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Abstract

1 - Underwater video transects are crucial to assess marine biodiversity and

biomass. The counting of individual fish in these videos is labour- and time-intensive

and operator-dependent. Automating this step would create non-biased biodiversity

data and decouple the data collection campaign from any field constraints.

2 - To begin developing an automated process, we assessed the commonly used

method for counting objects in videos and compared it to three new methods for

counting fish using computer vision derived data (single frame detections) that re-

sulte in a holistic and fully automated pipeline for fish abundance measurements. In

addition to the commonly used method Nmax, we included (i) a 1D k-means clus-

tering method, (ii) an intuitive clustering approach, NHeuristic, and (iii) a Temporal

Convolutional Neural Network (TCN) counting method. We tested these methods

on three Mediterranean species from different ecological niches.

3 - We first assessed the methods using manually labelled detections (groundtruth

detections) and then incorporated a detector into the pipeline for a more realistic

scenario. The results in these two configurations showed evidence of underestimation

by Nmax. The other methods showed better overall results. The proposed NHeuristic

and TCN methods are the closest to manual evaluation. With an absolute variation

comparable to inter-operator variation, we demonstrated that these are reliable

methods for quantifying fish counts for these three different Mediterranean species.

4 - The parameters of these automated methods could be adjusted to suit other

species and then be used in monitoring programs, for example to assess biodiversity

and biomass in marine protected areas over time.

Keywords: Artificial intelligence; Diver operated videos; Fish count prediction; Fish

monitoring; Machine learning; Marine conservation; Object detection; Temporal Convolu-

tional Network
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1 Introduction

The marine environment is facing various factors that pose a critical threat to its inhabitants.

Factors such as climate change (Pörtner and Peck (2010)), (over-)tourism (Weng et al.

(2023)) and fishing (Bell et al. (2017)) - especially overfishing (Yan et al. (2021)) - are

threatening marine species populations (i.e. mammals, fish, reptiles and invertebrates)

(Dìaz et al. (2019)). To counteract these factors different conservation tools (Hilborn et al.

(2020); Calò et al. (2022); Ranganathan et al. (2023)) have been implemented to help

preserve populations (Hutchings and Reynolds (2004)). Marine protected areas (MPAs),

which function as a safe haven for marine species are among those tools. Inside these areas

anthropogenic actions (i.e. anchoring or fishing) are limited or prohibited. Assessing the

effectiveness of Marine Protected Areas (MPAs) requires efficient, unbiased, and reliable

data collection methods to monitor species populations and track their changes over time.

Underwater evaluations of fish counts and biomass are two measurements that play a

critical role.

A very important indication for the health of an ecosystem is the count of individuals

of different species, as these measurements provide valuable insights into population

dynamics, species diversity, and the overall balance of the aquatic environment. To count

fish in the marine environment, traditional techniques rely on divers collecting biological

data in different regions of interest. In these areas, specifically trained experts perform

different biodiversity assessments. There are different ways to record this diversity - direct

methods such as underwater visual census (UVC) or indirect methods which rely on camera

deployment (Stobart et al. (2007); Harmelin-Vivien and Hermalin (2013)).

The traditional way of camera deployment is the Baited Remote Underwater Video

(BRUV) approach (Fig. 1-B), involving a stationary camera. To avoid double counting of

fish in this setup, the analysis uses only the frame with the highest number of individuals,

which is hypothesised to present the relative abundance of the specific replicate in that

area. The number of fish in this maximal frame is termed Nmax or MaxN (Ellis and
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DeMartini (1995)) and is the most used metric when it comes to analysis of the BRUV

(Schobernd et al. (2014); Haberstroh et al. (2022); Villon et al. (2024)).

The Diver Operated Video (DOV) data collection involves scuba divers or remote

operated vehicles (ROV) holding a camera and recording fish that appear and diasppear

int he field of view (Fig. 1-A). To evaluate DOV, the metrics are predominantly measured

manually by an expert and result in abundance (FishAbundance - Schramm et al. (2020);

Maslin et al. (2021); Jessop et al. (2022)) and richness data (Langlois et al. (2010); Grane-

Feliu et al. (2019); Raoult et al. (2020)). In DOV, empirical observations suggest that the

movement of the diver and the fish are antagonistic and therefore the fish move out of

the way and do not re-enter the transect at a later stage of the survey, making the Nmax

metric prone to underestimation (Kilfoil et al. (2017); Sherman et al. (2018)). There is the

potential, however, for other methods to result in more precise abundance data (Dickens

et al. (2011)).

  

BA

Figure 1: A is an example of a transect setup used in this study with a diver that holding

a camera and filming the point of view straight ahead (adapted from Roelfsema et al.

(2018)). B explains the concept and construction of a BRUV setup (adapted from Zhang

et al. (2024)).

While BRUV and DOV are both widely used, both of these methods require long video

analysis times (Schramm et al. (2020)). With advances in technologies in the 21st century,
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there is a potential to automate or at least semi-automate the process of video analysis

using machine learning methods (Hoekendijk et al. (2021)). The study of Atlas et al.

(2023), for example, presented a deep learning multi object tracker for wild salmon. The

salmon were tracked and counted as they swam through a one-directional river fence in this

successfully automated procedure. Studies combining moving cameras and automation are

still scarce. In the study of Connolly et al. (2022), the automated procedure was able to

accurately predict the frame with the most individuals in a sequence in nine out of ten

videos. These results were comparable to stationary setups (i.e., BRUV). In an example

with benthic fish species, Esselman et al. (2025) showed a proof of concept, counting round

goby (Neogobius melanostomus) in images with a nadir view setup by skipping frames,

making it possible to avoid double counting. However, there are still few studies that have

focused on the evaluation of moving cameras with pelagic species and the automation of

this process.

