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GLUING METHODS FOR QUANTITATIVE STABILITY

OF OPTIMAL TRANSPORT MAPS

CYRIL LETROUIT AND QUENTIN MÉRIGOT

Abstract. We establish quantitative stability bounds for the quadratic optimal transport map
Tµ between a fixed probability density ρ and a probability measure µ on Rd. Under general
assumptions on ρ, we prove that the map µ 7→ Tµ is bi-Hölder continuous, with dimension-free
Hölder exponents. The linearized optimal transport metric W2,ρ(µ, ν) = ∥Tµ−Tν∥L2(ρ) is there-
fore bi-Hölder equivalent to the 2-Wasserstein distance, which justifies its use in applications.

We show this property in the following cases: (i) for any log-concave density ρ with full
support in Rd, and any log-bounded perturbation thereof; (ii) for ρ bounded away from 0
and +∞ on a John domain (e.g., on a bounded Lipschitz domain), while the only previously
known result of this type assumed convexity of the domain; (iii) for some important families
of probability densities on bounded domains which decay or blow-up polynomially near the
boundary. Concerning the sharpness of point (ii), we also provide examples of non-John domains
for which the Brenier potentials do not satisfy any Hölder stability estimate.

Our proofs rely on local variance inequalities for the Brenier potentials in small convex subsets
of the support of ρ, which are glued together to deduce a global variance inequality. This gluing
argument is based on two different strategies of independent interest: one of them leverages the
properties of the Whitney decomposition in bounded domains, the other one relies on spectral
graph theory.
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1. Introduction

Let P2(Rd) be the set of probability measures with finite second moment over Rd. Given two
probability measures ρ, µ in P2(Rd), the optimal transport problem for the quadratic cost in Rd
consists in solving the minimization problem

inf
γ∈Γ(ρ,µ)

∫
Rd×Rd

∥x− y∥2dγ(x, y) (1.1)

where Γ(ρ, µ) is the set of couplings between ρ and µ, i.e., the set of probability measures γ
over the product space Rd × Rd with first marginal ρ and second marginal µ. More generally,
considering the Lp cost, we define the p-Wasserstein distance between ρ and µ as

Wp(ρ, µ) =

(
inf

γ∈Γ(ρ,µ)

∫
Rd×Rd

∥x− y∥pdγ(x, y)

)1/p

.
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In this paper, we focus on the quadratic optimal transport problem in Rd, i.e., the case p = 2.
A theorem of Brenier [12] asserts that if ρ is absolutely continuous with respect to the Lebesgue
measure, then a unique solution γ ∈ Γ(ρ, µ) of (1.1) exists, and it is induced by a map T = ∇ϕ,
where ϕ : Rd → R is a convex function.

Definition 1.1 (Potentials and maps). We fix a probability measure ρ ∈ P2(Rd), which we
assume to be absolutely continuous with respect to the Lebesgue measure and supported in X ⊂
Rd. Given µ ∈ P2(Rd), we call

• Brenier map and denote by Tµ the (unique) optimal transport map between ρ and µ;
• Brenier potential the unique lower semi-continuous convex function ϕµ ∈ L2(ρ) such
that Tµ = ∇ϕµ and

∫
X ϕµdρ = 0 (this function is always uniquely defined in the setting

of this paper, see for instance Remark 3.5).

The problem addressed in the present paper is the following: ρ being fixed, and knowing
that µ and ν are close to one another in some Wasserstein distance, how far can Tµ and Tν
be at most (e.g., in L2(ρ))? The stability of Brenier maps under variation of the measures is
indeed fundamental from a mathematical viewpoint: it is closely related to the convergence of
numerical approaches to solve optimal transport problems and justifies many of the applications
of optimal transport.

Since we are dealing with the quadratic cost, the most natural distance on P2(Rd) to consider
is the 2-Wasserstein distance. To summarize, we are interested in quantitative stability bounds
for the map µ 7→ Tµ from (P2(Rd),W2) to L2(ρ), i.e., bounds of the form

∥Tµ − Tν∥L2(ρ) ≤ CW2(µ, ν)q (1.2)

where the constant q is universal, and in particular independent of d. Although this is not
essential (see Remark 1.5), we assume in our main results that the supports of µ, ν are contained
in a compact set Y; the constant C may depend on this set Y (and on ρ), but not on any other
property of µ, ν.

Some comments are in order. Firstly, it is well-known that the map µ 7→ Tµ from (P2(Rd),W2)
to L2(ρ) is continuous: this follows from [54, Corollary 5.23], together with the dominated
convergence theorem. Secondly, since (Tµ, Tν)#ρ is a coupling between µ and ν, this map is
reverse Lipschitz, i.e., ∥Tµ − Tν∥L2(ρ) ≥ W2(µ, ν). Thirdly, simple examples show that one
cannot expect in general q > 1/2 in (1.2) (see [33, Section 4] or [44, Lemma 5.1]). It is also
natural to seek for stability bounds on the Brenier potentials, in the form

∥ϕµ − ϕν∥L2(ρ) ≤ C ′W2(µ, ν)q
′
. (1.3)

As we will see later, (1.3) implies a bound of the form (1.2).
Despite its important theoretical and practical interest, the quantitative stability of optimal

transport maps has attracted attention only recently ([33], [26], [7], [42], [23], [24], [44]). Variants
of this problem include quantitative stability for entropic optimal transport under perturbations
of the measures ([25], [29], [16]) or of the regularization parameter ([23], [28]), for semi-discrete
optimal transport ([4], [28]), or for more general costs ([47], [32]). We also mention [17] which
studies the quantitative stability of Wasserstein barycenters.

One of the motivations for studying the stability of optimal transport maps is that for a fixed
source probability density ρ, the mapping µ 7→ Tµ provides an embedding of (P2(Rd),W2) to the

Hilbert space L2(ρ,Rd). This embedding, often called linearized optimal transport, allows one
to apply the standard “Hibertian” statistical toolbox to measure-valued data such as grayscale
images [55], [41], [5]. This embedding is always distance-increasing, and stability estimates
such as (1.2) show that it is bi-Hölder continuous1. In other words, the distance d(µ, ν) =
∥Tµ − Tν∥L2(ρ) preserves in a rough way the geometry associated to the Wasserstein distance.

Our starting point is the following result of [24]. Here as in the rest of the paper, constants
denoted by Ca1,...,an are non-negative constants which depend on a1, . . . , an.

1In dimension d = 1, this embedding is an isometry, see for instance [53, Theorem 2.18].
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Theorem 1.2 (Introduction of [24]). Let X ⊂ Rd be a compact convex set and ρ be a probability
density on X , bounded from above and below by positive constants. Let p > d and p ≥ 4. Assume
that µ, ν ∈ P2(Rd) have bounded p-th moment, i.e. max(

∫
Rd ∥x∥pdµ(x),

∫
Rd ∥x∥pdν(x)) ≤Mp <

+∞. Then

∥Tµ − Tν∥L2(ρ) ≤ Cρ,p,MpW1(µ, ν)
p

6p+16d

∥ϕµ − ϕν∥L2(ρ) ≤ Cρ,p,MpW1(µ, ν)
1
2 .

If µ, ν are supported on a compact set Y, the Hölder exponent for the Brenier map is improved:

∥Tµ − Tν∥L2(ρ) ≤ Cρ,YW1(µ, ν)
1
6 . (1.4)

Remark 1.3 (Comparison between W1 and W2). We note that since W1 ≤ W2, the estimates
in the above theorems, as well as in all results of the present paper, imply a bi-Hölder behaviour
of the map µ 7→ Tµ on subsets of P2(Rd) with respect to both Wasserstein distances W1 and W2.

Our purpose in this paper is to obtain similar stability results for much more general source
probability measures ρ. Along the way, we unveil a strong analogy between optimal transport
stability estimates and some proofs of Poincaré(-Wirtinger) inequalities. We also provide an
example of ρ for which stability of Brenier potentials fails. All together, these results give
a fairly general picture of the source measures ρ for which quantitative stability of optimal
transport potentials and maps may be expected to hold.

In all previous works on the subject (notably [7], [44], [24], [28, Section 4], [47]), convexity,
compactness and upper and lower bounds on ρ were used in a crucial way. Our results show
that neither the compactness, nor the convexity of X are actually needed for stability to hold,
and that the density ρ(x) may also be allowed to tend to 0 or to +∞ at some controlled rate,
either for x close to the boundary of X if X is bounded, or as |x| → +∞ if X is unbounded.

The proofs of our main results leverage domain decomposition techniques and spectral graph
theory. The starting point of our investigations was the proof of [17, Proposition B.2] in which
it was first noticed, although on the different problem of quantitative stability of Wasserstein
barycenters, that convexity of the support of ρ might not be necessary to prove quantitative
stability bounds. Let us mention that the exponent 1/6 in (1.4) is not believed to be optimal,
but our focus in this paper is not to improve it.

1.1. The log-concave case. We first establish stability estimates in the case where the source
measure ρ is a log-concave probability density on Rd, with support equal to Rd. As in the
Holley-Stroock principle ([37, page 1185], [3, Proposition 4.2.7]), we are also able to deal with
log-bounded perturbations of log-concave measures. Our first main result is the following:

Theorem 1.4. Let ρ = e−U−Fdx be a probability density on Rd, with D2U ≥ κ · Id for some
κ > 0, and F ∈ L∞(Rd). Let Y ⊂ Rd be a compact set. Then, there exists Cρ,Y > 0 such that
for any probability measures µ, ν supported in Y,

∥ϕµ − ϕν∥L2(ρ) ≤ Cρ,YW1(µ, ν)
1
2 |log(W1(µ, ν))|

1
2 (1.5)

∥Tµ − Tν∥L2(ρ) ≤ Cρ,YW1(µ, ν)
1
9 . (1.6)

To our knowledge, Theorem 1.4 is the first result establishing stability estimates for probability
densities with unbounded support in Rd (see for instance [47] where this is mentioned as an open
problem in Section 1.4, and where the case of log-concave measures with bounded support is
handled). Of course, the log-loss in (1.5) may be replaced by W1(µ, ν)−ε for arbitrarily small
ε > 0, at the price of introducing a dependence of Cρ,Y in ε. Also, the exponent 1/9 in (1.6) can
be replaced by 1/8 − ε for any ε > 0; and again, this introduces a dependence of the constant
Cρ,Y in ε. The constants in Theorem 1.4, as well as in all other results of this paper, can be
made explicit.

Remark 1.5. Theorem 1.4, as well as the results that we describe below, are stated only for target
measures which are supported in a compact set Y. This choice is mainly made for simplicity and
to keep the paper readable, since handling unbounded targets would create an additional layer of
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complexity in the proofs. We refer to [24, Section 4] where this extension is done for ρ satisfying
the assumptions of Theorem 1.2.

1.2. The case of John domains. Our second result extends Theorem 1.2 to the case where
ρ is a probability density on a John domain, whose density is assumed to be bounded above
and below by positive constants. Roughly speaking, a domain is a John domain if it is possible
to move from one point to another without passing too close to the boundary. This notion
is encountered for instance when dealing with Sobolev-Poincaré inequalities. Let us recall the
precise definition and then provide examples.

