learnt rockfall ‘behaviour’. Thus, the main reason of misclassification be-
tween quake and rockfall is that the signal-to-noise ratio of the quake event
was very low, with a noise signal appearing immediately after, mimicking
multiple peaks of rockfall events.

In Figure 5(b), we show an instance in which a rockfall event is mis-
classified as a quake. The rockfall event displays multiple peaks; however,
these peaks, aside from the principal one, are of low magnitude and the event
has a very short time span. Analysis of the LRP representation illustrates
a concentration of positive effects (depicted in red) at the primary peak of
the event. Conversely, numerous negative contributions (depicted in blue)
are observed at the secondary peaks, suggesting that the presence of these

multiple peaks is not taken into account due to their limited magnitudes;
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hence, the model finally classifies this event as a quake.

In Figure 5(c), we present an instance of a quake misclassified as an
earthquake. This misclassification is evident in the LRP map, where both
high-frequency and low-frequency components simultaneously exhibit posi-
tive contributions around the 3-second period. Thus, the model interprets
this segment as a P-wave. Furthermore, at approximately 5 seconds into the
waveform, a positive contribution appears in the low-frequency range. Al-
though the primary peak of this event occurs around 3 seconds, the spectro-
gram reveals that the low-frequency component persists for an extended dura-
tion. Moreover, the event is influenced by higher-frequency noise (exceeding
30Hz), and this high-frequency noise coincides with the primary waveform
peak around the 3 seconds. Consequently, this led the model to mistakenly
identify it as a P-wave, with the prolonged low-frequency component be-
ing mistakenly identify as a S-wave. These observations align with seismic
features of earthquakes, thereby causing the model’s misclassification as an
earthquake event.

In Figure 5(d), we encounter an instance where an earthquake is mis-
takenly classified as a rockfall. The LRP map highlights multiple spectral
peaks, which is a feature of rockfall events. However, this event may have
resulted from an earthquake occurring amidst background noise, exhibiting
a distinctive multi-peak pattern. Thus, despite the presence of a P-wave
at approximately 1 second and an S-wave at roughly 4 seconds, complex
background noise caused misclassification.

In Figure 5(e), the misclassification of noise as an earthquake is shown.
The noise signal exhibits prominent peaks around 4 seconds and 5.5 sec-
onds. Examination of the LRP map reveals the model’s recognition of low-
frequency and high-frequency components (15-20Hz) around the 4-second
mark, along with low-frequency signals at 5.5 seconds (15Hz). This aligns
with the characteristic features of P-waves and S-waves in earthquake sig-

nals, resulting in the model’s misclassification as an earthquake. The result
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might have been different if time-series signals were inputted to the network
instead of the STF'T maps as can be seen from the left time-series plot that
shows high level of noise throughout the signal.

We can see from these examples that most misclassifications are due to
high level of background noise. The next example highlights another origin
of error related to the filtering process. Figure 6 displays an unfiltered earth-
quake waveform with a frequency below 3 Hz, characteristic of low-frequency
earthquakes that are rarely associated with active landslides [45]. Since our
focus is on detecting local seismic events related to landslides, we apply a
bandpass filter in the 5-60 Hz range (see Sec. 4.2), which excludes these low-
frequency earthquakes. Consequently, this filter removed the low-frequency
event’s waveform, leaving only background noise as input to the CNN. As il-
lustrated in Figure 7, the LRP map indicates that the model failed to extract
meaningful features from the filtered input, resulting in the earthquake being
misclassified as noise. This misclassification can be attributed to the rarity
and uniqueness of low-frequency earthquakes on landslides, as our filter in-
advertently eliminated their distinctive waveforms, confounding the CNN’s

classification process.
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Figure 6: Waveform (left) and STFT map (right) of the unfiltered low-frequency earth-
quake.
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Figure 7: Waveform (left), STFT map (middle) and the LRP map (right) of the filtered
low-frequency earthquake.

5.4. Re-labelling results

Figure 8 shows three examples of misclassifications, which could be due
to human error during expert labelling. The example shown in Figure 8(a), is
an event classified by the model as noise, though the domain experts labelled
it as a quake. In the STFT representation of the signal, no obvious peak
corresponding to the event was discernible. Moreover, the LRP map exhibits
a disordered distribution of relevance. Collectively, these findings lead to the
argument that the event in question is more likely to be anthropogenic noise
rather than a quake. Figure 8(b) illustrates a similar situation where the
event is mistakenly labelled as an earthquake. There are no clear P-waves
at both low and high frequencies, and there are no S-waves with high en-
ergy content. For this earthquake event, we also examined the unfiltered raw
signal, and it still did not exhibit any earthquake waveform characteristics.
Figure 8(c) shows an example that was classified as a rockfall by the CNN
model, while the expert labelled it as a seismic quake. It can be concluded
from the LRP map that the model focused on multiple peaks in the event,
with a frequency distribution centred around 30Hz, characteristics that align
with typical rockfall patterns. In contrast, quakes tend to exhibit a single
dominant peak, a feature that was notably absent in the input STFT map,
where multiple peaks were discernible. Consequently, based on these dis-
tinctive patterns and spectral features, it becomes evident that the event in
question is more accurately classified as a rockfall.