This study highlights the flaws in Nmax estimates and proposes three alternative methods

that outperform the Nmax metric in counting the actual fish abundance in an automated

manner.

In addition to Nmax the methods explored were: (i) a 1-dimensional (1D) clustering

approach, (ii) an intuitive clustering approach termed NHeuristic, and (iii) a Temporal

Convolutional Network (TCN) approach. We used the four methods to predict the

abundance in 55 videos for three distinctly different Mediterranean species: Epinephelus

marginatus, Sciaena umbra and Diplodus vulgaris. The aim of this study was to find a

reliable procedure to count objects in single-frame detections with a moving camera and

to show the potential of different methodologies to accomplish this task. This will make it

possible to rapidly produce fast and non-biased data that can be used for further ecological,

economical or conservation analyses.

In this study we provide three main key contributions :

- We present the first fully automated pipeline for DOV systems, integrating all steps from

video recording to extraction of the fish abundance data.
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- We identify critical weaknesses in the widely used Nmax approach, most importantly its

tendency to underestimate fish abundance. To overcome its limitations, we propose three

novel methods that significantly reduce underestimation.

- To assess the methods, we established two experimental conditions - theoretical (ideal

case) and practical (more realistic automated scenario). The proposed approach provides

a robust framework for future studies to assess automated fish abundance measurements.

2 Materials and Methods

In this section we show how we automated the counting of three Mediterranean fish species

in underwater videos with three novel methods that have not been explored before. We

first present the study area and data collection specifications (see Sec. 2.1), species of

interest (see Sec. 2.2), how we processed the videos (see Sec. 2.3) and then give more

insights into the different methods (see Sec. 2.4), to enable this study to be reproduced

for more locations and species.

2.1 Study area and data collection

To cover a great area and wide variety of habitats, we collected videos in eight different

locations of the French Riviera in the Mediterranean Sea in standardized conditions

(Harmelin-Vivien et al. (1985)). The depth ranged from 1 to 37m and data was collected in

2022 at different times of the year (cold- and warm season). Camera-equipped divers did 3

transects of 125 m2 surface per dive. For the recording of the videos, clipboard-mounted

GoPro HERO 9 cameras were used. These videos were recorded with a framerate of 24

frames per second (FPS) and full high definition resolution (1920x1080 px). Frames were

extracted from these recordings with a framerate of 1 FPS.

2.2 Species of Interest

We observed a wide variety of fish species in the videos, from which we chose three for

this study: E. marginatus, S. umbra and D. vulgaris. We chose them because they occupy
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distinct ecological niches that are different enough to test these new methods, and ensure

they will have a broader applicability to other environments.

The most emblematic species of the French Mediterranean Sea is the endemic dusky

grouper (E. marginatus - Fig. 2). It falls into the ecological niche of a solitary predator

species. This species is interesting since it has been overfished for decades and subjected to

protection efforts since 2003 (Pollard et al. (2018)), now showing signs of recovery. Since

this species has only been recently protected, knowing the evolution of populations of this

species in a temporal and spatial manner is extremely important.

Figure 2: Unedited example image from a transect of three E. marginatus individuals in

the centre of the image. Conditions are variable in the frames and make the detection

more difficult.

The second species, the brown meagre (S. umbra - Fig. 3) is also protected in French

waters (Prefectoral orders number 2013357-0002 for Corsica and number 2013357-0007

for continental coast). The population is in decline (Harmelin-Vivien et al. (2015)) and

therefore it is important to keep track of these fish. They hunt in schools of multiple

individuals and thus fill a different ecological niche, enabling us to assess our methods.
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For the third species we chose a more abundant species, which is present in more videos

and in a greater number of high occurrence videos, the common two-banded sea bream or

D. vulgaris (Fig. 3). This species lives in large schools above the seabed, scavenging for

food. They were found in many of the transects evaluated and therefore present a greater

challenge for the methods. The abundance varies from one or two individuals to 50 or

more. This different ecological niche will demonstrate the strength and weaknesses of the

different methods.

Figure 3: Unedited example image of the transect with around 20 D. vulgaris individuals

and two S. umbra among the D. vulgaris school.

2.3 Obtaining data from the videos

The videos provided sequential frames, forming temporal time series. This chronological

arrangement allowed us to create 1-dimensional histograms of each video and species (see

Sec. 2.3.1). These histograms subsequently served as inputs for the analytical methods

(see Sec. 2.4), ultimately giving species-specific counts for each video (see Sec. 3) as an

output. The inference pipeline is shown in Figure 4.

To test the robustness of our methods, we used two types of data as the input to

each method, the first a theoretical perfect case and the second a more realistic practical
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scenario. In the perfect case (see Sec. 3.1), we used the groundtruth detections to verify

the feasibility of the methods proposed, thus ensuring 100 % of the detections were correct

and no potential error was introduced by a faulty detector. In the practical or fully

automated case (see Sec. 3.2), we used the predictions of the detector to see the impact

on each method of using a detector in the pipeline. For the output of the methods we

wanted to estimate the True FishAbundance. We refer to the method-estimated counts as

’Estimated FishAbundance’ henceforth.

Create 1D 
profile per 

species and 
video

Detection

Videoframes 
1920x1080 Label file per frame

Final count 
per video 

and method
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See Sec. 2.3Epinephelus marginatus

Sciaena umbra

Diplodus vulgaris

Figure 4: Workflow of the automated pipeline.