Definition 1.6. A domain X ⊂ Rd is called an (α, β)-John domain, 0 < α ≤ β, if for some
point x0 ∈ X , and for any x ∈ X there exists a rectifiable (or equivalently, a piecewise linear) path
γ : [0, ℓ(γ)] → X parametrized by arc-length with length ℓ(γ) ≤ β, where γ(0) = x, γ(ℓ(γ)) = x0,
and

∀t ∈ [0, ℓ(γ)], dist(γ(t), ∂X ) ≥ α
t

ℓ(γ)

where dist denotes the Euclidean distance. A domain is a John domain if it is an (α, β)-John
domain for some α and β.

Notice that with this definition, John domains are automatically bounded. John domains
were introduced in [39], and the terminology was coined in [43]. Lipschitz domains, and more
generally domains satisfying the cone condition, are John domains. John domains may have
fractal (and nonrectifiable) boundaries or internal cusps, but external cusps are excluded. The
snowflake domains, domains bounded by a Koch curve and bounded quasidiscs of twodimensional
quasiconformal theory are John domains. We refer to [49] and [51, Chapter 5] for accounts on
John domains.

The main result of this section is the following:

Theorem 1.7. Let X ⊂ Rd be a John domain and let ρ be a probability density on X , bounded
from above and below by positive constants. Then, for any compact set Y, there exists Cρ,Y > 0
such that for any probability measures µ, ν supported in Y,

∥ϕµ − ϕν∥L2(ρ) ≤ Cρ,YW1(µ, ν)
1
2 . (1.7)

If in addition X has a rectifiable boundary, then

∥Tµ − Tν∥L2(ρ) ≤ Cρ,YW1(µ, ν)
1
6 . (1.8)

The constants Cρ,Y may be computed explicitly, see Lemma 3.3 and Remark 4.4 for an
illustration. We do not know if the assumption that X has a rectifiable boundary in the second
part of the statement is necessary. In Remark 4.2 we show that (1.8) still holds if X is a finite
union of disjoint John domains with rectifiable boundary.

Proving a converse to Theorem 1.7 is a subtle problem; we shall not attempt here to give
a general characterization of the probability densities ρ on compact domains for which an in-
equality like (1.7) (or (1.8)) holds. Nevertheless, to illustrate the relevance of the “John-type”
condition in Theorem 1.7, we show that in typical examples of non-John domains considered in
the literature, the stability of Brenier potentials (1.7) fails.

Definition 1.8. We say that an absolutely continuous probability measure ρ on Rd has the
Hölder potential stability property if there exist C, q > 0 and p ∈ [1,∞) such that for any µ, ν
supported in the unit ball of Rd,

∥ϕµ − ϕν∥L2(ρ) ≤ CWp(µ, ν)q.

Theorem 1.9. For any d ≥ 2, there exists a non-empty, bounded and path-connected domain
X ⊂ Rd such that any probability density ρ which is bounded from above and below by positive
constants on X does not have the Hölder potential stability property.

At least two kinds of non-John domains X can be used to prove Theorem 1.9, and they are
probably the most classical examples of non-John domains. The proof we provide is based on the
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construction of a “room-and-passage” domain X , a class of bounded domains with thin necks
at all scales already used in the literature to provide counterexamples to various spectral and
functional properties known to hold in John domains (see [2], [22, pp. 521-523] for instance). In
Remark 5.2 we explain that domains X with outward cusps may also be used to prove Theorem
1.9.

1.3. The case of degenerating densities in bounded domains. Theorem 1.7 shows that
the convexity assumption in Theorem 1.2 may be dramatically relaxed. Our next statements
demonstrate that the assumption that the probability density ρ is bounded above and below
on its support is not necessary either: we may allow ρ to decay to 0 or blow-up to +∞ at
some controlled rate when approaching the boundary of X , and still obtain comparable stability
bounds.

Our first result in this direction is the following. This result is new even for convex X .

Theorem 1.10. Let ρ be a probability density over a bounded Lipschitz domain X ⊂ Rd. Assume
that there exist c1, c2 > 0 and δ > −1 such that for any x ∈ X ,

c1dist(x, ∂X )δ ≤ ρ(x) ≤ c2dist(x, ∂X )δ. (1.9)

Let Y ⊂ Rd be a compact set. Then there exists Cρ,Y > 0 such that for any probability measures
µ, ν supported in Y,

∥ϕµ − ϕν∥L2(ρ) ≤ Cρ,YW1(µ, ν)
1
2 (1.10)

∥Tµ − Tν∥L2(ρ) ≤ Cρ,YW1(µ, ν)
1
6
−δ′ (1.11)

where δ′ = |δ|
6 if −1 < δ ≤ 0, and δ′ = δ

12(1+δ) if δ ≥ 0.

The above condition δ > −1 is necessary since ρ is a probability measure.
Our second result concerning densities degenerating at the boundary of a bounded domain

is motivated by works in statistics (starting with [19]) which define notions of multivariate
quantiles and statistical depth via optimal transport theory. These works aim at addressing the
well-known problem of finding a good analogue in dimension d ≥ 2 of univariate distribution
functions, despite the absence of a canonical ordering relation in Rd. Compared to previous
notions considered in the literature, the notion introduced in [19] and further studied e.g. in
[36], [30], enjoys inferential properties expected from distribution and quantile functions in Rd.
Given a probability density µ, the vector quantile map defined in [19] is the quadratic optimal
transport map from the spherical uniform distribution ρ defined in Theorem 1.11 to µ: the
quantiles of µ are defined by pushing forward the quantiles of ρ. The main theoretical result of
[19], namely [19, Theorem 3.1], establishes that for any compactly supported probability density
µ, the empirical vector quantile maps defined via empirical approximations of µ converge2 to
the vector quantile map associated to µ. Our next statement, when applied to an empirical
approximation ν of µ, quantifies the rate of convergence:

Theorem 1.11. Let X = B(0, 1) \ {0} where B(0, 1) is the unit ball of Rd. Consider the
probability density ρ(x) = cd|x|1−dχX (x) where χX is the characteristic function of X and cd is
a normalizing constant. Let Y ⊂ Rd be a compact set. Then there exists Cd,Y > 0 such that for
any probability measures µ, ν supported in Y,

∥ϕµ − ϕν∥L2(ρ) ≤ Cd,YW1(µ, ν)
1
2 (1.12)

∥Tµ − Tν∥L2(ρ) ≤ Cd,YW1(µ, ν)
1
6d . (1.13)

The upper bound (1.13) is the only one in this paper where there is a dependence in d in the
exponent, and we do not know if it possible to get rid of it. We explain in Remark 4.7 that
our proof techniques could potentially handle other families of probability measures ρ whose
density tends to 0 or +∞ than those considered in Theorems 1.10 and 1.11. We chose the above
statements for their simplicity and their relevance regarding applications.

2Actually, [19, Theorem 3.1] shows that convergence holds even if ρ itself is replaced by empirical approxima-
tions.
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1.4. Generalized Cauchy distributions. We finally establish stability estimates for Brenier
potentials and Brenier maps in the case where ρ belongs to a family of probability measures on
Rd which are not log-concave. Namely, we handle generalized Cauchy distributions of the form
ρ(x) = c(x)⟨x⟩−β where here and in the sequel

⟨x⟩ = (1 + |x|2)1/2.
From now on, we assume that β > d+ 2. This ensures that ρ has finite second moment, and is
in particular necessary for the left-hand side of (1.14) to be finite.

Theorem 1.12. Assume that ρ(x) = c(x)⟨x⟩−β on Rd, with β > d+2 and 0 < m ≤ c(x) ≤M <
+∞. Let Y ⊂ Rd be a compact set. Then, there exists Cρ,Y > 0 such that for any probability
measures µ, ν supported in Y,

∥ϕµ − ϕν∥L2(ρ) ≤ Cρ,YW1(µ, ν)θ (1.14)

∥Tµ − Tν∥L2(ρ) ≤ Cρ,YW1(µ, ν)θ
′

(1.15)

where θ = 1
2(1 − 1

β−d) > 0 and θ′ = β−d−1
8β−2d−4 > 0.

With this result, we want in particular to challenge a natural idea that could arise from
our results of the previous sections and their proofs, namely that there could exist a strict
equivalence between stability estimates for Brenier potentials with source measure ρ and the
fact that the Poincaré(-Wirtinger) inequality holds for ρ. But Theorem 1.12 disproves this
conjectural relation, since it is known that the Poincaré inequality does not hold for generalized
Cauchy distributions, see e.g. [8]. However, this does not rule out the possibility of a weaker
relationship between the two properties: as emphasized in Remark 6.11, generalized Cauchy
distributions satisfy a weighted Poincaré inequality, which may be recovered as a direct corollary
of our proof.

One more motivation for Theorem 1.12 is that its proof requires to develop a different strategy
compared to our other results, and we believe this strategy to be of independent interest. See
Sections 1.5 and 6.1 for details. This strategy may be used for instance to reprove weaker versions
of Theorems 1.4 and 1.7; we shall not pursue this here. Refining this strategy, it is possible to
prove analogous stability estimates for Brenier potentials and Brenier maps for other families of
source measures which do not satisfy a Poincaré inequality, for instance ρ(x) = c(x)e−κ|x|

α
with

0 < α < 1, κ > 0, and 0 < m ≤ c(x) ≤ M < +∞. We do not pursue this here either, we only
give a few more details in Remark 6.10.

1.5. Proof strategies and organization of the paper. The starting point of our proofs is to
reinterpret the quantity ∥ϕµ−ϕν∥2L2(ρ) as a variance Varρ(ϕµ−ϕν), due to the fact that both ϕµ
and ϕν have vanishing mean with respect to ρ. In Section 2.1 we establish a variance inequality,
i.e., an upper bound on this variance, in the case where ρ is supported in a compact convex set
and bounded above and below by positive constants. This variance inequality is a refinement of
the results of [24]. We provide a proof which simplifies the approach of [24]. In Section 2.2 we
deduce Theorem 1.4 via truncation arguments.

To prove the other results we follow a strategy which could as well be used to prove Poincaré-
Wirtinger inequalities of the form Varρ(f) ≤ C

∫
|∇f |2dρ where here and in the sequel

Varρ(f) = inf
c∈R

∫
Rd

|f − c|2dρ.

Namely, we rely on two ingredients: firstly, the upper bound on the variance in convex sets
established in Section 2.1; secondly, an argument to glue together “local” variance inequalities
in small convex sets and deduce an upper bound on the “global” variance, i.e., the variance in
X .

