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Abstract32

1 - Underwater video transects are crucial to assess marine biodiversity. The count-33

ing of fish individuals in these videos is labour- and time-intensive. An automation34

of said counting would create non-biased biodiversity data.35

2 - For this purpose, we explored traditional methods of counting animals as well36

as introduced three new methods to count fish from computer vision derived data37

(single frame detections) resulting in a holistic and fully automated pipeline for fish38

abundance extraction. The different methods 1) traditional Nmax, 2) 1d k-means39

clustering method, 3) an intuitive clustering approach NHeuristic and 4) a Temporal40

Convolutional Neural Networks (TCN) counting method are proposed on transect41

data of three Mediterranean species with different ecological niches.42

3 - Our results shows evidence of underestimation by the traditional Nmax while43

the other methods showed better overall results with the proposed NHeuristic and TCN44

methods representing the reality the most. With an absolute variation comparable45

to inter-observer variation, we demonstrated reliable methods for quantifying fish46

counts within the framework of three different species.47

4 - For future projects, incorporating a stereo system could provide more detailed48

insights into species recovery, and the analysis should be expanded to encompass a49

broader range of species, including both marine and terrestrial ecosystems.50
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1 Introduction51

The marine environment is facing different critically endangering factors to its inhabitants.52

Factors such as climate change (Pörtner and Peck (2010)), (mass-)tourism (Weng et al.53

(2023)) and fishing (Bell et al. (2017)) - especially overfishing (Yan et al. (2021)) - are54

bringing marine species (i.e. mammals, fish, reptiles and invertebrates) populations to55

a critical low (Dìaz et al. (2019)). To counteract these factors different conservation56

tools (Hilborn et al. (2020); Calò et al. (2022); Ranganathan et al. (2023)) have been57

implemented to help combat the diminishing populations (Hutchings and Reynolds (2004)).58

Marine protected areas (MPAs) that function as a safe haven for marine species are among59

those tools. Inside these areas anthropogenic actions (i.e. anchoring or fishing) are limited60

or prohibited. Assessing the effectiveness of Marine Protected Areas (MPAs) requires61

efficient, unbiased, and reliable data collection methods to monitor species populations62

and track their changes over time. Among these methods, underwater fish counts play a63

critical role.64

A very important indication for the health of an ecosystem is the count of individual65

fish, as these measurements provide valuable insights into population dynamics, species66

diversity, and the overall balance of the aquatic environment (REF). To count fish in the67

marine environment, today’s state of the art techniques rely on divers retrieving biological68

data in different regions of interest. In these areas, specifically trained experts perform69

different biodiversity assessments. There are different means to record this diversity -70

direct methods such as underwater visual census (UVC) or indirect methods which rely on71

camera deployment.72

The traditional way of camera deployment is the Baited Remote Underwater Video73

(BRUV) approach (Fig. 1-B). To avoid double counting of fish in a stationary setup, the74

analysis of the biodiversity uses only the frame with the highest number of individuals and75

is theorised to describe the relative abundance of the specific replicate in that area. The76

number of fish in this maximised frame is termed Nmax or MaxN (Ellis and DeMartini77
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(1995)) and is the most used metric when it comes to analysis of the BRUV (Schobernd78

et al. (2014); Haberstroh et al. (2022); Villon et al. (2024)).79

The DOV on the other hand uses SCUBA divers or remote operated vehicles (ROV) as80

a camera-holding vessel recording its view of the appearing and disappearing fish (Fig.81

1-A). To evaluate DOV, the metrics are predominantly measured manually by an expert82

and result in abundance (FishAbundance - Schramm et al. (2020); Maslin et al. (2021);83

Jessop et al. (2022)) and richness data (Langlois et al. (2010); Grane-Feliu et al. (2019);84

Raoult et al. (2020)). In DOV, through empirical observations, it is theorised that the85

movement of the diver and the fish are antagonistic and therefore the fish move out of86

the way and do not re-enter the transect at a later stage of the survey making the Nmax87

metric prone to underestimation (Kilfoil et al. (2017); Sherman et al. (2018)) and would88

allow more precise abundance data to be collected (Dickens et al. (2011)).89

  

BA

Figure 1: A is an example of a transect setup used in this study with a diver that holds a

camera filming his point of view (adapted from Roelfsema et al. (2018)). B explains the

concept and construction of a BRUV setup (adapted from Zhang et al. (2024)).

Besides being widely used, both of these methods share the disadvantage of requiring90

long video analysis times (Schramm et al. (2020)). With advances in technologies in the91

21st century, there is a potential to automatise or at least semi-automatise the process of92

video analysis using machine learning methods (Hoekendijk et al. (2021)). The efforts of93
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Atlas et al. (2023) presented a deep learning multi object tracker for wild salmon. The94

salmon swim through a one-directional river fence, getting tracked and counted successfully95

automatising this procedure. For moving cameras, studies on the automation are scarce.96

The study of Connolly et al. (2022) was able to accurately predict the frame with the97

most individuals in a sequence nine out of ten videos. These results are comparable to98

stationary setups (i.e. BRUV). Automatically counting these frames was not stated.99

In this study we highlighted the flaws of Nmax and propose three alternative methods that100

outperform the Nmax metric in counting the actual fish abundance in an automated manner.101

The methods explored are, besides Nmax, a 1-dimensional (1D) clustering approach, an102

intuitive clustering approach termed NHeuristic and a Temporal Convolutional Network103