2.3.1 Detector training and input data

To detect automatically which species are present in which videos, we used a deep learning

approach to make predictions on the data. For the detector, we used a slight variation of

the model described in a previous study (Bürgi et al. (2024)). We kept the hyperparameters

constant but moved seven videos from the training to the validation set for the detector.

We used the validation set to find the f1 score per species for the fully automated case. To

enrich the test dataset and assess the methods on high abundance videos, we excluded five
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high occurrence videos from training and added them to the test dataset. To analyse these

detections, fish counts were aggregated by species and frame, resulting in a one-dimensional

time series representing species abundance throughout each video (Fig. 5).
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Figure 5: An example of the representation of one fish species in one video: the number of

fish from this species is counted per frame, manually or automatically. Each species in

each video is represented as this 1D series of values.

The one-dimensional time series (Fig. 5) contain different abundances per species.

The training and validation detections for the detector model also form the training and

calibration dataset for the counting methods (ii) and (iii). The test set videos were held

constant across the methods to have a fair comparison. Table 1 provides more information

on the videos used in the TCN training and the NHeuristic calibration.
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Table 1: The dataset used for the training of the TCN and the NHeuristic calibration. The

training and testing videos are the same for all species to enable a fair comparison. The

occurrences differ between the species enabling us to test the methods. The train (train

and val combined) and test split used in the detector training are held constant to evaluate

the count methods. The number of videos in which there were no occurrences and at least

one occurrence are given in columns four and five.

Species Category Total Videos 0 Videos ≥1 Videos Occurrences

Sciaena umbra Training 119 112 7 49

Testing 55 46 9 33

Epinephelus marginatus Training 119 97 22 55

Testing 55 36 19 56

Diplodus vulgaris Training 119 76 43 259

Testing 55 27 28 334

2.3.2 True FishAbundance

To evaluate the methods, we compared the output of each method with the actual count

per video. For this purpose, a marine biology expert counted the actual fish abundance

(True FishAbundance) per video, resulting in a groundtruth count per video. When in

doubt a second count was made by a different expert and discussed.

2.3.3 Evaluation metrics

To evaluate the accuracy of the different count methods and their ability to grasp the

actual biodiversity, we introduced different metrics. The first metric is the absolute error

(AE - Eq. 1) which enables a direct comparison of our proposed methods to the Nmax

method.

AE = |True FishAbundance − Estimated FishAbundance| (1)

The absolute percentage error (APE - Eq. 2) allows a relative comparison between
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other methods not evaluated in this study.

APE =

(
|True FishAbundance − Estimated FishAbundance|

|True FishAbundance|

)
× 100 (2)

To have an idea of hte linear relationship between the true FishAbundance (manual)

and the estimated FishAbundance (automated), we calculated the Pearson correlation

coefficient under different exclusion criteria: (1) all videos included (CorrAll), (2) excluding

videos with zero counts (Corrw/o0), (3) excluding videos with counts of zero or one

(Corrw/o01), and (4) excluding videos with counts in the range of zero to ten (Corrw/o0:10).

2.4 Counting Methods

We wanted to show the risks and flaws of using Nmax in a DOV setup and use Nmax as the

baseline for our three improved methods. Previous studies have shown underestimation of

true fish abundance in videos when utilising the Nmax metric (Schobernd et al. (2014);

Campbell et al. (2015); Sherman et al. (2018)). We introduce 3 novel methods besides the

commonly used Nmax, to find the most suitable count method for the different ecological

niches of fish. These three methods are - (i) 1D clustering termed NCluster, (ii) the manual

NHeuristic and (iii) a Temporal Convolutional Network (TCN) approach termed NTCN to

evaluate the fish abundance.

2.4.1 Nmax

As a baseline we used the commonly used Nmax to find the abundance in the videos. Nmax

uses a snapshot of the sequence with the highest count of individuals and uses this count

as the sequence abundance (Eq. 3).

Nmax = max{Nf}, f = 1, 2, ..., F (3)

Where:

• Nf : Number of individuals counted in frame f .

• F : Total number of frames in the video.
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2.4.2 NCluster

Since Nmax only counts one peak per video, information before and after this peak is lost

and not incorporated into the count. Using one value per video is not ideal and we thought

of a potentially better approach. The different groups in the 1-dimensional profile (Fig. 5)

are hypothesised to be different schools so summing the maximum of each of these clusters

refines the count per video. A clustering approach will work well to determine clusters

from the 1-d profile of detections derived from each video.

Generally speaking, a k-means clustering approach groups the sequences into k clusters

so that a cost is minimized. The challenge with k-means clustering is to find the correct

value of k. For this purpose we used the R package Ckmeans.1d.dp (Wang and Song (2011))

that clusters 1-dimensional data dynamically into different clusters. We provided a range

of k (1 to 10) since never more than 10 schools of fish were observed - this range needs to

be adjusted according to each individual problem. For each sequence or video, the ideal k

was found. The peaks of all clusters were then summed to form a better representation of

the fish count over time (Eq. 4).

NCluster =

NClus∑
j=1

max{Cj} (4)

Where:

• NClus: Total number of clusters identified in the video.

• Cj: Cluster j

• j: Cluster index (1,2,...,j)

2.4.3 NHeuristic

The k-means clustering method used for NCluster relies on statistical principles that may not

align with how a human would intuitively approach the problem. Therefore, we simplified

the problem and we were able to adopt a natural and intuitive solution to differentiate
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between the various fish groups in the videos. We introduced NHeuristic (Eq. 5), a method

that employs inter-school distances as a species-specific differentiator.