Our main contribution is related to the second ingredient: we extend already existing tech-
niques and develop new methods to glue together “local” variance inequalities. Overall, the
leitmotiv of this work is that if a function f does not vary much in each set Q of a family F , and
if these sets intersect enough, then f does not vary much in the union of the sets Q ∈ F . To turn
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this rough idea into proofs, we use domain decompositions techniques which we describe below.
Let us already mention that once the global variance inequality is proved, we deduce almost
immediately the stability estimates on the difference of Brenier potentials ∥ϕµ − ϕν∥L2(ρ) via
Kantorovich-Rubinstein duality. The stability of Brenier maps requires more work, it essentially
relies on reverse Poincaré inequalities for the difference of two convex functions proved in [24]
(i.e., ∥∇ϕµ −∇ϕν∥L2 ≤ C∥ϕµ − ϕν∥θL2).

A key point is thus to understand how to glue together variance inequalities. For this, we
develop two strategies, which are compared in Remark 6.12.

Our first method is set out in Section 3, see notably Theorem 3.6. To prove a global variance
inequality, we take inspiration from the proof of Sobolev-Poincaré inequalities in John domains
([9], [35]): we rely on the Whitney decomposition and its good properties in John domains, in
particular the existence of a decomposition satisfying a Boman chain condition in the spirit of
[10], [9]. In Section 4 we use this to prove Theorems 1.7, 1.10 and 1.11, which requires in each
case to establish some doubling property for the probability measure ρ. The counterexample to
Hölder potential stability in non-John domains used to prove Theorem 1.9 is provided in Section
5. As already mentioned, it is based on the construction of an appropriate “room-and-passage”
domain.

Our second method for gluing variance inequalities is developed in Section 6 and allows us to
prove Theorem 1.12. It consists in decomposing X into convex sets and constructing a weighted
combinatorial graph from this decomposition, with one vertex for each convex set and one edge
for each pair of overlapping convex sets. To be able to control the variance in X by the variances
in the convex sets we need enough overlap between these sets, in other words that the weighted
graph is sufficiently well connected. This connectedness is measured via the spectral gap of
the graph Laplacian, which we prove to be strictly positive via a Cheeger inequality proved in
Appendix B.

Apart from the families of ρ’s handled in Section 1.4, all the ρ’s considered in the present
work support an L2-Poincaré-Wirtinger inequality. These Poincaré-Wirtinger inequalities are
actually immediate corollaries of the techniques of this paper, see e.g. Remark 3.5. It might
seem natural to conjecture that if ρ supports a Poincaré(-Wirtinger) inequality, then not only
the Brenier potentials are unique (which is a consequence of connectedness of the support, see
Remark 3.5), but they are even stable. However, this is totally unclear at the present moment,
and we know by Theorem 1.12 that the converse is false.

Finally, we believe that the techniques of the present paper, which show that it is sufficient
to establish local variance inequalities in order to prove global stability results, might foster
progress in other directions, for instance regarding the stability of optimal transport maps for
more general costs (and on Riemannian manifolds), the random matching problem and rates of
convergence for the Sinkhorn algorithm.

1.6. Notation. Throughout the paper, N denotes the set of non-negative integers. For any n
in the set of positive integers N∗, the notation [n] stands for [n] = {1, . . . , n}. The characteristic
function of a set S ⊂ Rd is denoted by χS . The Euclidean distance in Rd is denoted by dist.
The Euclidean scalar product is denoted by ⟨·|·⟩, and this notation also stands for the duality
pairing between continuous functions with compact support and real-valued Radon measures
(the distinction between the two is clear from the context). The Euclidean ball of center 0
and radius r ≥ 0 is denoted by Br := B(0, r). The Lebesgue measure on Rd is denoted by λ.
The support of a measure ρ is denoted by spt(ρ). Absolutely continuous measures on Rd are
sometimes identified with their density with respect to the Lebesgue measure.

1.7. Acknowledgments. We thank Max Fathi, Piotr Haj lasz and Rados law Wojciechowski for
discussions related to this work. The authors acknowledge the support of the Agence nationale
de la recherche, through the PEPR PDE-AI project (ANR-23-PEIA-0004). The first author
would like to thank for its hospitality the Courant Institute of Mathematical Sciences in New
York, where part of this work was done.
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2. Stability for log-concave sources

2.1. Variance inequality in compact convex sets. In this section, we start with the case
where ρ is supported on a compact and convex set. We establish a variance inequality which is
a key ingredient for most of the proofs in the present work.

Given a function ψ : Rd → R ∪ {+∞}, we recall that its convex conjugate is defined as

ψ∗(x) = sup
y∈Rd

⟨x|y⟩ − ψ(y) (2.1)

If ψ ∈ C0(Y) where Y ⊂ Rd (thus ψ is a priori not defined on Rd), we implicitly extend ψ by
+∞ outside of Y when computing ψ∗. This is equivalent to taking the supremum in (2.1) over
y ∈ Y.

The following statement is a minor modification of [24], [47]. Due to its importance in what
follows, we provide here a complete proof.

Theorem 2.1. Let Q ⊂ Rd be a compact convex set with non-empty interior, let σ be a
logarithmically-concave probability density over Q and let ρ be another probability density over
Q satisfying mρσ ≤ ρ ≤ Mρσ for some constants Mρ ≥ mρ > 0. Let Y ⊂ Rd be a compact set
and set RY = maxy∈Y ∥y∥. Then, for all ψ0, ψ1 ∈ C0(Y),

⟨ψ1 − ψ0|∇ψ∗
0#ρ−∇ψ∗

1#ρ⟩ ≥ e−1mρ

Mρ

1

RYdiam(Q)
Varρ(ψ

∗
1 − ψ∗

0). (2.2)

An example to keep in mind is when σ is the characteristic function of Q, normalized to be
a probability density. Another important example is when ρ itself is log-concave, in which case
we may take σ = ρ and mρ/Mρ = 1.

Before giving the proof of Theorem 2.1 we recall the following result from [24], which we shall
use several times in this work.

Proposition 2.2. [24, Proposition 4.1] Let K be a compact domain of Rd with rectifiable bound-
ary and let u, v : K → R be two L-Lipschitz functions on K that are convex on any segment
included in K. Then there exists a constant Cd depending only on d such that

∥∇u−∇v∥2L2(λ,K) ≤ CdHd−1(∂K)2/3L4/3∥u− v∥2/3
L2(λ,K)

(2.3)

where Hd−1 denotes the (d−1)-dimensional Hausdorff measure and the norms in (2.3) are taken
with respect to the d-dimensional Lebesgue measure λ.

We turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. As in [24], the proof mainly consists in proving a strong convexity prop-
erty for the Kantorovich functional Kρ : C0(Y) → R,

Kρ(ψ) =

∫
Q
ψ∗dρ.

Step 1: Restriction to Q-convex functions. In the following, we fix a closed ball B containing Q
in its interior. A function ψ : Rd → R is called Q-convex if it is equal to the convex conjugate of
a convex and Lipschitz function ϕ defined on B, i.e. ψ(y) = maxx∈B⟨x|y⟩ − ϕ(x). In this case,
Fenchel-Rockafellar’s theorem implies that ϕ = ψ∗ on B. Note that if ψ ∈ C0(Y), then

ψ̂(y) = (ψ∗|B)∗ (y) = max
x∈B

⟨x|y⟩ − ψ∗(x) (2.4)

is Q-convex, since ψ∗|B is RY -Lipschitz.
Our first step is to prove that the inequality (2.2) for any pair ofQ-convex functions implies the

same inequality for any pair of continuous functions on Y. To do so, we consider ψ0, ψ1 ∈ C0(Y)

and we define ψ̂0 and ψ̂1 as in (2.4). Since the convex functions ψ̂∗
i and ψ∗

i agree on Q, the

right-hand side of the inequality (2.2) is unchanged under the transformation ψi → ψ̂i:

Varρ(ψ
∗
1 − ψ∗

0) = Varρ(ψ̂
∗
1 − ψ̂∗

0). (2.5)
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We now deal with the scalar product in the left-hand side of (2.2). For any x ∈ Q where ψ∗
i

is differentiable (that is, ρ-a.e. x), the maximum in the definition of the convex conjugate is

attained at y = ∇ψ∗
i (x). For such x ∈ Q, we have ψ̂i(∇ψ∗

i (x)) = ψi(∇ψ∗
i (x)). This implies that

⟨ψi|(∇ψ∗
i )#ρ⟩ =

∫
Q
ψi(∇ψ∗

i (x))dρ(x) = ⟨ψ̂i|(∇ψ̂∗
i )#ρ⟩.

Moreover, using ψ̂1−i ≤ ψ1−i and the fact that ψ∗
i = ψ̂∗

i in Q, we have

⟨ψ1−i|(∇ψ∗
i )#ρ⟩ ≥ ⟨ψ̂1−i|(∇ψ∗

i )#ρ⟩ = ⟨ψ̂1−i|(∇ψ̂∗
i )#ρ⟩.

Summing the two previous inequalities with i ∈ {0, 1} we obtain

⟨ψ1 − ψ0|∇ψ∗
0#ρ−∇ψ∗

1#ρ⟩ ≥ ⟨ψ̂1 − ψ̂0|∇ψ̂∗
0#ρ−∇ψ̂∗

1#ρ⟩. (2.6)

Putting (2.5) and (2.6) together, we obtain that if (2.2) holds for the Q-convex functions (ψ̂0, ψ̂1),
then it also holds for the merely continuous functions (ψ0, ψ1).

Step 2: Restriction to smooth and strongly convex functions. We now consider two Q-convex
functions ψ0, ψ1 : Rd → R. These functions are convex, Lipschitz, and their convex conjugates
ψ∗
0, ψ

∗
1 are Lipschitz on the ball B. Let χ : Rd → R be a smooth and non-negative function

supported in B(0, 1), with
∫
Rd χ dλ = 1. For ε > 0 let χε = ε−dχ(·/ε). For i = 1, 2, setting

ψi,ε = χε ∗ ψi + ε| · |2

we obtain a family (ψi,ε)ε→0 of C2-smooth and strongly convex functions on Rd such that (ψi,ε)

converges pointwise to ψi on Rd and (ψ∗
i,ε) converges pointwise to ψ∗

i on int(B) as ε → 0. By

[45, Theorem 3.1.4], we get

(1) (ψi,ε) converges uniformly to ψi on all compact subset of Rd ;
(2) (ψ∗

i,ε) converges uniformly to ψ∗
i on all compact subsets of int(B) (in particular Q) ;

The functions ψ∗
i,ε are equi-Lipschitz in every compact subset of int(B): this follows from the

monotonicity of the slope of convex functions and the uniform boundedness of (ψ∗
i,ε) in compact

subsets of int(B) (see [45, Lemma 3.1.1] for a very similar argument). Combining this fact with
Proposition 2.2 and with the inequality W1(∇ψ∗

i,ε#ρ,∇ψ∗
i#ρ) ≤ ∥∇ψ∗

i,ε −∇ψ∗
i ∥L1(ρ), we get

(3) limε→0W1(∇ψ∗
i,ε#ρ,∇ψ∗

i#ρ) = 0.

Thanks to (1)-(3), all the terms of the inequality (2.2) for ε > 0 converge to their non-regularized
counterparts as ε → 0. In other words, (2.2) for Q-convex functions is a consequence of the
same inequality for C2 and strongly convex functions on Rd.

