Accelerated aging modulates the toxicological properties of the diazo tattoo pigment PO13

Lise Aubry, Marianne Vitipon, Aurélie Hirschler, Hélène Diemer, Thierry Rabilloud, Christine Carapito, Thierry Douki

Supplementary Information

Figure S1: Transmission electron microscopy analysis of Pigment Orange 13 particles. Particles were taken from samples of either temperature control or photo-aged suspensions.

Photo-aged 96h

Figure S2: Time-course study of formation of two PO13 photoproducts in aqueous suspension. The two photoproducts (m/z = 315 and m/z = 203) were eluted at 4.5 and 6.4 min, respectively. They were quantified by integration of the MS2 chromatograms at different times of aging. The putative structure were inferred from the molecular weight and MS2 features.

Figure S3: Detection of a) induction of DNA strand breaks and b) production of ROS in HaCaT keratinocytes exposed to PO13 suspensions or filtrates of increasing concentration. Samples were either photo-aged or temperature controls. Water (1%) was used as vehicle control. MMS and tBuOOH were used as positive controls for the comet assay and the H₂-DCFDA test, respectively. Results were expressed as the median with the first and third quartiles and the minimum and maximum values. \$ indicates significant differences from vehicle control (Kruskal-Wallis test followed by Dunn's multiple comparisons, \$\$\$ p<0.001).

Table S1. Modulation of protein expression involved in redundant biological pathways after exposure of HaCaT cells to a photo-aged suspension of Pigment Orange 13 or its filtrate, compared to temperature control. Biological pathways common to at least two modulated proteins are indicated. Red and green indicate overexpressed and underexpressed proteins, respectively.

Proteins	Fold change	p-value	Biological pathway involving several proteins whose expression is modulated		
Photoaged suspension					
ASAH1	3.42	0.039			
SPTC2	0.54	0.027	Lipid metabolism		
PGES2	5.64	0.005			
AGK	4.41	0.046			
UMPS	2.32	0.048	Metabolism of pyrimidines (UMPS, HPRT) and purines (APT)		
HPRT	3.64	0.034			
APT	2.01	0.032			
CUL2	2.29	0.022	Protein modification (ubiquitination)		
UBR4	2.49	0.009			
Filtrate of photoaged suspension					
PGH1	10.31	0.019			
ACOT8	2.45	0.009	Linid matabalism		
ECI2	2.89	0.036	Lipid metabolism		
CP1B1	0.24	0.000			
AL4A1	2.30	0.003	Metabolism of pyrimidines (UMPS, HPRT) and		
FAAA	2.46	0.011	purines (APT)		
UMPS	3.40	0.025	Drotain modification (ubiquitination)		
PGH1	10.31	0.019			

Figure S4: Heatmap and dendrogram for the study of the effect of Pigment orange 13 filtrate on the proteome. Cells were exposed to the filtrate of a PO13 suspension photo-aged for 96h (F), its temperature control (TC) and the vehicle control (VC). The *heatmap* represents the intensity of protein expression after the filtration, normalization and imputation steps. The scale is indicated at the top left of the figure. The dendrogram indicates the hierarchical clustering of the samples by statistical treatment.

Quantified proteins

Figure S5: Fragmentation mass spectra of DCBP, the PO13 photoproduct, isolated from photodegradation in isopropanol. The sample was analyzed on a 6500 QTrap spectrometer with the third quadrupole used as a linear ion trap. The reported spectrum was obtained either upon fragmentation of the pseudo molecular ion at m/z 423 (2 35 Cl atoms, blue trace) or m/z 425 (1 35 Cl and 1 37 Cl, red trace). The fragments of the two spectra differed by 2 mass units, showing the presence of 2 chlorine atoms. One exception was the fragment at m/z 186 which was similar for both ions. The insets report some MS3 information. The percentages correspond to the relative intensity of the ions in the MS3 spectra.

Figure S6: Heatmap and dendrogram for the study of the impact of DCBP on the proteome. All DCBP samples and solvent control (SC) are shown. The heatmap represents the intensity of protein expression after filtration, normalization, and imputation steps. The scale is indicated at the top left of the figure. The dendrogram indicates the hierarchical clustering of samples by statistical treatment.

7

Table S2: Modulation of protein expression involved in redundant biological pathways after exposure of HaCaT cells to DCBP. Biological pathways common to at least two modulated proteins are indicated in this table. Red and green indicate overexpressed and underexpressed proteins, respectively.

Proteins	Fold change	p-value	Biological pathway involving several proteins whose expression is modulated
CP1B1	138.80	4.99E-11	Biosynthesis of steroid hormones; lipid metabolism;
CP1A1	646.78	5.89E-09	vitamin A metabolism
CP4F3	0.44	0.014	
ECI2	0.37	7.95E-03	
OHCHR	0.48	0.045	
TECR	0.45	0.032	Lipid metabolism
AGK	0.22	4.54E-03	
ASAH1	0.17	9.13E-04	
SGPL1	0.71	0.040	
CDC23	0.43	5.19E-03	Protein modification (ubiquitination)
PRP19	0.55	0.024	
TMTC3	0.34	0.019	
ALG2	0.40	0.037	Protein modification (glycosylation)
DOPP1	3.26	0.015	
GALT5	1.64	0.043	
3HIDH	0.51	6.21E-03	Biosynthesis or degradation of amino acids
OAT	0.64	0.033	
PCKGM	0.45	8.01E-04	Gluconeogenesis
G6PC3	2.96	0.049	
UMPS	0.31	7.11E-03	Metabolism of pyrimidines or purines
PURA2	3.42	0.013	

Figure S7: Comparison of the cytotoxicity of a series of pristine pigments in HaCaT cells (concentration 0.3 mg mL⁻¹). PG7: Pigment Green 7, PB15:3: Pigment Blue 15:3, PV23: Pigment Violet 23, PY74: Pigment Yellow 74, PR254: Pigment Red 254, PR122: Pigment Red 122, PO13: Pigment Orange 13. Viability was assessed by the MTT assay. Results, obtained from three independent biological replicates performed in technical triplicates, are expressed as the median, the first and third quartiles and the minimum and maximum values.