(TCN) approach. We used them to predict the abundance in 55 videos for three distinctly104

different Mediterranean species - Epinephelus marginatus, Sciaena umbra and Diplodus105

vulgaris. The aim of this study is to find a reliable procedure to count objects in single frame106

detections of a moving camera and to reveal the possibilities of different methodologies107

providing this task. This will allow the creation of fast and non-biased data that can be108

used for further ecological, economical or conservation analyses.109

In this study we have three main key contributions :110

- We present the first fully automated pipeline for Diver Operated Video (DOV) systems,111

integrating all steps from video recording to extracting the fish abundance.112

- We identify critical weaknesses in the widely used Nmax approach, specifically its tendency113

to underestimate fish abundance. To overcome these limitations, we propose three novel114

methods that are significantly reducing underestimation.115

- To challenge our methods, we establish two experimental conditions - theoretical and116

practical. Our approach provides a robust framework for future studies in assessing117

automated fish abundance extraction.118
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2 Material and methods119

In this section we show how we automated the counting of three Mediterranean fish species120

in underwater videos with three novel methods that have not been explored before. We will121

discuss the study area and data collection specifications (see Sec. 2.1), species of interest122

(see Sec. 2.2), how we used the videos (see Sec. 2.3) and finally give more insights in the123

different methods (see Sec. 2.4), to be able to reproduce the study for more locations and124

species.125

2.1 Study area and data collection126

To cover a great area and wide variety of conditions, we collected videos in eight different127

locations of the French Riviera in the Mediterranean Sea in standardized fashion (Harmelin-128

Vivien et al. (1985)). The depth ranged from 1-37m and was executed during the whole129

year in 2022 (cold- and warm season). Camera-equipped divers did 3 transects of 125 m2
130

surface per dive over the period of the year. For the recording of the videos, clipboard-131

mounted GoPro HERO 9 cameras were used. These videos were recorded with a framerate132

of 24 frames per second (FPS) and a full high definition resolution (1920x1080 px). Frames133

were extracted from these recordings with FPS of 1.134

2.2 Species of Interest135

In our videos we saw a wide variety of fish species from which we chose three for our study.136

We chose them because of their distinct ecological niches, that are different enough to137

challenge these new methods and show the stability of them as well as allow a more broad138

applicability of these methods in other environments.139

The most emblematic species of the French Mediterranean Sea is the endemic dusky140

grouper (Epinephelus marginatus - Fig. 2). It falls into the ecological niche of a solitary141

predator species. This species is interesting since it has been overfished for decades but a142

fishing ban in 2003 (Pollard et al. (2018)) shows indication of recovery. Since this species143
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has only been recently protected, knowing the evolution of this species in a temporal and144

spatial manner is extremely important.145

Figure 2: Non-edited example imagery from a transect of three E. marginatus individuals

in the center of the image. Conditions are variable in the frames and make the detection

more difficult.

Besides E. marginatus also the brown meagre (Scianea umbra - Fig. 3) is protected146

(Prefectoral orders number 2013357-0002 for Corsica and number 2013357-0007 for con-147

tinental coast) in French waters. The population is in decline (Harmelin-Vivien et al.148

(2015)) and therefore it is important to keep track of these fish. They hunt in schools of149

multiple individuals and will fill a different ecological niche, challenging our methods.150

As a third species we shift from the low occurrence species and look at more abundance151

species that are present in more videos and increasing high occurrence videos. For this152

ecological niche, we chose the common two-banded sea bream or Diplodus vulgaris - Fig. 3.153

This species lives in large schools above the seabed scavenging for food. They were found154

in many of the transects evaluated and are therefore more challenging for the methods.155

The abundance varies from one to two individuals up to 50 upwards. This new scenario156

will greatly show the applicability of the different methods to a different ecological niche.157
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Figure 3: Non-edited example imagery of the transect with over 20 D. vulgaris individuals

and two S. umbra in the middle of the D. vulgaris school.

2.3 Obtaining data from the videos158

Our videos provided us with sequential frames, forming a temporal time series. This159

chronological arrangement allowed us to create 1-dimensional histograms of each video and160

species (see Sec. 2.3.1). These histograms subsequently served as inputs for our analytical161

methods (see Sec. 2.4), ultimately giving species-specific counts for each video (see Sec. 3)162

as an output. The inference pipeline is shown in Figure 4.163

To test the strength of our methods, we defined two types of data as the method input,164

describing a perfect and a real-world scenario. In the perfect case (see Sec. 3.1), where165

100 % of the detections were made correctly for which we used the groundtruth detections166

to verify the feasibility of the methods proposed, without the interference of a potentially167

faulty detector. In the fully automated case (see Sec. 3.2), we used the predictions of168

the detector to see the impact of using a detector in the pipeline. For the output of our169

methods we wanted to approximate the True FishAbundance. Our method estimated170

counts are called Estimated FishAbundance from hereby on.171
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Figure 4: Workflow of the automated pipeline.

2.3.1 Detector training and input data172

To find which species are present in which videos automatically, we used a deep learning173

approach to make predictions on the data. As the detector, we used a slightly varied model174

described in a previous study (Bürgi et al. (2024)). We kept hyperparameters constant but175

moved seven videos from the training to the validation set for the detector. We used this176

validation set to find the f1 score per species for the fully automated case. We excluded five177

high occurrence videos to enrich the test data set and challenge the methods with abundant178

videos. To analyse these detections, fish counts were aggregated by species and frame,179

resulting in a one-dimensional time series representing species abundance throughout each180

video (Fig. 5).181
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fishes from this species is counted per frame, manually or automatically. Each species in

each video is represented as this 1D series of values.