Step 3: Proof the inequality in the smooth and strongly convex case. From now on, we therefore
assume that ψ0, ψ1 are strongly convex and C2. This allows us to apply [24, Proposition 2.2]
to ϕi = ψ∗

i , which gives formulas for the first and second derivative of Kρ along the curve
ψt = ψ0 + tv where v = ψ1 − ψ0. We obtain:

⟨ψ1 − ψ0|∇ψ∗
0#ρ−∇ψ∗

1#ρ⟩ =
d

dt
Kρ(ψt)

∣∣∣∣
t=1

− d

dt
Kρ(ψt)

∣∣∣∣
t=0

=

∫ 1

0

d2

dt2
Kρ(ψt)dt

=

∫ 1

0

∫
Q
⟨∇v(∇ψ∗

t )|D2ψ∗
t · ∇v(∇ψ∗

t )⟩dρdt,

(2.7)

Introducing wt(x) = v(∇ψ∗
t ), whose gradient is given by by ∇wt = D2ψ∗

t · ∇v(∇ψ∗
t ), we get∫

Q
⟨∇v(∇ψ∗

t )|D2ψ∗
t · ∇v(∇ψ∗

t )⟩dρ =

∫
Q
⟨(D2ψ∗

t )
−1∇wt|∇wt⟩dρ. (2.8)
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We now use the assumptions on σ and ρ. We write σ = e−V where V is a convex potential on
Q. We first note that∫

Q
⟨(D2ψ∗

t )
−1∇wt|∇wt⟩dρ ≥

∫
Q
⟨(D2ψ∗

t +D2V )−1∇wt|∇wt⟩dρ, (2.9)

To apply the Brascamp-Lieb inequality, we compare the probability density ρt = Z−1
t e−(V+ψ∗

t )

over Q, where Zt is a normalizing constant, to the probability density ρ. Denoting respectively
by m and M the minimum and the maximum of (t, x) 7→ ψ∗

t (x) over [0, 1] ×Q, we have

ρ(x) ≥ mρe
−V em−ψ∗

t (x) = mρZte
mρt(x),

ρt(x) =
1

Zt
e−MeM−ψ∗

t −V ≥ 1

MρZt
e−Mρ(x).

The Brascamp-Lieb inequality [11] applies to log-concave probability measures supported on
the compact and convex set Q (as a special case of [46, Corollary 1.3], see also [24, Theorem
2.3]). Thanks to the above comparison between ρ and ρt and this version of the Brascamp-Lieb
inequality (in the second line) we obtain∫

Q
⟨(D2ψ∗

t +D2V )−1∇wt|∇wt⟩dρ ≥ mρZte
m

∫
Q
⟨(D2ψ∗

t +D2V )−1∇wt|∇wt⟩dρt

≥ mρZte
mVarρt(wt)

≥ mρ

Mρ
em−MVarρ(wt). (2.10)

Using the convexity of the variance, and recalling that d
dtψ

∗
t (x) = −v(∇ψ∗

t (x)) = −wt(x),

Varρ(ψ
∗
1 − ψ∗

0) = Varρ

(∫ 1

0

d

dt
ψ∗
t dt

)
≤
∫ 1

0
Varρ

(
d

dt
ψ∗
t

)
dt =

∫ 1

0
Varρ(wt)dt. (2.11)

Combining Equations (2.7), (2.8), (2.9), (2.10) and (2.11), we obtain

⟨ψ1 − ψ0|∇ψ∗
0#ρ−∇ψ∗

1#ρ⟩ ≥
mρ

Mρ
em−MVarρ(ψ

∗
1 − ψ∗

0) (2.12)

Step 4. Computing an explicit constant. We first improve the constant in (2.12) by a scaling
argument. Given λ > 0, we recall that (λψ)∗ = λψ∗(·/λ). Applying the previous inequality to
the functions ψλi = λψi and to the dilated probability density ρλ = (x 7→ λx)#ρ, and remarking

that (Mλ,mλ) = (λM,λm), we get

λ⟨ψ1 − ψ0|∇ψ∗
0#ρ−∇ψ∗

1#ρ⟩ ≥
mρ

Mρ
eλ(m−M)λ2Varρ(ψ

∗
1 − ψ∗

0).

Choosing λ = (M−m)−1, we see that we can replace the constant em−M in (2.12) by 1/e(M−m).
Finally, we need to control the oscillation M −m. For this, we fix x ∈ Q and consider y ∈ Y
such that ψ∗

t (x) = ⟨x|y⟩ − ψt(y). Then, for any other point x′ ∈ Q, we have

ψ∗
t (x

′) ≥ ⟨x′|y⟩ − ψt(y) = ⟨x′ − x|y⟩ + ψ∗
t (x) ≥ −diam(Q)RY + ψ∗

t (x).

This implies that M −m ≤ diam(Q)RY , which concludes the proof of (2.2). □

2.2. Proof of Theorem 1.4. Let us assume that ρ = e−U−F where D2U ≥ κId with κ > 0,
and F ∈ L∞(Rd). For r ≥ 0, we consider Br = B(0, r) ⊂ Rd, the open Euclidean ball of center
0 and radius r. We denote by ϕµ,r (resp. ϕν,r) the restriction of ϕµ (resp. ϕν) to Br, extended
by +∞ outside Br, and we consider the probability measures

ρr =
ρ|Br

ρ(Br)
, µr = (∇ϕµ,r)#ρr, νr = (∇ϕν,r)#ρr.

Finally we set ψµ,r = ϕ∗µ,r and ψν,r = ϕ∗ν,r. We observe that ψ∗
µ,r = ϕµ,r and ψ∗

ν,r = ϕν,r.
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We apply Theorem 2.1 to ρr, with σ the (unique) probability density on Br whose density is
proportional to e−U . This gives

Varρr(ϕµ,r − ϕν,r) ≤ Cρ,Yr⟨ψµ,r − ψν,r|νr − µr⟩ (2.13)

where Cρ,Y does not depend on r. We notice that ψµ,r and ψν,r are r-Lipschitz. By Kantorovich-
Rubinstein duality, we deduce from (2.13) the upper bound

Varρr(ϕµ,r − ϕν,r) ≤ Cρ,Yr
2W1(µr, νr). (2.14)

Claim. There exists r0 ≥ 1 (depending only on ρ, not on µ, ν) such that

inf
x∈Br0

|(ϕµ − ϕν)(x)| ≤ 1. (2.15)

Proof of the claim. Set f = ϕµ − ϕν . Let r0 be large enough so that

ρ(Br0) > 2RY

∫
Rd\Br0

dist(x,Br0)dρ(x).

Notice that such r0 exists since the left-hand side tends to 1 as r0 → +∞ and the right-hand
side tends to 0 by dominated convergence. Assume for the sake of a contradiction that (2.15)
does not hold, and without loss of generality that f > 1 on Br0 . Together with the fact that

ϕµ and ϕν are RY -Lipschitz, (2.16)

this implies f(x) ≥ −2RYdist(x,Br0) for x /∈ Br0 , therefore∫
Rd

fdρ =

∫
Br0

fdρ+

∫
Rd\Br0

fdρ > ρ(Br0) − 2RY

∫
Rd\Br0

dist(x,Br0)dρ(x) > 0.

But recall that ∫
Rd

ϕµdρ =

∫
Rd

ϕνdρ = 0 (2.17)

therefore
∫
Rd fdρ = 0 and we get a contradiction. □

For r ≥ 0 and ℓ = 0, 1, 2 we set

mℓ(r) =

∫
Rd\Br

|x|ℓdρ(x) (2.18)

the ℓ-th moment of the tail of ρ outside Br. Using (2.16) and the claim, we deduce that there
exists Cρ > 0 such that for any x ∈ Rd, |(ϕµ−ϕν)(x)| ≤ Cρ +RY |x|. This implies that for large
values of r,

∥ϕµ − ϕν∥2L2(ρ,Rd\Br)
≤
∫
Rd\Br

(Cρ +RY |x|)2dρ(x) ≤ Cρ,Ym2(r). (2.19)

Now we estimate ηr =
∫
Rd(ϕµ,r − ϕν,r)dρr: using (2.17), we get

ρ(Br) |ηr| =
∣∣∣∫

Rd\Br

(ϕµ − ϕν)dρ
∣∣∣ ≤ ∫

Rd\Br

(Cρ +RY |x|)dρ(x) ≤ Cρ,Ym1(r)

again for large r. For r large enough, ρ(Br) ≥ 1/2, we deduce

∥ϕµ,r − ϕν,r∥2L2(ρ) ≤ ∥ϕµ,r − ϕν,r∥2L2(ρr)
= Varρr(ϕµ,r − ϕν,r) + η2r

≤ Cρ,Y(r2W1(µr, νr) +m1(r)
2) (2.20)

where in the last inequality we used (2.14). Together with (2.19) we get

Varρ(ϕµ − ϕν) = ∥ϕµ − ϕν∥2L2(ρ) = ∥ϕµ,r − ϕν,r∥2L2(ρ) + ∥ϕµ − ϕν∥2L2(ρ,Rd\Br)

≤ Cρ,Y(r2W1(µr, νr) +m1(r)
2 +m2(r)) (2.21)

Claim. There holds

W1(µr, νr) ≤W1(µ, ν) + Cρ,Ym0(r). (2.22)
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Proof of the claim. There holds

W1(µr, νr) −W1(µ, ν) ≤W1(µr, µ) +W1(νr, ν).

Let us prove an upper bound on W1(µr, µ) for instance. We write µ = ρ(Br)µr + µ′r. Thanks to
the Kantorovich-Rubinstein duality formula we know there exists a 1-Lipschitz function g such
that W1(µr, µ) =

∫
B(0,RY ) g d(µr − µ). We may assume that g(0) = 0. Hence |g(x)| ≤ RY for

any x ∈ Y. Since µ′r(Y) = 1 − ρ(Br) we deduce

W1(µr, µ) = (1 − ρ(Br))
∫
Y
gdµr −

∫
Y
gdµ′r ≤ 2RY(1 − ρ(Br)) = 2RYm0(r).

The claim follows. □

Plugging the claim into (2.21) we get

∥ϕµ − ϕν∥2L2(ρ) ≤ Cρ,Y
(
r2W1(µ, ν) + r2m0(r) +m1(r)

2 +m2(r)
)
. (2.23)

Then due to the assumption that ρ = e−U−F where D2U ≥ κId with κ > 0 and F ∈ L∞(Rd),

mℓ(r) ≤ Cρ,ℓr
d+ℓ−2e−

1
2
κr2 (2.24)

for some constant Cρ,ℓ independent of r. In the sequel we assume W1(µ, ν) ≤ 1/2 since this is

sufficient to establish (1.5). We plug (2.24) into (2.23) and we choose r = (4κ−1| logW1(µ, ν)|)1/2.
We obtain (1.5).