This method used the relatively consistent characteristic distance between schools

observed for each species, allowing more precise school differentiation based on this

distance. The different clusters were differentiated by two variables that were calibrated on

the training dataset. The variable threshold referred to the minimum count for a cluster

to be considered a school, this was introduced to counteract always occurring species. The

second variable, n_frames referred to a delay between schools before a new school was

identified. The maxima of each school were then summed to get an improved count of the

fish individuals in each transect video.

NHeuristic =

NSchools(nframes,threshold)∑
j=1

max{Cj} (5)

Where:

• NSchools: Total number of clusters identified in the video.

• nframes: Frame delay between two clusters

• threshold: Minimum individual count for a cluster to be valid

• Cj: Cluster j

• j: Cluster index (1,2,...,j)

2.4.4 NTCN

Clustering methods typically that the number of individuals within a fish school remains

constant. However, fish schools are dynamic systems where individuals frequently join or

leave. The proposed clustering methods do not account for the dynamic nature of this

group composition, which may affect the accuracy of fish counts. With the rise of neural

networks (NN) in recent years, it is possible to use an NN to account for this more dynamic

and complex behaviour of the fish. This is why we introduced a Temporal Convolutional

Network (TCN, Bai et al. (2018)) as a third method.
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A TCN is a Convolutional Neural Network (CNN) but excels in utilising temporal data

(i.e. time series). The two main advantages of TCN are 1) the property to keep temporal

information between the datapoints (i.e., timepoint0, timepoint1 and timepointn) and 2)

that it is parameter-efficient, making it well-suited for scenarios where data is limited.

These advantages led to the decision to utilise a TCN for this study. The sequences of

counts were prepared to fit the input format of the TCN (predictor = sequence of counts,

target = NTCNSpecies1, NTCNSpecies2, NTCNSpecies3). We trained the TCN model on batches

of size 64 using a stochastic gradient descent (SGD) optimisation function, a learning rate

of 0.01 and trained for a total of 1,250 epochs. Five independent trainings were conducted

and the average is presented with the corresponding standard deviation. For graphical

representation, we chose the model that had the lowest absolute error on the test set. The

training and validation loss curve can be seen in Figures S1 and S2. The architecture can

be seen in Table S1 with 3,713 trainable parameters. We called the predicted video counts

’NTCN ’ henceforth.

3 Results

In this section, we show the outputs of the different methods. We commence with the

perfect case (see Sec. 3.1) and then use the fully automated case (see Sec. 3.2) to test our

methods. The methods and species follow the same order to aid readability in this section.

3.1 Perfect case testing methods on groundtruth test labels

In this first case we tested how the fish count was impacted solely by the methods used

and not by the object detection task. We used the groundtruth labels on the test set to

assess the performance without the impact of the detector performance.

3.1.1 Epinephelus marginatus

We first investigated the species E. marginatus. It is a relatively rare species and videos

with a high occurrence of this species are scarce. In all test videos, we observed a total of

16



56 individuals with the majority being in multiple single occurrence videos. In Table 2

we can see that all methods perform better than Nmax in all metrics provided. The best

performing is the NHeuristic method with an absolute error (AE) of 13 or percentage error

of 23 % over- or under-estimation. If we exclude the videos with 0 or 1 occurrences, the

correlation decteases below 0.60 for Nmax while it stays constant above 0.6 for the other

methods. The exclusion results in a reduction of the correlation coefficient for Nmax from

0.897 to 0.544, whereas for NHeuristic also it decreases, but to a much lesser extent, from

0.957 to 0.820.

Table 2: The different metrics for the different methods are presented for the species

E. marginatus. The correlations between the estimated counts and the actual counts on

the test set are indicated with all points included (All), 0 excluded (w/o0) and 0 and

1 excluded (w/o01) to show the robustness of the methods in high occurrence videos.

Percentage values were rounded to have 0 decimals. For NTCN the standard deviation was

calculated for the 5 replicates we trained.

Method AEAll APEAll CorrAll Corrw/o0 Corrw/o01

Nmax 18 32% 0.905 0.752 0.544

NCluster 13 23% 0.942 0.899 0.751

NHeuristic 13 23% 0.957 0.901 0.820

NTCN 15±2 27±4% 0.932±0.012 0.841±0.030 0.701±0.034

The visual representation of the counts (Fig. 6) showed a clear underestimation of the

counts with Nmax while it is much more stable with the other three methods. We can

see that with an increase in occurrence of the species in the videos, our methods handle

these cases much better than the more commonly used Nmax. The difference to the ideal

line shows that none of the methods shows a perfect result but the trend is towards less

miscounting with the new methods.
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Figure 6: Linear regression (grey area indicates the 95% confidence interval) between the

actual number of individuals of E. marginatus in test videos (y-axis) and the estimated

count by the different methods (x-axis). The size of the points indicates more videos

overlapping with the corresponding methods estimated count and the actual count. The

dashed red line indicates a perfect result. Underestimations are seen above the line and

overestimations are seen below the line. The point size of 0,0 was reduced to 1 for the

graphical representation. A total of 19 videos had 56 E. marginatus present.

3.1.2 Sciaena umbra

The second species we investigated was S. umbra. This species is also rare but appears in

larger schools of up to 20 individuals. We observed this species in 9 test videos. All three

methods showed high correlation values and low miscounts of 21 % or lower (Table 3),

making any of them suitable to count predatory schooling species. Nmax fails to count

the absolute fish abundance and 33 % of the individuals are miscounted. Correlation

values significantly drop from 0.766 to 0.382 when the lower occurrence videos are removed.