The one-dimensional time series (Fig. 5) contain different abundances per species.182

The training and validation detections for the detector model also form the training and183

calibration dataset for the counting methods 3 and 4. The test set videos were held184

constant across the methods to have a fair comparison. We provide Table 1 for more185

information on the videos used in the TCN training and the NHeuristic calibration.186

Table 1: The dataset used for the training of the TCN and the NHeuristic calibration. The

training and testing videos are the same for all species to make a fair comparison. The

occurrences differ between the species to challenge the methods. The train (train and val

combined) and test split used in the detector training are held constant to evaluate the

count methods. The number of zero abundance videos and higher than zero abundance

videos are given in columns four and five.

Species Category Total Videos 0 Videos >1 Videos Occurrences

Sciaena umbra Training 119 112 7 49

Testing 55 46 9 33

Epinephelus marginatus Training 119 97 22 55

Testing 55 36 19 56

Diplodus vulgaris Training 119 76 43 259

Testing 55 27 28 334
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2.3.2 True FishAbundance187

To evaluate the methods, we needed the actual counts per video. For this purpose, a188

marine biology expert counted the actual fish abundance (True FishAbundance) per video,189

resulting in a groundtruth count per video.190

2.3.3 Evaluation metrics191

To evaluate the accuracy of the different count methods and their ability to grasp the192

actual biodiversity, we introduced different metrics. The first metric is the absolute error193

(AE - Eq. 1) which gives a direct comparison of our proposed methods to the Nmax method.194

AE = |True FishAbundance − Estimated FishAbundance| (1)

The absolute percentage error (APE - Eq. 2) allows a relative comparison between the195

different methods not evaluated in this study as well as different species.196

APE =

(
|True FishAbundance − Estimated FishAbundance|

|True FishAbundance|

)
× 100 (2)

To have an idea of linear relationship between the true FishAbundance (manual) and the197

estimated FishAbundance (automated), we calculated the Pearson correlation coefficient198

under different exclusion criteria: (1) all videos included (CorrAll), (2) excluding videos199

with zero counts (Corrwo0), (3) excluding videos with counts of zero and one (Corrwo01),200

and (4) excluding videos with counts in the range of zero to ten (Corrwo0:10).201

2.4 Counting Methods202

We wanted to show the risks and flaws of using Nmax in a DOV setup and use Nmax as the203

baseline for our three improved methods. Previous studies have shown underestimation of204

true fish abundance in videos when utilising the Nmax metric (Schobernd et al. (2014);205

Campbell et al. (2015); ?); Sherman et al. (2018); ?). We introduce 3 novel methods206

besides the commonly used Nmax, to find the most suitable count method for the different207

ecological niches of fish. Our three methods are - 1) 1D clustering termed NCluster, 2)208
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the manual NHeuristic and 3) a Temporal Convolutional Network (TCN) approach termed209

NTCN to evaluate the fish abundance.210

2.4.1 Nmax211

As a baseline we used the traditional method to find the abundance in videos - Nmax.212

Nmax uses a snapshot of the sequence with the highest count of individuals and uses this213

count as the sequence abundance (Eq. 3).214

Nmax = max{Nf}, f = 1, 2, ..., F (3)

Where:215

• Nf : Number of individuals counted in frame f .216

• F : Total number of frames in the video.217

2.4.2 NCluster218

Since Nmax is only incorporating the peak of one of the schools, information before and219

after this peak is lost and not incorporated into the count. Using one value per video220

is not ideal and we thought of using a different approach. The different groups in the221

1-dimensional profile (Fig. 5) are hypothesised to be different schools and taking the222

maximum of each of these cluster is refining the count per video. The 1-dimensional profile223

deriving from the detections will work well for a clustering approach.224

Generally speaking, a k-means clustering approach groups our sequences into k-cluster225

so that a cost is minimized. The challenge with k-means clustering is finding the correct226

value of k. For this purpose we used the R package Ckmeans.1d.dp (Wang and Song227

(2011)) that clusters 1-dimensional data dynamically into different clusters. We provided228

a range of k (1 to 10) since never more than 10 schools of fish were observed - this needs229

to be adjusted to each individual problem. For each sequence or video the ideal k was230

found. The peaks of all clusters are then summarized forming a better representation of231

the fish count over time (Eq. 4).232
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NCluster =

NClus∑
j=1

max{Cj} (4)

Where:233

• NClus: Total number of clusters identified in the video.234

• Cj: Cluster j235

• j: Cluster index (1,2,...,j)236

2.4.3 NHeuristic237

The k-means clustering method used for NCluster relies on statistical principles that may not238

align with how a human would intuitively approach the problem. Therefore, we simplified239

the problem and we were able to adopt a natural and intuitive solution to differentiate240

between the various fish groups in the videos. We introduced NHeuristic (Eq. 5), a method241

that employs inter-school distances as a species-specific differentiator.242

This method uses the relatively consistent distance characteristic observed for each243

species, allowing more precise school differentiation based on this distance. The different244

clusters are differentiated by two variables that are calibrated on the training data set. The245

variable threshold refers to the minimum count for a school to be valid, this was introduced246

to counteract always occurring species. On the other hand, n_frames refers to a delay247

between schools before a new school is identified. The maxima of each school were then248

summarised to get an improved count of the fish individuals in the video corresponding to249

a transect.250

NHeuristic =

NSchools(nframes,threshold)∑
j=1

max{Cj} (5)