As in [24], the stability of Brenier maps (1.6) now follows from Proposition 2.2. We apply it
with K = Br (where r ≥ 0 is arbitrary), to the functions ϕµ, ϕν which are RY -Lipschitz. We get

∥Tµ − Tν∥2L2(λ,Br)
≤ Cρr

2(d−1)/3R
4/3
Y ∥ϕµ − ϕν∥2/3L2(λ,Br)

. (2.25)

This is written for the Lebesgue measure λ, but since ρ(x) ≤Me−
1
2
κ|x|2 we deduce immediately

that

∥Tµ − Tν∥2L2(ρ,Br)
≤ Cρ,Yr

2(d−1)/3e
1
6
κr2∥ϕµ − ϕν∥2/3L2(ρ)

.

Due to (2.16) and (2.24) (for n = 0) we get

∥Tµ − Tν∥2L2(ρ) ≤ Cρ,Yr
2(d−1)/3e

1
6
κr2∥ϕµ − ϕν∥2/3L2(ρ)

+ Cρ,Yr
d−2e−

1
2
κr2 . (2.26)

To establish (1.6) we may assume that W1(µ, ν) is small; here we assume that it is small enough
so that ∥ϕµ − ϕν∥L2(ρ) ≤ 1/2 (recall (1.5)). We optimize (2.26) over r, namely we choose

r =
(
κ−1| log ∥ϕµ − ϕν∥L2(ρ)|

)1/2
, we obtain

∥Tµ − Tν∥L2(ρ) ≤ Cρ,Y∥ϕµ − ϕν∥1/4L2(ρ)
| log ∥ϕµ − ϕν∥L2(ρ)|(d−2)/4

Combining with (1.5) we get (1.6).

3. Variance inequalities

Our proofs of Theorems 1.7, 1.10 and 1.11 mainly rely on a variance inequality for the dual
potentials (Theorem 3.6), which extends Theorem 2.1 to all probability densities ρ having the
following three properties: (i) the support of ρ can be decomposed into a family F of cubes
satisfying the so-called Boman chain condition (see Definition 3.2); (ii) a doubling property
(3.7); (iii) a uniform upper bound (3.18) on the maximum and minimum value of ρ in each cube
of this decomposition.

In Section 3.1, we provide reminders on the Whitney decomposition and the Boman chain
condition. Then in Section 3.2 we prove a lemma showing how to glue variance inequalities
together when items (i) and (ii) described above hold. The proof of this lemma relies on tech-
niques developed to prove Poincaré-Sobolev inequalities in John domains (see for instance [9]).
Finally in Section 3.3 we deduce the variance inequality (Theorem 3.6).
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3.1. Whitney decomposition and the Boman chain condition. Let us first recall briefly
the Whitney decomposition (see [34, Appendix J.1] for a proof). A dyadic cube in Rd is a cube
of the form {

(x1, . . . , xd) ∈ Rd | mj2
−ℓ ≤ xj < (mj + 1)2−ℓ for any j ∈ [d]

}
where ℓ ∈ Z and mj ∈ Z for any j ∈ [d]. Roughly speaking, the Whitney decomposition is
a decomposition of any open set into dyadic cubes in a way that each of these cubes has a
sidelength which is comparable to its distance from the boundary of the open set.

Lemma 3.1 (Whitney decomposition). Let X be an open non-empty proper subset of Rd. Then
there exists a family of closed dyadic cubes Pj such that

• The Pj’s have disjoint interiors and⋃
j

Pj = X .

• If ℓ(P ) denotes the sidelength of a cube P and X c = Rd \ X ,
√
dℓ(Pj) ≤ dist(Pj ,X c) ≤ 4

√
dℓ(Pj). (3.1)

• If the boundaries of two cubes Pj and Pk touch then

1

4
≤ ℓ(Pj)

ℓ(Pk)
≤ 4. (3.2)

• For a given Pj there exist at most 12d cubes Pk’s that touch it.
• Let 1 < σ < 5/4. If Qj denotes the cube with same center as Pj and ℓ(Qj) = σℓ(Pj),
then ∑

j

χQj ≤ 12d

where χQj is the characteristic function of Qj.

Under some assumptions on X and ρ that are studied in Section 4, the cubes Qj of the last
item of the above lemma (for some fixed σ ∈ (1, 5/4)) provide another decomposition of X into
cubes which now overlap, and which satisfy the properties listed below ([10, Lemma 2.1], [9,
Section 3], [38, Section 4]):

Definition 3.2 (Boman chain condition). Let σ ≥ 1 and A,B,C > 1 with B ∈ N. A probability
measure ρ on an open set X ⊂ Rd satisfies the Boman chain condition with parameters A,B,C ∈
R if there exists a covering F of X by open cubes Q ∈ F such that

• for σ = min(10/9, (d+ 1)/d) and for any x ∈ Rd,∑
Q∈F

χσQ(x) ≤ AχX (x). (3.3)

• For some fixed cube Q0 in F , called the central cube, and for every Q ∈ F , there exists a
chain Q0, Q1, . . . , QN = Q of distinct cubes from F such that for any j ∈ {0, . . . , N−1},

Q ⊂ BQj (3.4)

where BQj is the cube with same center as Qj, and sidelength multiplied by B.
• Consecutive cubes of the above chain are comparable in size: for any j ∈ {0, . . . , N − 1},

C−1 ≤ ρ(Qj)

ρ(Qj+1)
≤ C. (3.5)

• Consecutive cubes of the above chain overlap quantitatively: for any j ∈ {0, . . . , N − 1},
ρ(Qj ∩Qj+1) ≥ C−1 max(ρ(Qj), ρ(Qj+1)). (3.6)

Note that in the above definition, the length N of the connecting chain depends on Q ∈ F
and is not assumed to be uniformly bounded in Q ∈ F . Also we could have replaced σQ in (3.3)
simply by Q for the purpose of this paper, but we keep the same convention as in [10], [9], [38]
to remain coherent with the literature.
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3.2. Gluing variance inequalities. Let ρ be a probability density over a domain X . We
assume that ρ satisfies the Boman chain condition for some A,B,C > 0. Let F be a covering
as in Definition 3.2. For any cube Q ∈ F we consider

ρ̃Q =
ρ|Q

ρ(Q)
.

A key step in the proof of Theorem 3.6 is the following lemma.

Lemma 3.3. Let ρ be a probability density over a domain X ⊂ Rd satisfying the Boman chain
condition for some covering F and some A,B,C > 1. Assume moreover that there exists D > 0
such that

∀Q ∈ F , ρ(5B
√
dQ) ≤ Dρ(Q). (3.7)

Then for any continuous function f on X , there holds

Varρ(f) ≤ 200A2CD3
∑
Q∈F

ρ(Q)Varρ̃Q(f).

Proof of Lemma 3.3. We denote by fQ =
∫
Q fdρ̃Q the mean of f over Q. Let Q0 be a central

cube as in Definition 3.2. By definition of the variance,

Varρ(f) ≤
∫
X
|f(x) − fQ0 |2dρ(x). (3.8)

We estimate the right-hand side of (3.8). For Q ∈ F , we set aQ = (Varρ̃Q(f))1/2. Since F is a
covering of X ,∫

X
|f − fQ0 |2dρ(x) ≤

∑
Q∈F

∫
Q
|f(x) − fQ0 |2dρ(x)

≤ 2
∑
Q∈F

(∫
Q
|f(x) − fQ|2dρ(x) +

∫
Q
|fQ − fQ0 |2dρ(x)

)
= 2

∑
Q∈F

ρ(Q)a2Q + 2
∑
Q∈F

∫
Q
|fQ − fQ0 |2dρ(x) (3.9)

Fix Q ∈ F . By the triangle inequality, and noticing that the integrand in the last term in (3.9)
is actually a constant function, we have(∫

Q
|fQ − fQ0 |2dρ(x)

) 1
2

≤
s−1∑
j=0

(∫
Q
|fQj − fQj+1 |2dρ(x)

) 1
2

(3.10)

For fixed j, we have according to the last condition in Definition 3.2∫
Q
|fQj − fQj+1 |2dρ(x)

=
ρ(Q)

ρ(Qj ∩Qj+1)

∫
Qj∩Qj+1

|fQj − fQj+1 |2dρ(x)

≤ 2
ρ(Q)

ρ(Qj ∩Qj+1)

(∫
Qj∩Qj+1

|fQj − f(x)|2dρ(x) +

∫
Qj∩Qj+1

|fQj+1 − f(x)|2dρ(x)

)

≤ 2C
ρ(Q)

ρ(Qj)

∫
Qj

|fQj − f(x)|2dρ(x) + 2C
ρ(Q)

ρ(Qj+1)

∫
Qj+1

|fQj+1 − f(x)|2dρ(x)

≤ 2Cρ(Q)(a2Qj
+ a2Qj+1

).

Taking the square root, we obtain(∫
Q
|fQj − fQj+1 |2dρ(x)

) 1
2

≤ (2C)
1
2 ρ(Q)

1
2 (aQj + aQj+1).
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Plugging into (3.10), and using that Q ⊂ BQj and Q ⊂ BQj+1, this yields(∫
Q
|fQ − fQ0 |2dρ(x)

) 1
2

≤ (8C)
1
2 ρ(Q)

1
2

∑
Q⊂BQ̃

aQ̃

where the symbol
∑
Q⊂BQ̃

means that the sum runs over all cubes Q̃ ∈ F such that Q ⊂ BQ̃

(recall that Q is fixed). Taking the square, we get∫
Q
|fQ − fQ0 |2dρ(x) ≤ 8Cρ(Q)

( ∑
Q⊂BQ̃

aQ̃

)2
= 8C

∫
Q

( ∑
Q⊂BQ̃

aQ̃

)2
dρ(x)

≤ 8C

∫
Q

(∑
Q̃∈F

aQ̃χBQ̃(x)
)2
dρ(x) (3.11)

where in the last line we used that for any x ∈ Q,∑
Q⊂BQ̃

aQ̃ ≤
∑
Q̃∈F

aQ̃χBQ̃(x).