The best performing method is NTCN with only 15% of the fish being miscounted and
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correlation values of 0.975 even with the low occurrence videos excluded.

Table 3: The different metrics for the different methods are presented for the species S.

umbra. The correlations with the actual counts on the test set are indicated with all points

included (All), 0 excluded (w/o0) and 0 and 1 excluded (w/o01) to show the robustness of

the methods in high occurrence videos. Percentage values were rounded to have 0 decimals.

For NTCN the standard deviation was calculated for the 5 replicates we trained.

Method AEAll APEAll CorrAll Corrw/o0 Corrw/o01

Nmax 11 33% 0.766 0.450 0.382

NCluster 7 21% 0.966 0.934 0.929

NHeuristic 6 18% 0.976 0.966 0.965

NTCN 5±1 15±3% 0.987±0.006 0.978±0.010 0.977±0.011

We finally looked at the visual representation of the count data for the different

methods(Fig. 7). First, the low correlation values generated by Nmax depend on only one

video that has more than six occurrences. This video is better counted with the other

methods and therefore leads to the higher correlation values for these methods. This gives

an indication how the different methods can outperform Nmax on high occurrence videos,

which Nmax struggles with. While NTCN has an absolute error of zero in this specific video,

the other methods struggle with errors ranging from 1 for NCluster to 4 NHeuristic.
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Figure 7: Linear regression (grey area indicates the 95% confidence interval) between the

actual number of individuals of S. umbra in test videos (y-axis) and the counts of the

different methods (x-axis). The size of the points indicates more videos overlapping with

the corresponding methods estimated count and the actual count. The dashed red line

indicates a perfect result. Underestimations are seen above the line and overestimations

are seen below the line. The majority of the videos (n=45) were at point 0,0. The point

size of 0,0 was reduced to 1 for the graphical representation. A total of 9 videos had 33 S.

umbra present.

3.1.3 Diplodus vulgaris

The last species that we looked at was the schooling fish and commonly seen D. vulgaris

(Table 4). The expected increase in number of individuals was thereby used to test the

methods. This increase in numbers had the biggest impact on two methods for this species,

namely Nmax and NCluster. With error rates of 40 % the counting of this species was

inadequate. However, for the other two methods the error rate is halved and is around

20 % for NHeuristic and NTCN . All of the proposed methods have a correlation over 0.90.
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When we excluded the videos with 10 or less individuals, the correlation for NHeuristic

and NTCN stayed above 0.90, which further underscores the broad applicability of these

methods for different ecological niches.

Table 4: The different metrics for the different methods are presented for the species D.

vulgaris. The correlations with the actual counts on the test set are indicated with all

points included (All), 0 excluded (w/o0), 0 and 1 excluded (w/o01) and videos with less

than 10 individuals excluded (w/o0:10) to show the robustness of the methods in high

occurrence videos. Percentage values were rounded to have 0 decimals. For NTCN the

standard deviation was calculated for the 5 replicates we trained.

Method AEAll APEAll CorrAll Corrw/o0 Corrw/o01 Corrw/o0:10

Nmax 135 40% 0.907 0.882 0.859 0.718

NCluster 130 39% 0.94 0.925 0.91 0.822

NHeuristic 64 19% 0.991 0.988 0.986 0.980

NTCN 67±12 20±4% 0.980±0.004 0.975±0.004 0.968±0.006 0.937±0.009

The smaller number of no occurrence videos made data more available and favoured

the two methods that needed training or calibration. This is clearly visible in the graphical

representation (Fig. 8) of the FishAbundance. Both better performing methods seem to

underestimate the count a little but keep the distance to the perfect dashed red line as

small as possible. NCluster overestimates the majority of the videos that contain 20 or more

fish, which seems to be a limit to this method. On the other hand, Nmax underestimates

the count in all videos and the majority of the miscounting occurs in the videos that

contain more than 15 individuals, which seems to be the limit of this method.
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Figure 8: Linear regression (grey area indicates the 95% confidence interval) between the

actual number of individuals of D. vulgaris in test videos (y-axis) and the counts of the

different methods (x-axis). The size of the points indicates more videos overlapping with

the corresponding methods estimated count and the actual count. The dashed red line

indicates a perfect result. Underestimations are seen above the line and overestimations

are seen below the line. The videos at point 0,0 (n=25) were reduced in their point size to

1 for the graphical representation. A total of 28 videos had 334 D. vulgaris present.

3.2 Fully automated case testing methods on detections

In this section we explored the impact of utilising a detector and its detections instead of

the groundtruth labels. It is important to assess real world applications of the problem

and see the feasibility with an imperfect detector with potential for improvement. For

each species we found the best performing confidence threshold based on the respective f1

score on the validation set. We determined the confidence thresholds as follows, 0.55 for

E. marginatus, 0.60 for S. umbra and 0.45 for D. vulgaris.
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3.2.1 Epinephelus marginatus

Accurately determining the counts of E. marginatus is crucial, even when using a detector

system. This ensures that newly recorded data can be reliably evaluated and closely

reflects actual population dynamics and distribution. We see an increased error for all

the methods (Table 5) in comparison with the perfect case (Table 2). The effect of this

imperfection is greater on the correlation of Nmax than the other methods that continue to

present values above 0.750 while Nmax drops to 0.444 for Corrw/o01. Most of these errors

derived from false positive counts in no and one occurrence videos (except Nmax). This is

observable for both the rarer species since the contribution of the low occurrence videos is

bigger than for the more common D. vulgaris.