Where:251

• NSchools: Total number of clusters identified in the video.252

• nframes: Frame delay between two clusters253
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• threshold: Minimum individual count for a cluster to be valid254

• Cj: Cluster j255

• j: Cluster index (1,2,...,j)256

2.4.4 NTCN257

Clustering methods typically assume a constant number of individuals within a fish school.258

However, fish schools are dynamic systems where individuals frequently join or leave.259

The proposed clustering methods do not account for the dynamic nature of this group260

composition, which may affect the accuracy of fish counts. With the rise of neural networks261

(NN) in recent years, there is the possibility to use an NN to account for this more dynamic262

and complex behaviour of the fish. This is why we introduced a Temporal Convolutional263

Network (TCN, Bai et al. (2018)) as a third method.264

A TCN is a Convolutional Neural Network (CNN) but excels in utilising temporal data265

(i.e. time series). The two main advantages of TCN are 1) the property to keep temporal266

information between the datapoints (i.e. timepoint0, timepoint1 and timepointn) and 2)267

it is parameter-efficient making it well-suited for scenarios where data is limited. These268

advantages led to the decision to utilise a TCN for this study. The sequences of counts269

were prepared to fit the input format of the TCN (predictor = sequence of counts, target =270

NTCNSpecies1, NTCNSpecies2, NTCNSpecies3). We trained the TCN model on batches with the271

size 64 using a stochastic gradient descent (SGD) optimisation function, a learning rate of272

0.01 and trained for a total of 1,250 epochs. Five independent trainings were conducted273

and the average is presented with the corresponding standard deviation. For graphical274

representation, we chose the model that had the lowest absolute error on the test set. The275

training and validation loss curve can be seen in Figure S1 + S2. The architecture can be276

seen in Table S1 with 3,713 trainable parameters. The predicted video counts are called277

’NTCN ’ hereby on.278
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3 Results279

In this section, we are going to show the different methods outlined in the Material and280

Methods section. The methods follow the same order as well as the species to maintain281

a reader flow. We commence with the perfect case (see Sec. 3.1) and then use the fully282

automated case (see Sec. 3.2) to challenge our methods.283

3.1 Perfect Case on groundtruth test labels284

In this first case we test the fish counting impacted solely by our methods and not by285

the object detection task. We used the groundtruth labels on the test set to assess the286

performance without the impact of the detector performance.287

3.1.1 Epinephelus marginatus288

We investigated first the species of E. marginatus. It is an uncommon species and high289

occurrence videos are rare. In all test videos, we have seen a total of 56 individuals with the290

majority being in multiple one occurrence videos. In Table 2 we can see that all methods291

out compete Nmax in all metrics provided. Best performing is the method of NHeuristic with292

an absolute error (AE) of 13 or 23 % over- or under-estimation. The correlation decreases293

if we exclude the 0 and 1 occurrence videos below 0.60 for Nmax while the others stay294

constant above. The exclusion results in a reduction of correlation for Nmax from 0.897 to295

0.544, whereas NHeuristic also decreases, but to a lesser extent, from 0.957 to 0.820.296
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Table 2: The different methods with the different metrics are presented in this table for

the species E. marginatus. Correlation with the actual counts on the test set are indicated

with all points included (All), 0 excluded (wo0) and 0 and 1 excluded (wo01) to show the

strength of the methods in high occurrence videos. Percentage values were rounded to

have 0 decimals. For NTCN the standard deviation was calculated for the 5 replicates we

trained.
Method AEAll APEAll CorrAll Corrwo0 Corrwo01

Nmax 18 32% 0.905 0.752 0.544

NCluster 13 23% 0.942 0.899 0.751

NHeuristic 13 23% 0.957 0.901 0.820

NTCN 15±2 27±4% 0.932±0.012 0.841±0.030 0.701±0.034

The visual representation of the counts (Fig. 6) show a clear underestimation of the297

count with Nmax while it is much more stable with the other three methods. We can see298

that with an increase in occurrence in the videos, our methods handle this cases much299

better than the more commonly used Nmax. The difference to the ideal line shows that300

none of the methods shows a perfect result but the trend is towards less miscounting with301

our methods.302
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Figure 6: Linear regression (grey area indicates the 95% confidence interval) between he

actual number of individuals of E. marginatus in test videos (y-axis) and the estimated

count by the different methods (x-axis). The red line indicates a perfect prediction of the

count. Size of the circular shapes present how many videos fall in this count-category. The

majority of the videos (n=36) were at point 0,0. The point size of 0,0 was reduced to 1 for

the graphical representation. A total of 19 videos had 56 E. marginatus present.