The following lemma, which is a generalization of [9, Lemma 4.2], is proved in Appendix A:

Lemma 3.4. Under the assumption (3.7) there holds∥∥∥∑
Q̃∈F

aQ̃χBQ̃

∥∥∥
L2(ρ)

≤ (2D)3/2
∥∥∥∑
Q̃∈F

aQ̃χQ̃

∥∥∥
L2(ρ)

. (3.12)

Summing (3.11) over Q ∈ F , we obtain∑
Q∈F

∫
Q
|fQ − fQ0 |2ρ(x) ≤ 8AC

∫
X

(∑
Q̃∈F

aQ̃χBQ̃(x)
)2
dρ(x)

≤ 64ACD3

∫
X

(∑
Q̃∈F

aQ̃χQ̃(x)
)2
dρ(x)

≤ 64A2CD3

∫
X

∑
Q̃∈F

a2
Q̃
χQ̃(x)dρ(x)

= 64A2CD3
∑
Q̃∈F

ρ(Q̃)a2
Q̃

(3.13)

where for the first inequality we use the first point in Definition 3.2, and for the third inequality
we use Cauchy-Schwarz together with the first point in Definition 3.2. Finally, putting together
(3.8), (3.9) and (3.13), we get the lemma. □

Remark 3.5 (Uniqueness of Brenier potentials and Poincaré-Wirtinger inequalities). In the set-
tings considered in the present paper, Brenier potentials are always unique: this is a consequence
of the connectedness of the support of ρ, see for instance [52, Proposition 7.18] or [54, Remark
10.30]. Let us mention that if the support of ρ is not connected, then in general the Brenier
potentials are not unique. For instance, let X1 and X2 be two non-empty bounded subsets of Rd
with dist(X1,X2) ≥ ε > 0, and ρ be the restriction of the Lebesgue measure to X = X1 ∪ X2,
normalized to be a probability measure. Consider ϕα(x) = 1

2 |x|
2 + αχX1(x) + cα, where χX1 is

the characteristic function of X1 and cα is chosen so that
∫
X ϕα(x)dρ(x) = 0. Then one can

check that for 0 ≤ α < ε2/2, ∇ϕα transports ρ to itself, and is actually the optimal transport
map (since (ϕ∗α)∗ = ϕα on X ). In other words, there exists a 1-parameter family of Brenier
potentials corresponding to the identity mapping Tρ on X .

We would like to point out that in the setting of Lemma 3.3, not only the support of ρ is
connected, but ρ even satisfies an L2-Poincaré-Wirtinger inequality. Therefore, uniqueness of
Brenier potentials may be checked also in the following way: the equality ∇ϕ = ∇ϕ′ ρ-almost
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everywhere together with
∫
X ϕdρ =

∫
X ϕ

′dρ = 0 implies that ϕ = ϕ′. Let us show that if ρ

satisfies the assumptions of Lemma 3.3 and also satisfies (3.18) below, then it supports a L2-
Poincaré-Wirtinger inequality:

Varρ(f) ≤ CP

∫
X
|∇f |2dρ. (3.14)

To prove (3.14), we first observe that there exists C ′
P > 0 such that for any Q ∈ F there holds

Varρ̃Q(f) ≤ C ′
P

∫
Q
|∇f |2dρ̃Q. (3.15)

Indeed, since supQ
Mρ̃Q

mρ̃Q
< +∞, it is sufficient to prove that (3.15) holds when ρ̃Q is replaced

by the normalized Lebesgue measure on Q, with a Q-independent constant C ′
P . This latter fact

holds because all Q are cubes, with uniformly bounded diameter. Summing (3.15) over Q ∈ F
with weights ρ(Q), and using (3.3) we get (3.14).

3.3. The variance inequality. In the rest of the paper, for any probability density ρ0 sup-
ported on X0 ⊂ Rd we set

Mρ0 = sup
x∈X0

ρ0(x), mρ0 = inf
x∈X0

ρ0(x). (3.16)

Given a compact set Y ⊂ Rd, we set

RY = max
y∈Y

|y|. (3.17)

Recall from (2.1) that the Legendre-Fenchel transform ψ∗ of a function ψ ∈ C0(Y) is defined as
ψ∗(x) = maxy∈Y ⟨x|y⟩ − ψ(y). In this section we prove the following variance inequality:

Theorem 3.6. Let ρ be a probability density over a domain X ⊂ Rd satisfying the Boman chain
condition for some covering F and some A,B,C > 1. Assume moreover that (3.7) holds for
some D > 0 and that there exists E > 0 such that

sup
Q∈F

MρQ

mρQ

≤ E < +∞. (3.18)

Let Y ⊂ Rd be a compact set. Set C ′ = 200eA3CD3ERYdiam(X ) > 0. Then, for any ψ0, ψ1 ∈
C0(Y), there holds

Varρ (ψ∗
1 − ψ∗

0) ≤ C ′⟨ψ0 − ψ1|(∇ψ∗
1)#ρ− (∇ψ∗

0)#ρ⟩. (3.19)

Proof of Theorem 3.6. We apply Theorem 2.1 to ρ̃Q on the compact convex set Q, with σ the
normalized Lebesgue measure on Q. We obtain

Varρ̃Q (ψ∗
1 − ψ∗

0) ≤ CDM⟨ψ0 − ψ1|(∇ψ∗
1)#ρ̃Q − (∇ψ∗

0)#ρ̃Q⟩ (3.20)

where CDM = eERYdiam(X ) is a constant which does not depend on Q. Putting together
Lemma 3.3 with (3.20) we get

Varρ(ψ
∗
1 − ψ∗

0) ≤ 200A2CD3
∑
Q∈F

ρ(Q)Varρ̃Q(ψ∗
1 − ψ∗

0)

≤ 200A2CD3CDM

∑
Q∈F

⟨ψ0 − ψ1|(∇ψ∗
1)#ρ|Q − (∇ψ∗

0)#ρ|Q⟩ (3.21)

Each point x ∈ X belongs to at most A cubes Q ∈ F due to the first point of Definition 3.2.
We define a partition F ′ of X as follows: x, x′ belong to the same element P ∈ F ′ if and only
if they belong to exactly the same elements of F . Hence it follows from (3.21) and the lower
bound ⟨ψ0 − ψ1|(∇ψ∗

1)#ρ|P − (∇ψ∗
0)#ρ|P ⟩ ≥ 0 valid for any P ∈ F ′ that

Varρ(ψ
∗
1 − ψ∗

0) ≤ 200A3CD3CDM

∑
P∈F ′

⟨ψ0 − ψ1|(∇ψ∗
1)#ρ|P − (∇ψ∗

0)#ρ|P ⟩ (3.22)

= 200A3CD3CDM⟨ψ0 − ψ1|(∇ψ∗
1)#ρ− (∇ψ∗

0)#ρ⟩ (3.23)
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(the last equality holds because F ′ is a partition). This proves Theorem 3.6. □

4. Proof of Theorems 1.7, 1.10 and 1.11: bounded domains

We prove successively Theorems 1.7, 1.10 and 1.11 in Sections 4.2, 4.3 and 4.4 respectively.
These three proofs are based on the variance inequality proved in Theorem 3.6. We apply it
to the dual Brenier potentials: recalling that the Brenier potential associated to the optimal
transport from ρ to µ is denoted by ϕµ (and is extended by +∞ outside X ), its Legendre
transform defined by

∀y ∈ Y, ψµ(y) = sup
x∈X

⟨x|y⟩ − ϕµ(x) (4.1)

is called the dual Brenier potential. Since X is bounded, ψµ is a (convex) diam(X )-Lipschitz
function on Y. Moreover, since ϕµ is convex, ψ∗

µ = ϕµ where ψ∗
µ is defined via (2.1), or equiva-

lently

∀x ∈ X , ψ∗
µ(x) = sup

y∈Y
⟨x|y⟩ − ψµ(y).

We start in Section 4.1 with the construction of a family F of cubes which will be used in all
three proofs as the covering of the Boman chain condition.

4.1. Construction of the Boman cubes. Let X be a non-empty proper John domain of Rd,
and consider its Whitney decomposition into closed dyadic cubes Pj recalled in Lemma 3.1. Let
us fix σ = min(10/9, (d+ 1)/d). For any j, we set Qj = σPj ; then F is defined as the set of all
Qj . In particular, due to (3.1), there holds

1

2

√
dℓ(Qj) ≤ dist(Qj ,X c) ≤ 5

√
dℓ(Qj). (4.2)

In the next sections, we will use this decomposition (Qj)j∈F to verify the Boman chain
condition. Of course, the two conditions (3.5) and (3.6) depend on the density ρ that we put
on X ; but it is already possible to verify (3.3) and (3.4), which are properties of F (and X ),
independent of ρ.

The last property of the Whitney decomposition listed in Lemma 3.1 yields (3.3). Then, (3.4)
is a consequence of X being a John domain, according to the following result:

Lemma 4.1. (see [10, Lemma 2.1]) Let X ⊂ Rd be a John domain, and let m denote the
Lebesgue measure on X . Then m satisfies the Boman chain condition for the above covering
(Qj)j∈F and some A,B,C > 0. In particular, (3.4) holds (since (3.4) is a property of F).

In Remark 4.4 we compute A,B,C in terms of α, β. Let us mention that the converse of
Lemma 4.1 has been investigated in [14, Theorem 3.1].

4.2. Proof of Theorem 1.7. We assume that X is a John domain and that 0 < mρ ≤ ρ ≤
Mρ < +∞. In order to apply Theorem 3.6, we first verify that its assumptions are verified.
Concerning the Boman chain condition, we already checked (3.3) and (3.4) in Section 4.1. The
properties (3.5) and (3.6) follow from (3.2) and the fact that Qj = σPj , together with the fact
that 0 < mρ ≤ ρ ≤ Mρ < +∞. These upper and lower bounds on ρ also imply conditions
(3.7) and (3.18). Therefore we may apply Theorem 3.6 in X , i.e., (3.19) holds. We consider this
inequality for ψ0 = ψµ and ψ1 = ψν , which are both continuous in Y. Since (∇ψ∗

µ)#ρ = µ and
(∇ψ∗

ν)#ρ = ν we obtain

Varρ (ϕµ − ϕν) ≤ C ′⟨ψµ − ψν |ν − µ⟩. (4.3)

Then, one can check that ψµ − ψν is diam(X )-Lipschitz continuous, hence by the Kantorovich-
Rubinstein duality formula for the W1 distance (see [53, Theorem 1.14]) the following upper
bound for the right-hand side in (4.3) holds:

⟨ψµ − ψν |ν − µ⟩ ≤ diam(X )W1(µ, ν). (4.4)

Finally, we observe that Varρ(ϕµ−ϕν) = ∥ϕν−ϕν∥2L2(ρ) since
∫
X ϕµdρ =

∫
X ϕνdρ = 0. All in all,

putting (4.3) and (4.4) together, we have obtained (1.7), i.e., the stability of Brenier potentials.
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Like for the log-concave case, the stability of Brenier maps (1.8) now follows from Proposition
2.2. Since u = ϕµ and v = ϕν are RY -Lipschitz and convex in Rd, and the boundary of ∂X is
assumed rectifiable, (1.7) and Proposition 2.2 imply (1.8) since

M−1/2
ρ ∥Tµ − Tν∥L2(ρ) ≤ ∥Tµ − Tν∥L2(λ,X ) ≤ Cρ,Y∥ϕµ − ϕν∥1/3L2(λ,X )

≤ Cρ,Ym
−1/6
ρ ∥ϕµ − ϕν∥1/3L2(ρ)

≤ Cρ,Ym
−1/6
ρ W1(µ, ν)1/6. (4.5)

Remark 4.2. [Extension to unions of John domains] Let k ∈ N and let J1, . . . , Jk ⊂ Rd be
k John domains whose closures pairwise do not intersect, and with rectifiable boundaries. We
assume that ρ is a probability density on J1 ∪ . . . ∪ Jk, bounded above and below by positive
constants. We prove that in this setting, (1.8) still holds. Let µ, ν be probability measures
supported in a compact set Y ⊂ Rd, and denote by Tµ = ∇ϕµ and Tν = ∇ϕν the optimal
transports from ρ to µ, ν. The functions ϕµ and ϕν are convex according to Brenier’s theorem,
but in this remark (and only here) we do not assume

∫
X ϕµdρ =

∫
X ϕνdρ = 0.