Table 5: The different methods tested on the detector predictions are presented for the

species E. marginatus. The correlations with the actual counts on the test set are indicated

with all points included (All), 0 excluded (w/o0) and 0 and 1 excluded (w/o01) to show

the robustness of the methods in high occurrence videos. Percentage values were rounded

to have 0 decimals. For NTCN the standard deviation was calculated for the 5 replicates

we trained.
Method AEAll APEAll CorrAll Corrw/o0 Corrw/o01

Nmax 34 61% 0.800 0.710 0.444

NCluster 29 52% 0.876 0.928 0.882

NHeuristic 19 34% 0.906 0.894 0.790

NTCN 21±6 38±11% 0.913±0.034 0.899±0.045 0.826±0.078

In Figure 9 the over- or under- estimation is presented. We can see that Nmax and

NHeuristic both tend to underestimate (with varying effect) the count. The biggest error is

observable here with the false positives on the horizontal line of y = 0. Trends of NCluster

and NTCN show a clear indication that the performance is better than Nmax. NHeuristic

has lower error rates due to fewer false positives being counted towards the abundance.

This can be seen numerically in Table 5.
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Figure 9: Linear regression (grey area indicates the 95% confidence interval) between the

actual number of individuals of E. marginatus in test videos (y-axis) and the estimated

count by the different methods (x-axis) on the detector predictions. The size of the points

indicates more videos overlapping with the corresponding methods estimated count and

the actual count. The dashed red line indicates a perfect result. Underestimations are

seen above the line and overestimations are seen below the line. The point size of 0,0 was

reduced to 1 for the graphical representation. A total of 19 videos had 56 E. marginatus

present.

3.2.2 Sciaena umbra

The biggest difference between the perfect and the fully automated case can be seen for

S. umbra (Tables 3 and 6). The results for the perfect case can be considered very good

with low error rates, while using the detector increased the error by up to 55% for Nmax

and up to 49% for the other methods. The most stable results were obtained with the

NHeuristic method, with an increase of 37% from 18% to 55%. This can be explained by

an insufficient detection capability for this species in the test dataset. Correlation values
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remained above 0.9 for the proposed methods, even when low occurrence videos were

excluded. In contrast, for Nmax, the correlation reached 0.812 under the same exclusion

conditions. These results are subjected to caution since the sample dataset is low with

only 9 videos for this species.

Table 6: The different methods on the detector predictions are presented for the species S.

umbra. The correlations with the actual counts on the test set are indicated with all points

included (All), 0 excluded (w/o0) and 0 and 1 excluded (w/o01) to show the robustness of

the methods in high occurrence videos. Percentage values were rounded to have 0 decimals.

For NTCN the standard deviation was calculated for the 5 replicates we trained.

Method AEAll APEAll CorrAll Corrw/o0 Corrw/o01

Nmax 29 88% 0.727 0.784 0.812

NCluster 23 70% 0.903 0.924 0.918

NHeuristic 18 55% 0.931 0.966 0.963

NTCN 18±4 55±12% 0.930±0.017 0.963±0.014 0.961±0.015

For S. umbra, the false positive rate is the highest, as clearly illustrated in the graphical

representation (Fig. 10). The false positives on y = 0 (equivalent to w/o0) ranged from

11 individuals for NCluster to 6 for NHeuristic (Nmax = 9, NTCN = 7). This shows that the

NTCN and NHeuristic are more robust against false positives but are still affected by the

inclusion of a detector in the process. The single video containing more than 10 individuals

contributed significantly to the error in Nmax, favouring the new proposed methods.
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Figure 10: Linear regression (grey area indicates the 95% confidence interval) between

the actual number of individuals of S. umbra in test videos (y-axis) and the counts of the

different methods (x-axis) on the detector predictions. The size of the points indicates

more videos overlapping with the corresponding methods estimated count and the actual

count. The dashed red line indicates a perfect result. Underestimations are seen above

the line and overestimations are seen below the line. The majority of the videos (n=45)

were at point 0,0. The point size of 0,0 was reduced to 1 for the graphical representation.

A total of 9 videos had 33 S. umbra present.

3.2.3 Diplodus vulgaris

The results obtained for the third species showed the least change in error rates for the

three species between the perfect and fully automated scenario (Table 7), ranging from -4%

(false negatives decreasing the count to a better result) for NCluster to 14% for NHeuristic.

This stability may be attributed to the increased number of individuals, which not only

enhanced counting accuracy but also improved the training effectiveness of the deep

learning model. The error percentage remains below 40% for all our proposed methods
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while for Nmax it is 50%. In most cases, correlations remain above 0.9, both with and

without exclusions. However, when the occurrence range of 0 to 10 is excluded, correlations

for NCluster and Nmax drop below 0.9 while NHeuristic and NTCN stay above this value.

Table 7: The different methods on the detector predictions are presented for the species

D. vulgaris. The correlations with the actual counts on the test set are indicated with all

points included (All), 0 excluded (w/o0), 0 and 1 excluded (w/o01) and videos with less

than 10 individuals excluded (w/o0:10) to show the robustness of the methods in high

occurrence videos. Percentage values were rounded to have 0 decimals. For NTCN the

standard deviation was calculated for the 5 replicates we trained.