3.1.2 Sciaena umbra303

The second species we investigated is S. umbra in Table 3. Also this species is rare but304

appears in larger schools of up to 20 individuals. We observed this species in 9 test videos.305

All our three methods have high correlation values and low miscount of 21% or lower,306

making any of them suitable to count the ecological functional group of schooling predatory307

species. Nmax fails to count the absolute fish abundance and 33% of the individuals are308

miscounted. Correlation values significantly drop from 0.771 to 0.382 when removing the309

lower occurrence videos. The best performing method is NTCN with only 15% of the fish310

being miscounted and correlation values of 0.975 even with the low occurrence videos311
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excluded.312

Table 3: The different methods with the different metrics are presented in this table for

the species S. umbra. Correlation with the actual counts on the test set are indicated

with all points included (All), 0 excluded (wo0) and 0 and 1 excluded (wo01) to show the

strength of the methods in high occurrence videos. Percentage values were rounded to

have 0 decimals. For NTCN the standard deviation was calculated for the 5 replicates we

trained.
Method AEAll APEAll CorrAll Corrwo0 Corrwo01

Nmax 11 33% 0.766 0.45 0.382

NCluster 7 21% 0.966 0.934 0.929

NHeuristic 6 18% 0.976 0.966 0.965

NTCN 5±1 15±3% 0.987±0.006 0.978±0.010 0.977±0.011

We looked visually into how the different methods were presenting the count data (Fig.313

7). The first thing that can be seen is that the insufficient correlation values generated by314

Nmax depends on only one video that has more than six occurrences. This video is better315

counted with the other methods and therefore leads to the better correlation values for316

these methods. This gives an indication how the different methods can outperform Nmax317

on high occurrence videos while Nmax struggles with that. None of the methods receive a318

perfect result on this particular video but NCluster present the best result with only one319

individuals missed.320
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Figure 7: Linear regression (grey area indicates the 95% confidence interval) between he

actual number of individuals of S. umbra in test videos (y-axis) and the counts of the

different methods (x-axis). Size of the points indicate more videos overlapping with the

corresponding methods and the actual count. The dashed red line indicates a perfect

result, above the line is an underestimation and under the line indicates an overestimation.

The majority of the videos (n=45) were at point 0,0. The point size of 0,0 was reduced to

1 for the graphical representation. A total of 9 videos had 33 S. umbra present.

3.1.3 Diplodus vulgaris321

The last species that we looked at was the schooling and commonly seen D. vulgaris (Table322

4). This gives a new scenario for the methods and with the expected increase in number323

of individuals, we also expected the challenge for the methods to be higher. This difficulty324

can be seen for two methods for this species - Nmax and NCluster. With error rates of 40%325

the counting of this species is insufficient. However, for the other two species the error326

rate is halved and is around 20% for NHeuristic and NTCN . All of our proposed methods327

have a correlation over 0.90. When we excluded the videos with 10 or less individuals,328
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the correlation for NHeuristic and NTCN stayed over 0.90, which further underscores the329

broadened applicability of these methods for different ecological niches.330

Table 4: The different methods with the different metrics are presented in this table for

the species D. vulgaris. Correlation with the actual counts on the test set are indicated

with all points included (All), 0 excluded (wo0), 0 and 1 excluded (wo01) and videos with

less than 10 individuals excluded (wo0:10) to show the strength of the methods in high

occurrence videos. Percentage values were rounded to have 0 decimals. For NTCN the

standard deviation was calculated for the 5 replicates we trained.

Method AEAll APEAll CorrAll Corrwo0 Corrwo01 Corrwo0:10

Nmax 135 40% 0.907 0.882 0.859 0.718

NCluster 130 39% 0.94 0.925 0.91 0.822

NHeuristic 64 19% 0.991 0.988 0.986 0.980

NTCN 67±12 20±4% 0.980±0.004 0.975±0.004 0.968±0.006 0.937±0.009

The decrease in no occurrence videos made data more available and favoured the two331

methods that need a training or a calibration. This is clearly visible in the graphical332

representation (Fig. 8) of the FishAbundance. Both better performing methods seem333

to underestimate the count a bit but keep the distance to the perfect dashed red line334

as minimal as possible. NCluster overestimates the majority of the videos that contain335

20 or more fish which seems to be a limit to this method. On the other hand, Nmax is336

underestimating the count in all videos and the majority of the miscounting occurs in the337

videos that contain more than 15 individuals seeming to be the limit of this method.338
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Figure 8: Linear regression (grey area indicates the 95% confidence interval) between he

actual number of individuals of D. vulgaris in test videos (y-axis) and the counts of the

different methods (x-axis). Size of the points indicate more videos overlapping with the

corresponding methods and the actual count. The dashed red line indicates a perfect

result, above the line is an underestimation and under the line indicates an overestimation.

The videos at point 0,0 (n=25) were reduced in their point size to 1 for the graphical

representation. A total of 28 videos had 334 D. vulgaris present.

3.2 Fully automated case on test detections339

In this section we explored the impact of utilizing a detector and its detections instead of340

the groundtruth labels. It is important to assess real world applications of the problem341

and see the feasibility with an imperfect detector with potential for improvement. For342

each species we found the best performing confidence threshold by the respective f1 score343

on the validation set of the detector training. We determined the confidence thresholds as344

followed, 0.55 for E. marginatus, 0.60 for S. umbra and 0.45 for D. vulgaris.345
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3.2.1 Epinephelus marginatus346

Accurately determining the counts of E. marginatus is crucial, even when using a detector347

system. This ensures that newly recorded data can be reliably evaluated and closely348

reflects actual population dynamics and distribution. We see an increase of error from all349

the methods (Table 5) when in comparison with the perfect case (Table 2). The effect350

of this imperfection is heavier on the correlation of Nmax than the other methods that351

keep values above 0.750 while Nmax drops to 0.444 for the Corrwo01. Most of these errors352

derive from false positive counts in zero and one occurrence videos since when removed,353

the correlation is higher than with the inclusion (except Nmax). This is observable for354

both more rarer species since the effect of the low occurrence videos is bigger than for the355

more common D. vulgaris.356

Table 5: The different methods tested on the detector predictions are presented in this

table for the species E. marginatus. Correlation with the actual counts on the test set are

indicated with all points included (All), 0 excluded (wo0) and 0 and 1 excluded (wo01)

to show the strength of the methods in high occurrence videos. Percentage values were

rounded to have 0 decimals. For NTCN the standard deviation was calculated for the 5

replicates we trained.