We consider ρi the restriction of ρ to Ji. We denote by ρ̃i = ρi/ρi(Ji) the associated probability
density. According to Theorem 3.6, for any ψ0, ψ1 ∈ C0(Y),

Varρ̃i(ψ
∗
1 − ψ∗

0) ≤ Cρ,Y⟨ψ1 − ψ0 | ∇ψ∗
0#ρ̃i −∇ψ∗

1#ρ̃i⟩

Applying this inequality to ψ0 = ϕ∗µ and ψ1 = ϕ∗ν , and multiplying by ρi(Ji) on both sides, we
obtain

ρi(Ji)Varρ̃i(ϕµ − ϕν) ≤ Cρ,Y⟨ϕ∗ν − ϕ∗µ | ∇ϕµ#ρi −∇ϕν#ρi⟩.
Let ci =

∫
X (ϕµ − ϕν)dρ̃i. Then summing the above inequality over i we deduce

k∑
i=1

∥ϕµ − ϕν − ci∥2L2(ρi)
≤ Cρ,Y⟨ϕ∗ν − ϕ∗µ | ∇ϕµ#ρ−∇ϕν#ρ⟩ ≤ Cρ,YW1(µ, ν). (4.6)

where in the last inequality we used Kantorovich-Rubinstein duality. To get stability of maps we
apply Proposition 2.2 in Ji, which gives

∥Tµ − Tν∥2L2(ρi)
≤ Cρ,Y∥ϕµ − ϕν − ci∥2/3L2(ρi)

.

Summing over i we get

∥Tµ − Tν∥2L2(ρ) ≤ Cρ,Y

k∑
i=1

∥ϕµ − ϕν − ci∥2/3L2(ρi)
≤ Cρ,Y,k

( k∑
i=1

∥ϕµ − ϕν − ci∥2L2(ρi)

)1/3
(4.7)

where we used
∑k

i=1 ai ≤ k2/3
(∑k

i=1 a
3
i

)1/3
for any ai ≥ 0, which is a consequence of Hölder’s

inequality. Combining (4.6) and (4.7) we obtain (1.8).

Remark 4.3. As already mentioned, our proof of Lemma 3.3 is inspired by techniques developed
in [9] (building upon anterior work [10]) to prove Poincaré-Sobolev inequalities in John domains.
In both cases, a global variance is controlled by a sum of local variances.

For Sobolev-Poincaré inequalities, it is known [13, Theorem 1.1] that the property for a domain
X ⊂ Rd with finite volume to support Sobolev-Poincaré inequalities is almost equivalent to X
being a John domain. The two properties are truly equivalent if X is assumed in addition to
satisfy a separation condition described in [13], which is verified for instance for simply connected
planar domains. Analogously, Theorem 1.9 hints towards an equivalence for a bounded domain
X between the property that it is John (or some related property) and that the uniform probability
density on X has the potential stability property. However, like for Sobolev-Poincaré inequalities,
there are obvious caveats, which explain the need of a separation property for the equivalence to
hold: for instance in dimension d ≥ 2, it is possible to remove a countable number of points
to a ball to make it a non-John domain, while the optimal transport potentials and maps with
uniform source measure are unchanged (and therefore the stability property is unchanged under
this operation).
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Remark 4.4. We proved that ρ satisfies the Boman chain condition for some parameters
A,B,C. Let us briefly explain how to express these parameters in terms of the parameters
α, β of the John domain X (see Definition 1.6). For this, we need to dig into Boman’s proof of
Lemma 4.1 given in [10, Lemma 2.1]. Due to properties of the Whitney decomposition (Lemma
3.1) and the construction of the family of cubes in the Boman chain condition (see Section 4.1),
we may take A = 12d and

C =

(
4

σ − 1

)d
sup
Q

MρQ

mρQ

(4.8)

which is finite because bounded above by
(

4
σ−1

)d Mρ

mρ
. Both A and C are thus independent of α

and β. The proof of [10, Lemma 2.1] gives B = 40dα
β . Also, recall that due to Theorem 2.1,

CDM = e
MρQ

mρQ

RYdiam(Q), (4.9)

which is uniformly bounded above by e
Mρ

mρ
RYdiam(X ). Therefore the constants Cρ,Y in (1.7) and

(1.8) are totally explicit.

4.3. Proof of Theorem 1.10. The proof of Theorem 1.10 follows broadly the same lines as
that of Theorem 1.7. Again we first need to check that the assumptions of Theorem 3.6 are
verified.

Let us observe that due to (1.9) and (4.2), there exists E > 0 such that if Q ∈ F and x, y ∈ Q,
then E−1ρ(y) ≤ ρ(x) ≤ Eρ(y). This proves (3.18). Now let us check the Boman chain condition.
The above observation also implies that if Q,Q′ intersect, then E−2ρ(y) ≤ ρ(x) ≤ E2ρ(y) for
any x ∈ Q and y ∈ Q′. Therefore, denoting by λ the Lebesgue measure in Rd,

E−2 λ(Q)

λ(Q′)
≤ ρ(Q)

ρ(Q′)
≤ E2 λ(Q)

λ(Q′)

and
ρ(Q ∩Q′)

max(ρ(Q), ρ(Q′))
≥ E−2 λ(Q ∩Q′)

max(λ(Q), λ(Q′))
.

Since each Boman cube is obtained as σP where P is a cube of the Whitney decomposition
(see Section 4.1), and cubes of the Whitney decomposition are dyadic cubes satisfying (3.2), we
deduce that (3.5) and (3.6) hold. The other two conditions (3.3) and (3.4) of the Boman chain
condition have already been checked in Section 4.1. There remains to prove that (3.7) holds:

Lemma 4.5. The doubling condition (3.7) holds for some D < +∞.

Proof. Let us set r = 5B
√
d. We first assume δ ≥ 0. For any x ∈ Q and y ∈ rQ ∩ X , there

holds dist(y, ∂X ) ≤ dist(x, ∂X )+r
√
dℓ(Q) ≤ (1+2r)dist(x, ∂X ) according to (4.2). Hence (1.9)

yields
ρ(y) ≤ c2d(y, ∂X )δ ≤ c2(1 + 2r)δd(x, ∂X )δ ≤ c−1

1 c2(1 + 2r)δρ(x).

We deduce that ρ(rQ) ≤ c−1
1 c2(1 + 2r)δrdρ(Q).

We turn to the case δ ∈ (−1, 0). Recall that X is a bounded Lipschitz domain, hence some
neighborhood of its boundary may be covered by a finite number of bi-Lipschitz charts. For
ε > 0 we set

Xε = {x ∈ X | d(x, ∂X ) ≤ ε}
and we denote by Fε the set of elements Q of F such that rQ ⊂ Xε. By (4.2), F \ Fε is
finite for any ε > 0. Therefore we need to check (3.7) only for elements of Fε. We choose ε
sufficiently small so that Fε is covered by bi-Lipschitz charts. Let us fix such a bi-Lipschitz chart
Φ : U → R+ × Rd−1, Φ(∂X ∩ U) ⊂ {0} × Rd−1 where U ⊂ X . Due to (4.2), we deduce that
there exists Cρ,r > 0 (depending only on ρ and r, not on Q) such that for any cube Q ∈ Fε, if
η = dist(Q, ∂X ), then

Φ(rQ ∩ X ) ⊂ [0, b1] × [a2, b2] × . . .× [ad, bd]︸ ︷︷ ︸
:=RQ

⊂ R+ × Rd−1
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for some a1 = 0, a2, . . . , ad, b1, . . . , bd verifying |bi − ai| ≤ Cρ,rη for any i ∈ [d]. There holds

ρ(rQ) = (Φ#ρ)(Φ(rQ ∩ X )) ≤ (Φ#ρ)(RQ). (4.10)

Now since Φ is bi-Lipschitz, it follows from (1.9) that there exist c′1, c
′
2 > 0 such that for any

y = (y1, y
′) ∈ Φ(rQ ∩ X ) ⊂ R+ × Rd−1,

c′1y
δ
1 ≤ (Φ#ρ)(y) ≤ c′2y

δ
1. (4.11)

Integrating over RQ we obtain that the right-hand side in (4.10) is ≤ Cρ,rη
d+δ. Finally we

observe that ρ(Q) ≥ Cρ,c1η
d+δ, again due to (4.2) and (4.11). This concludes the proof for

δ ∈ (−1, 0). □

All in all, Theorem 3.6 applies, and the stability of Brenier potentials (1.10) follows as in
Section 4.2 by Kantorovich-Rubinstein duality (4.4).

Concerning the stability of Brenier maps (1.11), the argument provided in (4.5) must be
modified in the present setting since Mρ = 0 when δ > 0, and mρ = +∞ when −1 < δ < 0.
Since X is assumed to be a Lipschitz domain, taking local charts covering a neighborhood of
the boundary of X and reasoning as in Lemma 4.5 we obtain

∀ε > 0, ρ(Xε) ≤ Cρε
1+δ. (4.12)

We consider the density ρε = ρ|X\Xε
+ ρ(x0)χXε where x0 ∈ X \ ∂X is fixed (and is independent

of ε). Then ρε is not a probability measure, but we will use that its support is the closure of X ,
independently of ε. Using ∥Tµ∥L∞ ≤ RY and ∥Tν∥L∞ ≤ RY (recall that RY has been introduced
in (3.17)), (4.12) implies

∥Tµ − Tν∥2L2(ρ) ≤ Cρ,Yε
1+δ + ∥Tµ − Tν∥2L2(ρε)

(4.13)

We now prove an upper bound on ∥Tµ − Tν∥2L2(ρε)
. We first consider the case δ ≥ 0. By the

same computation as in (4.5),

∥Tµ − Tν∥3L2(ρε)
≤ Cρ,YHd−1(∂X )m−1/2

ρε ∥ϕµ − ϕν∥L2(ρε)

≤ Cρ,YHd−1(∂X )m−1/2
ρε (∥ϕµ − ϕν∥L2(ρ) + ε1+δ)

≤ Cρ,YHd−1(∂X )m−1/2
ρε (W1(µ, ν)1/2 + ε1+δ) (4.14)

To go from first to second line we used (4.12) together with the observation that ∥ϕµ−ϕν∥L∞(X ) ≤
2RYdiam(X ) since ϕµ, ϕν are RY -Lipschitz and ϕµ−ϕν vanishes on X at least at one point due
to the fact that

∫
X ϕµdρ =

∫
X ϕνdρ = 0. We estimate the right-hand side of (4.14): due to (1.9)

there holds m
−1/2
ρε ≤ Cρε

−δ/2. Plugging into (4.14) and then (4.13), we get

∥Tµ − Tν∥2L2(ρ) ≤ Cρ,Yε
1+δ + Cρ,Yε

−δ/3(W1(µ, ν)1/2 + ε1+δ)2/3

Choosing ε = W1(µ, ν)
1

2(1+δ) , we obtain (1.11).
Finally, we consider the case δ ≤ 0. Then

∥Tµ − Tν∥3L2(ρε)
≤ Cρ,YHd−1(∂X )M3/2

ρε ∥ϕµ − ϕν∥L2(ρε)

≤ Cρ,YHd−1(∂X )M3/2
ρε ∥ϕµ − ϕν∥L2(ρ)

≤ Cρ,YHd−1(∂X )M3/2
ρε W1(µ, ν)1/2 (4.15)

Proceeding as above with Mρε ≤ Cρε
δ and choosing ε = W1(µ, ν)1/3, we obtain (1.11).