Here we list all corrections made to the expert catalogue, following above
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explainability and queries. Specifically, 7 quakes were relabelled as noise
as per example Figure 8(a), 1 earthquake was relabelled as noise (shown in
Figure 8(b)), and 1 quake as rockfall (Figure 8(c)). In addition, some noise
events were labelled by the expert though these events occurred very close to
earthquake, quake and rockfall events, which potentially caused confusion.
Hence, we removed all noise events that occurred in close proximity (within
30s) to the earthquake, quake and rockfall events - this way 38 noise events
were removed.

Thus, after this relabelling there are 38 quakes, 17 earthquakes, 75 rock-
falls and 689 anthropogenic noise events in total. The verified catalogue of
events is provided as supplementary material to this paper, as a contribu-
tion to address the second and third principles of Trustworthy Al, related to
reproducibility and data access. Specifically, the 260 verified events on the
25th Nov. 2015 are listed in the Training events supplementary material,
identified by the date. The 819 verified events on 26th to 28th Nov. 2014
are listed in the Additional 3-day catalogue supplementary material. In or-
der for other researchers to enable benchmarking, Table 2 and Table 3 show
the confusion matrix and classification performance after the re-labelling, re-
spectively. Although the Fl-score for quake events is low, we have a high
recall but precision is low because of 8 instances of false positives for rockfall.
There are relatively few instances of quake and earthquake, which explains
why the Fl-score is not the best indicator of performance and the confusion
matrix provides a more explainable and trustworthy measure of performance.

Table 2: The confusion matrix after label correction. The numbers in the brackets show
the recall values.

Model
Quake Earthquake | Rockfall Noise
- Quake 26 (68.4%) 2 8 2
g Earthquake 0 15 (88.2%) 1 1
4 | Rockfall 2 0 73 (97.3%) 0
Noise 95 11 37 546 (79.2%)
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Table 3: The classification performance after label correction.

Precision | Recall | Fl-score
Quake 0.21 0.68 0.32
Earthquake 0.54 0.88 0.67
Rockfall 0.61 0.97 0.75
Noise 0.99 0.79 0.88

6. Conclusions and Future Work

The paper discusses the significance of the 7 principles of Trustworthy
Al including human oversight, technical robustness, data governance and
transparency to the challenging problem of micro-seismic signal analysis. To
this effect, we propose a human-on-the-loop microseismic multi-class classi-
fication method together with LRP to shed light on feature importance in
order to in turn verify any possible human labelling error.

We demonstrate that the generated LRP maps assist human experts in
manual event classification. LRP clearly identifies properties of the signals
extracted by the network when making decisions. Based on this, we con-
cluded, for example, that the main reason why quake events are often mis-
classified as rockfall is due to appearance of a noise signal at multiple higher
frequencies that mimics rockfalls. Due to human error, experts may occa-
sionally mislabel events in the catalogue due to the similarity of event char-
acteristics, complexity of seismic data and large volume of data that needs to
be processed. However, the availability of LRP maps as a visual aid can offer
a valuable tool to verify and refine the expert’s classifications. This collabo-
rative synergy between automated and manual classification can enhance the
accuracy of microseismic catalogues, contributing to a better understanding
of geological processes.

Besides assisting with event labelling, another application of the LRP
maps is improving the model’s performance. Indeed, by observing the in-
sights gained through XAI tools, we discern specific features of input events

that are prone to misclassification by the CNN, which is instrumental in en-
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hancing the robustness and generalisability of the model that can be achieved
by adding more events in the training set that closely resemble the challenging
input patterns identified through XAI. For example, when we discover that
certain event features consistently lead to misclassifications, we collect and
add more events with similar attributes into the training dataset. This tar-
geted data augmentation approach has the potential to improve the model’s
ability to distinguish between challenging seismic events, thereby increasing
model’s robustness and classification performance.

Since LRP assigns relevance scores to highlight the most influential fea-
tures for each classification, it is important to determine if these relevance
patterns remain stable across various geographic areas and seismometer char-
acteristics, such as sensitivity, sampling rate, and axis configurations. This
evaluation will help ascertain the reliability of LRP explanations across di-
verse equipment types and environments. In future work, we plan to test our
system in various geographic regions and with different seismometer config-
urations to assess the consistency and robustness of LRP interpretability,
enhancing the broader applicability and trustworthiness of our approach.

Given the potential variability in expert interpretations, it is important
to explore how different experts’ insights may affect labeling. Future studies
could employ a multi-expert assessment framework that incorporates confi-
dence levels, based on the methodologies proposed by [46], to better under-
stand this variability and further enhance the reliability of the classification
process.

Since classification of quakes remains challenging, the current model could
be adapted to classify a broader range of events, including low frequency
events and types of anthropogenic noise, by expanding the training set and
retraining the model, with LRP providing the explanations. To maximize
accuracy and trust in Al-driven seismic signal analysis, integrating human
expertise with AT models is important. Developing interactive explainability

tools that facilitate iterative feedback from geoscientists could lead to con-
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tinuous improvements in model performance and foster greater confidence in

Al-generated outputs.
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