Method AEAll APEAll CorrAll Corrwo0 Corrwo01

Nmax 34 61% 0.800 0.710 0.444

NCluster 29 52% 0.876 0.928 0.882

NHeuristic 19 34% 0.906 0.894 0.790

NTCN 21±6 38±11% 0.913±0.034 0.899±0.045 0.826±0.078

In Figure 9 the over- or under- estimation is presented. We can see that Nmax and357

NHeuristic both tend to underestimate (with varying effect) the count. The biggest error is358

observable here with the false positives on the horizontal line of y = 0. Trends of NCluster359

and NTCN are showing clear indication that the performance is better than Nmax. NHeuristic360

has lower error rates due to less false positives being counted towards the abundance with361

the fp exclusion mechanism of the method (to be written in M&M). This can be seen362
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numerically in Table 5.363
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Figure 9: Linear regression (grey area indicates the 95% confidence interval) between he

actual number of individuals of E. marginatus in test videos (y-axis) and the estimated

count by the different methods (x-axis) on the detector predictions. The red line indicates

a perfect prediction of the count. Size of the circular shapes present how many videos fall

in this count-category. The majority of the videos (n=36) were at point 0,0. The point

size of 0,0 was reduced to 1 for the graphical representation. A total of 19 videos had 56

E. marginatus present.

3.2.2 Sciaena umbra364

The biggest difference between the perfect and the fully automated case can be seen for365

S. umbra (Tables 3 and 6). The results for the perfect case can be considered very good366

with low error rates while the increase in challenge with the utility of the detector saw367

an increase of error of up to 55% for Nmax and up to 49% for the other methods. Most368

stable was NHeuristic with an increase of 37% from 18% to 55%. This can be explained369

by insufficient detection capability of this species in the test dataset. Correlation values370
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remain above 0.9 for the proposed methods, even when low-occurrence videos are excluded.371

In contrast, for Nmax, correlation reach 0.812 under the same exclusion conditions. These372

results are to be enjoyed with caution since the sample since is very low with only 9 videos373

for this species.374

Table 6: The different methods on the detector predictions are presented in this table

for the species S. umbra. Correlation with the actual counts on the test set are indicated

with all points included (All), 0 excluded (wo0) and 0 and 1 excluded (wo01) to show the

strength of the methods in high occurrence videos. Percentage values were rounded to

have 0 decimals. For NTCN the standard deviation was calculated for the 5 replicates we

trained.
Method AEAll APEAll CorrAll Corrwo0 Corrwo01

Nmax 29 88% 0.727 0.784 0.812

NCluster 23 70% 0.903 0.924 0.918

NHeuristic 18 55% 0.931 0.966 0.963

NTCN 18±4 55±12% 0.930±0.017 0.963±0.014 0.961±0.015

For S. umbra, the false positive rate is the highest, as clearly illustrated in the graphical375

representation (Fig. 10). The false positives on y = 0 (equivalent to wo0) range from 11376

individuals for NCluster and 6 for NHeuristic (Nmax = 9, NTCN = 7). This shows that the377

NTCN and NHeuristic are more robust against false positives but are still affected by the378

inclusion of a detector in the process. The single video containing more than 10 individuals379

contributes significantly to the error in Nmax, favoring our methods. This highlights a380

potential trend within this ecological niche or fish type, suggesting improved counting381

accuracy in high-occurrence videos from our methods.382
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Figure 10: Linear regression (grey area indicates the 95% confidence interval) between

he actual number of individuals of S. umbra in test videos (y-axis) and the counts of the

different methods (x-axis) on the detector predictions. Size of the points indicate more

videos overlapping with the corresponding methods and the actual count. The dashed red

line indicates a perfect result, above the line is an underestimation and under the line

indicates an overestimation. The majority of the videos (n=45) were at point 0,0. The

point size of 0,0 was reduced to 1 for the graphical representation. A total of 9 videos had

33 S. umbra present.

3.2.3 Diplodus vulgaris383

For our third species with a very different ecological niche than the two before we explored384

the impact of choosing a detector doing the detections instead of relaying on the groundtruth385

samples. We see the least change in error rates between all the species (Table 7). Ranging386

from -4% (false negatives decreasing the count to a better result) for NCluster to 14% for387

NHeuristic. This stability may be attributed to the increased number of individuals, which388

not only enhances counting accuracy but also improves the training effectiveness of the DL389
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model. The error percentage stay under 40% for all our proposed methods while for Nmax390

it is 50%. In most cases, correlations remain above 0.9, both with and without exclusions.391

However, when the occurrence range of 0 to 10 is excluded, correlations for NCluster and392

Nmax drop below 0.9 while NHeuristic and NTCN stay above.393

Table 7: The different methods on the detector predictions are presented in this table for

the species D. vulgaris. Correlation with the actual counts on the test set are indicated

with all points included (All), 0 excluded (wo0), 0 and 1 excluded (wo01) and videos with

less than 10 individuals excluded (wo0:10) to show the strength of the methods in high

occurrence videos. Percentage values were rounded to have 0 decimals. For NTCN the

standard deviation was calculated for the 5 replicates we trained.