Method AEAll APEAll CorrAll Corrw/o0 Corrw/o01 Corrw/o0:10

Nmax 166 50% 0.939 0.926 0.910 0.819

NCluster 116 35% 0.937 0.924 0.910 0.838

NHeuristic 111 33% 0.978 0.975 0.969 0.964

NTCN 103±14 31±4% 0.982±0.007 0.979±0.009 0.975±0.011 0.958±0.023

We visually assessed the impact of the absolute error and if there was an over- or

underestimation (Fig. 11). We can see that Nmax and NHeuristic underestimate the count

while NCluster overestimates the count but less so than with groundtruth labels, explaining

the 4 % decrease in absolute error. For this ecological niche, the best performer is the

NTCN method which does not over- or underestimate the count but has a balanced variance

around the ideal line. This is also observed numerically with high correlation values.

27



Nmax NCluster NHeuristic NTCN

0 15 30 45 60 75 0 15 30 45 60 75 0 15 30 45 60 75 0 15 30 45 60 75

0

10

20

30

40

50

60

Estimated FishAbundance

Tr
ue

 F
is

hA
bu

nd
an

ce

Number of videos
1
2
3
4
5
6
7

Figure 11: Linear regression (grey area indicates the 95% confidence interval) between the

actual number of individuals of D. vulgaris in test videos (y-axis) and the counts of the

different methods (x-axis) on the detector predictions. The size of the points indicates

more videos overlapping with the corresponding methods estimated count and the actual

count. The dashed red line indicates a perfect result. Underestimations are seen above

the line and overestimations are seen below the line. The videos at point 0,0 (n=25) were

reduced in their point size to 1 for the graphical representation. A total of 28 videos had

334 D. vulgaris present.

4 Discussion

Key Message To the extent of our knowledge, this was the first study to explore

automated FishAbundance counting in a DOV setup. In this proof of concept, we

proposed three automated fish counting methods that used detections derived from a deep

learning model as an input. This automation process will significantly reduce the analysis

time associated with manually calculating FishAbundance (Haberstroh et al. (2022)) or
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Nmax (Raoult et al. (2020)).

The three new proposed methods of fish counting all outperformed the commonly used

Nmax method. Even the simplest method NCluster outperforms the metric Nmax widely used

in BRUV and DOV. In all cases, Nmax underestimated the true abundance in the videos,

even with perfectly labelled images, by up to 40 % and with varying linear relationships

to the true FishAbundance, making it impossible to generalize.

The issue with Nmax in DOV is that distinct groups of the same fish species within a

transect are not counted. This is especially important in the case of E. marginatus as this

species exhibits solitary and territorial behaviour (Pollard et al. (2018)), characterized

by limited mobility. This implies that on a transect, multiple individuals can be spread

out, which leads to an underestimation (Sherman et al. (2018)). This is evident when we

removed the no and one occurrence videos from the analysis and the correlation dreceased

drastically. In contrast, the correlation remained relatively stable across the other methods.

For conservation purposes, it is important to rely on count data since the number of

individuals is important for an evaluation of biomass, which is related to the health of a

local population.

Methods Application of Nmax gave a frequency rather than a count for the species

and can already give valuable insights into species recovery. As Campbell et al. (2015)

mentioned, the Nmax metric works for location-expanding species that appear in low

numbers in new areas. However, in these kinds of situations the new methods tested

provide even greater insights.

For different scenarios, Nmax chronically underestimate the counts. For comparison, in

the perfect case the NTCN and NHeuristic metrics both have error percentages lower than 30

%, which are in the range of the error rates of divers (Pais and Cabral (2018); Ward-Paige

et al. (2010)). The NCluster method shows evidence of adequate counting capability when

the scenario is less complex, such as fewer individuals or further apart schools. The great

advantage of NCluster is that no prior knowledge is needed for calibration or training. The
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only adjustable parameter is the choice of the number of clusters, ’k’ that should be

considered. This is dependent on video duration, species and ecological niche. Empirically,

the best trade-off between computational effort and accuracy was to use k=10 for the

algorithm as none of the videos had more than 10 peaks. The clear downside of this

method is the accuracy, even though still outperforming Nmax, it is outperformed by the

other proposed methods.

The NHeuristic method also groups the different fish schools into clusters and sums the

peak of each school to determine the final count. The difference between NCluster and

NHeuristic is that NHeuristic uses an intuitive procedure to differentiate the clusters, dictated

by a subset of the data provided. The drawback of this method is that part of the data

available is used for calibration and cannot be used in the analysis. However, the increase

in the correlation and decrease of error rate between estimated and actual counts makes

this approach valuable for instances when there is abundant data available and the task

does not exceed a certain complexity.

Taking it a step further we introduced NTCN , which allows the rapid addition of new

species into the process, which is not always possible with NHeuristic. Furthermore, in

complex examples (i.e. more individuals, less accurate detector, etc.) the TCN outperforms

the other methods and should always be favoured. Overall, when data is available the

TCN approach is the most stable and high-performing method.

Impact of data scarcity on counting performance Organism counts and the

resulting density numbers are among the most important ecological indicators for evaluating

the health of natural ecosystems (Ramos et al. (2012)). Especially for the two protected

species E. marginatus and S. umbra, a head count is of the utmost importance to monitor

the evolution of their populations, their population dynamics and, ultimately, potential

recovery. Especially for these species a complete detector pipeline is important.

In the tested cases, the detector does not always provide satisfactory results. Hence

there is room for improvement on the detection task that can be fixed by adding more
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images to the training dataset. Especially with rare species, the image pool is small; this

scarcity of the data is observable with S. umbra, which had only 9 videos available in the

test set and 8 videos in the training set. This data scarcity affects the detector more than

the counting methods, as seen by the differences in the count between the fully automated

case (Table 6) and the perfect case (Table 3). The error rate increased from 20 % to 60

% for this specific species, which is not sufficient to confidently predict the count for S.

umbra. For the other species the differences in the error rate between fully automated and

perfect cases are smaller. Linear correlation values are less affected by the detector than

the to absolute errors, with changes in value typically less than ± 0.1.