Method AEAll APEAll CorrAll Corrwo0 Corrwo01 Corrwo0:10

Nmax 166 50% 0.939 0.926 0.910 0.819

NCluster 116 35% 0.937 0.924 0.910 0.838

NHeuristic 111 33% 0.978 0.975 0.969 0.964

NTCN 103±14 31±4% 0.982±0.007 0.979±0.009 0.975±0.011 0.958±0.023

We assessed visually the impact of the absolute error and if there is an over- or394

underestimation (Fig. 11). We can see that Nmax and NHeuristic underestimate the count395

while NCluster is overestimating the count but less than with groundtruth labels explaining396

the 4% decrease in absolute error. For this ecological niche, the best performer is the NTCN397

method which does not over- nor underestimate the count but has a balanced variance398

around the ideal line. This is also numerically visible with high correlation values.399
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Figure 11: Linear regression (grey area indicates the 95% confidence interval) between he

actual number of individuals of D. vulgaris in test videos (y-axis) and the counts of the

different methods (x-axis) on the detector predictions. Size of the points indicate more

videos overlapping with the corresponding methods and the actual count. The dashed red

line indicates a perfect result, above the line is an underestimation and under the line

indicates an overestimation. The videos at point 0,0 (n=25) were reduced in their point

size to 1 for the graphical representation. A total of 28 videos had 334 D. vulgaris present.

4 Discussion400

Key Message To the extent of our knowledge, this is the first study that explores the401

automated FishAbundance counting in a DOV setup. We proposed three automated fish402

counting methods that work with detections from a deep learning model as an input in403

this proof of concept. These automation processes will significantly reduce the analysis404

time associated with manually calculating FishAbundance (Haberstroh et al. (2022)) or405

Nmax (Raoult et al. (2020)).406
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With the three proposed methods of fish counting, we were able to show that even the407

simplest method in NCluster outperforms the metric Nmax widely used in BRUV and less408

used in DOV. Nmax in all cases was underestimating the true abundance in the videos409

even with perfectly labelled images by up to 40% and with varying linear relationships to410

the true FishAbundance making it impossible to generalize the problem.411

The issue with Nmax in DOV is that distinct groups of the same fish species within a412

transect may go uncounted. This is especially important in the case of E. marginatus as413

this species exhibits solitary and territorial behavior (Pollard et al. (2018)), characterized414

by limited mobility. This implies that on a transect, multiple individuals can be spread415

out which leads to an underestimation (Sherman et al. (2018)). This is evident when416

we removed the zero and one occurrence videos from the analysis and the correlation417

drastically dropped. In contrast, the correlation remained relatively stable across the other418

methods. For protection efforts and justifications, it is important to incorporate the count419

since the number of individuals is important for biomass calculations and overall health of420

a local population.421

Methods The product of the Nmax method is rather a frequency than a count for this422

species and can already give valuable insights on the species recovery. As Campbell et al.423

(2015) correctly mentioned, the Nmax metric works for location-expanding species that424

appear in low numbers in new areas. In situations like this MeanCount is not ideal, while425

our methods also cover this type of scenario and can give even greater insights into this.426

For a different scenario, Nmax is chronically underestimating the count. On the other427

hand, our top performers in NTCN and NHeuristic both have an error percentage of lower428

than 30% in a perfect case which are comparable to the error rate of divers (Pais and Cabral429

(2018); Ward-Paige et al. (2010)). NCluster shows evidence of sufficient counting capability430

when the scenario is less complex and data is rare. The great advantage of NCluster that no431

prior knowledge is needed for calibration nor training. The only influenceable parameter432

is the choice of how many clusters ’k’ should be considered. This is dependent on video433
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length, species and ecological niche. Empirically, the best trade-off between computational434

effort and accuracy was to use k=10 for the algorithm as none of the videos had more435

than 10 peaks. The clear downside of this method is the accuracy, even though still436

outperforming Nmax, it is outperformed by the other proposed methods.437

NHeuristic also groups the different fish schools into clusters and uses the peak of each438

school to summarize the final count. The difference between NCluster and NHeuristic is, that439

NHeuristic uses an intuitive procedure to justify the cluster differentiation that is dictated440

by a subset of the data provided, closely resembling each species by two parameters. The441

drawback of this method is that part of the data available is used for calibration and442

cannot be used in the analysis. However, the increase in linear relation and decrease of443

error rate makes this approach valuable for instances when there is data available and the444

task does not exceed a certain complexity.445

Taking it a step further we introduced NTCN , that allows the fast addition of new species446

into the method pool that NHeuristic does not always allow. Furthermore, in complex447

examples (i.e. more individuals, less performant detector, etc.) the TCN outperforms the448

other methods and should always be favoured. Overall, when data is available the TCN449

approach is the most stable and performant method.450

Impact of data scarcity on counting performance Organism counts and the451

resulting density numbers are one of the most important ecological indicators for health452

and state of natural systems (Ramos et al. (2012)). Especially for the two species E.453

marginatus and S. umbra who were protected just in recent time, a head count is of utmost454

importance to follow their evolution and potential recovery. Especially for these species a455

complete detector pipeline is important.456

In our case, the detector does not always provide satisfactory results. Hence there is457

room for improvement on the detection task that can be fixed by adding more training458

images. Especially with rare species, the image pool is small and this scarcity of the data459

is observable with the S. umbra that only had 9 videos available in the test set and 8460
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videos in the training set. This data scarcity affects more the detector than our method as461

seen by the differences in the count between the fully automated case (Table 6) and the462

perfect case (Table 3). The error rate increase from 20% to 60% for this specific species,463

which is not sufficient to confidently predict the count for S. umbra. For the other species464

the difference in error rate between fully automated and perfect case are less prominent.465