Integrating a computer vision model with one of the proposed methods offers researchers

the ability to collect novel data in multiple ways. Firstly, it provides more time for the

ecological analysis of the results generated by these methods. Secondly, the framework

presents alternatives to the commonly used Nmax. This will allow more precise fish

abundance measurements without operator dependent manipulations such as diving or

manual video evaluation. Finally, it enables the use of a remotely operated vehicle (ROV),

allowing transects to be conducted from a safe distance. This will enable an increased

frequency of biodiversity assessments and a reduction in diver accidents, and will help our

understanding of the marine environment and its evolution (Buscher et al. (2020)).

Future applications Fish biomass is another very important indicator for evaluating

the health of more ecosystems. Therefore, the size per individual is an important indication

for the well-being of a species (Duplisea and Castonguay (2006); Hallett et al. (2012)).

The size of a fish can also give insights into the reproductive status of a population

(Uusi-Heikkilä (2020)) and the distribution of adults and juveniles, which is an important

indicator in recovery in areas of interest (Molloy et al. (2009)). Using the tested methods, a

stereo camera system could automatically choose the frames with the highest appearances

in both camera videos, detect the fish, extract the size and make an automated sizing of

all the fish involved per school and not overall per video with Nmax.
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Furthermore, wherever there is a deep learning model available, labels are already

available or can be easily obtained and, therefore, the methods can be calibrated or

trained without further effort, which makes the methods applicable to more scientific

fields. This approach could facilitate and accelerate the identification and counting of

non-indigenous species using a moving camera, which may include a variety of both

amateur and professional setups, and can be applied to a wide range of environments,

including marine fish (Martìnez-González et al. (2021)) and terrestrial plants (Dyrmann

et al. (2021)). Due to different direct and indirect anthropogenic actions, invasion of

non-indigenous species has become a threat for the environment and knowing the extent

and dynamics of these invasions is crucial for the health of local and endemic ecosystems.

While prevention is still the most successful tool (Keller et al. (2008)), early recognition

can lead to more efficient management of these invasions (e.g., the black-striped mussel in

Darwin Harbor, Australia (Ferguson (1999)), and the algae Caulerpa taxifolia in Agua

Hedionda Lagoon and Huntington Harbor, USA (Anderson (2005))).

4.1 Conclusion

In conclusion, we presented three distinct methods for automatically and accurately

estimating fish abundance using diver-operated videos. While Nmax remains vital for

stationary camera setups, moving cameras offer an opportunity to explore alternative

counting methods, reducing labour and increasing efficiency. By introducing a comprehen-

sive pipeline based on single-frame detections from a deep learning model, these methods

become broadly applicable beyond underwater environments. Overall, this approach

enables more frequent and accurate data collection, enhancing ecological research and

conservation efforts.
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Supplementary Material

Figure S1: The 5 training runs for the TCN model for the perfect case used in the study.
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Figure S2: The 5 training runs for the TCN model for the fully automated case used in

the study.
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Table S1: The TCN model used in the study.
—————————————————————-
Layer (type) Output Shape Param #
==========================
CausalConv1d-1 [-1, 20, 709] 100
BatchNorm1d-2 [-1, 20, 709] 40
ReLU-3 [-1, 20, 709] 0
Dropout-4 [-1, 20, 709] 0
CausalConv1d-5 [-1, 20, 709] 1,620
BatchNorm1d-6 [-1, 20, 709] 40
ReLU-7 [-1, 20, 709] 0
Dropout-8 [-1, 20, 709] 0
Conv1d-9 [-1, 20, 709] 40
ReLU-10 [-1, 20, 709] 0
TemporalBlock-11 [[-1, 20, 709], [-1, 20, 709]] 0
CausalConv1d-12 [-1, 10, 709] 810
BatchNorm1d-13 [-1, 10, 709] 20
ReLU-14 [-1, 10, 709] 0
Dropout-15 [-1, 10, 709] 0
CausalConv1d-16 [-1, 10, 709] 410
BatchNorm1d-17 [-1, 10, 709] 20
ReLU-18 [-1, 10, 709] 0
Dropout-19 [-1, 10, 709] 0
Conv1d-20 [-1, 10, 709] 210
ReLU-21 [-1, 10, 709] 0
TemporalBlock-22 [[-1, 10, 709], [-1, 10, 709]] 0
CausalConv1d-23 [-1, 5, 709] 205
BatchNorm1d-24 [-1, 5, 709] 10
ReLU-25 [-1, 5, 709] 0
Dropout-26 [-1, 5, 709] 0
CausalConv1d-27 [-1, 5, 709] 105
BatchNorm1d-28 [-1, 5, 709] 10
ReLU-29 [-1, 5, 709] 0
Dropout-30 [-1, 5, 709] 0
Conv1d-31 [-1, 5, 709] 55
ReLU-32 [-1, 5, 709] 0
TemporalBlock-33 [[-1, 5, 709], [-1, 5, 709]] 0
TCN-34 [-1, 5, 709] 0
AvgPool1d-35 [-1, 5, 1] 0
Flatten-36 [-1, 5] 0
Linear-37 [-1, 3] 18
==========================
Total params: 3,713
Trainable params: 3,713
Non-trainable params: 0
—————————————————————-
Input size (MB): 0.00
Forward/backward pass size (MB): 2011.53
Params size (MB): 0.01
Estimated Total Size (MB): 2011.55
—————————————————————-
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