Linear correlation values are less affected by the detector compared to absolute errors,466

with changes in value typically less than ± 0.1.467

Integrating a computer vision model with one of the proposed methods offers researchers468

the ability to collect novel data in multiple ways. Firstly, it provides more time for analyzing469

the results generated by these methods. Secondly, it enables the use of a remotely operated470

vehicle (ROV), allowing transects to be conducted from a safe distance. This will lead to471

increased frequencies of biodiversity assessments, helping our understanding of the marine472

environment and its evolution (Buscher et al. (2020)).473

Future applications But not only the count but also the size per individual is an474

important indication for the well-being of a species (Duplisea and Castonguay (2006);475

Hallett et al. (2012)). With these methods a stereo system could automatically chose the476

frames with the highest appearances in both camera videos, detect the fish, extract the477

size and make an automated sizing of all the fish involved per school and not overall per478

video with Nmax.479

Furthermore, wherever there is a deep learning model available, labels are already made480

and therefore, the methods can be calibrated or trained without a more-effort, which481

makes the methods applicable to more scientific fields. This approach could facilitate and482

accelerate the identification and counting of invasive species using a moving camera, which483

may vary in origin from amateur to professional setups, and can be applied to a range484

of environments, including marine fish (Martìnez-González et al. (2021)) and terrestrial485

plants (Dyrmann et al. (2021)). Due to different direct and indirect anthropogenic actions,486

invasion of alien species has become a threat for the environment and knowing the extent487
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of these invasions is crucial for healthy local and endemic ecosystems. While prevention is488

still the most successful tool (Keller et al. (2008)), an early recognition can lead to a more489

efficient battle against these invasions (i.e. the black-striped mussel in Darwin Harbor,490

Australia (Ferguson (1999)), and the algae Caulerpa taxifolia in Agua Hedionda Lagoon491

and Huntington Harbor, USA (Anderson (2005))).492

4.1 Conclusion493

In conclusion, we presented three distinct methods for automatically and accurately494

estimating fish abundance in diver-operated videos. While Nmax remains vital for stationary495

camera setups, moving cameras offer an opportunity to explore alternative counting496

methods, reducing labor and increasing efficiency. By introducing a comprehensive497

pipeline based on single-frame detections from a deep learning model, these methods498

become broadly applicable beyond underwater environments. Overall, this approach499

enables more frequent and accurate data collection, enhancing ecological research and500

conservation efforts.501
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Supplementary Material644

Figure S1: The 5 training runs for the TCN model for the perfect case used in the study.

38



Figure S2: The 5 training runs for the TCN model for the fully automated case used in

the study.
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Table S1: The TCN model used in the study.
—————————————————————-
Layer (type) Output Shape Param #
==========================
CausalConv1d-1 [-1, 20, 709] 100
BatchNorm1d-2 [-1, 20, 709] 40
ReLU-3 [-1, 20, 709] 0
Dropout-4 [-1, 20, 709] 0
CausalConv1d-5 [-1, 20, 709] 1,620
BatchNorm1d-6 [-1, 20, 709] 40
ReLU-7 [-1, 20, 709] 0
Dropout-8 [-1, 20, 709] 0
Conv1d-9 [-1, 20, 709] 40
ReLU-10 [-1, 20, 709] 0
TemporalBlock-11 [[-1, 20, 709], [-1, 20, 709]] 0
CausalConv1d-12 [-1, 10, 709] 810
BatchNorm1d-13 [-1, 10, 709] 20
ReLU-14 [-1, 10, 709] 0
Dropout-15 [-1, 10, 709] 0
CausalConv1d-16 [-1, 10, 709] 410
BatchNorm1d-17 [-1, 10, 709] 20
ReLU-18 [-1, 10, 709] 0
Dropout-19 [-1, 10, 709] 0
Conv1d-20 [-1, 10, 709] 210
ReLU-21 [-1, 10, 709] 0
TemporalBlock-22 [[-1, 10, 709], [-1, 10, 709]] 0
CausalConv1d-23 [-1, 5, 709] 205
BatchNorm1d-24 [-1, 5, 709] 10
ReLU-25 [-1, 5, 709] 0
Dropout-26 [-1, 5, 709] 0
CausalConv1d-27 [-1, 5, 709] 105
BatchNorm1d-28 [-1, 5, 709] 10
ReLU-29 [-1, 5, 709] 0
Dropout-30 [-1, 5, 709] 0
Conv1d-31 [-1, 5, 709] 55
ReLU-32 [-1, 5, 709] 0
TemporalBlock-33 [[-1, 5, 709], [-1, 5, 709]] 0
TCN-34 [-1, 5, 709] 0
AvgPool1d-35 [-1, 5, 1] 0
Flatten-36 [-1, 5] 0
Linear-37 [-1, 3] 18
==========================
Total params: 3,713
Trainable params: 3,713
Non-trainable params: 0
—————————————————————-
Input size (MB): 0.00
Forward/backward pass size (MB): 2011.53
Params size (MB): 0.01
Estimated Total Size (MB): 2011.55
—————————————————————-
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