4.4. Proof of Theorem 1.11. The proof of Theorem 1.11 follows the same lines as that of
Theorem 1.10. Again we check that the assumptions of Theorem 3.6 are satisfied. For (3.18)
and the Boman chain condition, the argument is exactly the same as at the beginning of Section
4.3, we do not repeat it here. We only need to verify the doubling condition (3.7).

Lemma 4.6. The doubling condition (3.7) is verified for some D < +∞.
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Proof. Let r = 5B
√
d. Let Q ∈ F and let η = dist(Q, 0) denote its distance to the origin. Then

Q ⊂ B(0, 3η) since diam(Q) ≤
√
dℓ(Q) ≤ 2η according to (4.2). Hence rQ ∩ X ⊂ B(0, 4rη) ∩ X

where X = B(0, 1). Therefore ρ(rQ∩X ) ≤ ρ(B(0, 4rη)∩X ) = min(4rη, 1). On the other hand,

ρ(Q) ≥ Cdℓ(Q)d(3η)1−d ≥ Cdη
dη1−d = Cdη

again due to the fact that Q ⊂ B(0, 3η) and then (4.2). This proves that the doubling condition
is verified. □

Therefore Theorem 3.6 applies, and the stability of Brenier potentials (1.12) follows via
Kantorovich-Rubinstein duality (4.4) as in Section 4.2.

For the stability of maps (1.13), we set Kε = B(0, 1) \B(0, ε) and ρε = ρ|Kε
. We notice that

Mρε = cdε
1−d and that Hd−1(∂Kε) ≤ Cd uniformly in ε. Applying Proposition 2.2 as in (4.5)

we obtain

∥Tµ − Tν∥2L2(ρε)
≤Mρε∥Tµ − Tν∥2L2(λ,Kε)

≤ Cd,YHd−1(∂Kε)
2/3Mρε∥ϕµ − ϕν∥2/3L2(λ,Kε)

≤ Cd,YMρε∥ϕµ − ϕν∥2/3L2(ρ)

≤ Cd,Yε
1−dW1(µ, ν)1/3.

Finally, since ρ(B(0, ε)) = ε, ∥Tµ∥L∞ ≤ RY and ∥Tν∥L∞ ≤ RY , we obtain

∥Tµ − Tν∥2L2(ρ) ≤ ∥Tµ − Tν∥2L2(ρε)
+ CYε ≤ Cd,Y(ε1−dW1(µ, ν)1/3 + ε).

Choosing ε = W1(µ, ν)1/3d, we get (1.13).

Remark 4.7. The assumptions of Theorems 1.10 and 1.11 are the simplest ones which guar-
antee: (i) the Boman chain properties (3.5) and (3.6); (ii) the boundedness of the maximal
operator M defined in Appendix A; (iii) property (4.12); (iv) an estimate of mρε and/or Mρε

as a power of ε. Theorem 1.10 would hold for any other family of ρ’s for which the above four
ingredients can be proved.

5. Proof of Theorem 1.9: counterexample to Hölder potential stability

We first prove the result for d = 2. The coordinates in R2 are denoted by x1, x2. We recall the
concept of room and passage domain (see [2], [22, pp. 521-523] for instance). Figure 1 illustrates
our description. Take a sequence of rooms (i.e., rectangles) Rj , contained in the unit ball of

R2, j ∈ N∗, Rj symmetric with respect to the x1-axis, and such that Rj ∩ Rk = ∅ for j ̸= k.
These rooms are labelled as R1, R2, . . . along the increasing x1-axis. They are joined together
by passages (i.e., rectangles) Pn, n ∈ N∗, Pn symmetric with respect to the x1-axis, of height
hn much smaller than the height of the adjoining rooms Rn and Rn+1. The passages Pn are
also ordered as P1, P2, . . . along the increasing x1-axis. The sidelengths and centers of all these
rectangles will be specified later.

We denote by tn (resp. t′n) the infimum (resp. the supremum) of the abscissa x1 in Pn. In
particular, tn < t′n < tn+1 for any n ∈ N∗. We fix the parameters tn, t

′
n and the rectangles Rn

for n ∈ N∗. Then, the heights hn are chosen sufficiently small, in order to satisfy the following
property: for any δ > 0,

lim
n→+∞

hδn
|tn − t′n|2λ(Rn+1)

= 0 (5.1)

where λ denotes the Lebesgue measure in Rd. We denote by X the room and passage domain
given by the union of all Rn’s and Pn’s, for n ≥ 1. Finally, let ρ denote a probability density on
X bounded away from 0 and +∞, i.e., there exist mρ > 0 and Mρ < +∞ such that mρ ≤ ρ ≤Mρ

in X .
Consider the convex functions ϕn(x) = |x1−tn| and ϕ′n(x) = |x1−t′n|, which are the respective

Brenier potentials for the quadratic transport from ρ to (∇ϕn)#ρ, and from ρ to (∇ϕ′n)#ρ. For



22 CYRIL LETROUIT AND QUENTIN MÉRIGOT

x1

x2

R1

P1

R2

P2

t1 t′1 t2 t′2
h1

Figure 1. Room and passage domain

x = (x1, x2) ∈ R2,

ϕ′n(x) − ϕn(x) =

{
t′n − tn if x1 ≤ tn

tn − t′n if x1 ≥ t′n
(5.2)

and

|ϕ′n(x) − ϕn(x)| ≤ |tn − t′n| if x ∈ Pn. (5.3)

Consequently,

∥ϕn − ϕ′n∥2L2(ρ) ≥ |tn − t′n|2(1 − ρ(Pn)).

We set

vn = ρ({x ∈ X | x1 ≤ tn}) and wn = ρ({x ∈ X | x1 ≥ t′n}).

We have vn → 1, wn → 0 and ρ(Pn) → 0 as n→ +∞. Besides, there holds for any n ∈ N∗

vn + wn + ρ(Pn) = 1. (5.4)

We bound the mean of ϕ′n − ϕn as follows: for n large enough, according to (5.2) and (5.3),

0 ≤
∫
X

(ϕ′n − ϕn)dρ ≤ vn(t′n − tn) + wn(tn − t′n) + |t′n − tn|ρ(Pn)

= (1 − 2wn)(t′n − tn)

where the last equality comes from (5.4). Hence, still for n large enough,

Varρ(ϕn − ϕ′n) = ∥ϕn − ϕn′∥2L2(ρ) −
(∫

X
(ϕn − ϕ′n)dρ

)2

≥ (t′n − tn)2(1 − ρ(Pn) − (1 − 2wn)2)

= (t′n − tn)2(4wn − ρ(Pn) − 4w2
n)

≥ (t′n − tn)2(ρ(Rn+1) − ρ(Pn)) (5.5)

since wn → 0 and wn ≥ ρ(Rn+1).
Fix p ∈ [1,+∞). Let us compute Wp(µn, µ

′
n) for n ∈ N∗. For any n ∈ N∗, the measures

µn = (∇ϕn)#ρ and µ′n = (∇ϕ′n)#ρ are both supported on the union of two singletons, namely
A = (x1, x2) = (−1, 0) and B = (x1, x2) = (1, 0). The subset of X given by the points x ∈ X such

that ∇ϕn(x) ̸= ∇ϕ′n(x) is exactly Pn. Since dist(A,B) = 2 we deduce Wp(µn, µ
′
n) = 2ρ(Pn)1/p.

Now we observe that ρ(Pn) ≤Mρλ(X )−1hn|t′n− tn| ≤ hn for n large enough where hn denotes

the height of Pn and λ denotes the Lebesgue measure in Rd. Due to (5.1), ρ(Pn) ≤ hn ≤
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ρ(Rn+1)/2 for n large enough. Plugging into (5.5) we get that for any q > 0 and p ∈ [1,+∞),
for n large enough,

Wp(µn, µ
′
n)q

Varρ(ϕn − ϕ′n)
≤ 2q+1mρ

h
q/p
n

|tn − t′n|2λ(Rn+1)
−→

n→+∞
0

which concludes the proof when d = 2. The generalization to any d ≥ 2 is straightforward, con-
sidering hyperrectangles rooms and passages, instead of rectangles. Notice that in our example
the target measures µn, µ

′
n are supported in the closure of the unit ball of Rd, but the result

actually holds for any fixed non-empty ball B(0, r) ⊂ Rd (supporting the target measures), by
considering ϕn = 1

2r|x− tn| and ϕ′n = 1
2r|x− t′n|.

Remark 5.1. From the above construction it is straightforward to construct a 1d probability
density ρ on R, whose support is a compact interval, and for which the Hölder stability property
of Definition 1.8 does not hold. Let π : R2 → R, π(x1, x2) = x1 be the projection onto the
first coordinate. Consider the 1d probability measure ρ′ = π#ρ on R, where ρ is the normalized
Lebesgue measure on the domain constructed above (and represented in Figure 1). Then the
above computations show that the Brenier potentials associated to ρ′ do not satisfy the Hölder
potential stability property. However, the Brenier maps with source measure ρ′ are stable: even
better, they satisfy ∥Tµ−Tν∥L2(ρ′) = W2(µ, ν), this equality being a property of all 1d probability
measure.

Remark 5.2. There exist other counterexamples to Hölder potential stability than room and
passage domains, for instance domains with a sharp outward cusp: in R2, consider a domain

contained in the half-plane x1 ≥ 0 of the form |x2| ≤ e−1/x21 near 0, and a probability density
ρ on this domain, bounded above and below by positive constants. Then the same family of
potentials |x1− t| as above shows that Hölder potential stability does not hold in this case either.

6. Proof of Theorem 1.12: generalized Cauchy distributions

We describe in Section 6.1 a natural attempt to prove Theorem 1.12 which, although too
rough to lead to a complete proof, gives clear insights about a key difficulty of the problem.
Our final proof is an improvement over this attempt. Its broad lines are described at the end of
Section 6.1.

6.1. Warm-up and proof strategy. In this section, which is merely illustrative, we assume
for simplicity that ρ(x) = cβ⟨x⟩−β with β > d + 2, and cβ > 0 is a normalizing constant. We
explain one of the key difficulties of the proof in this simple case. A natural approach would be
to apply Theorem 2.1, but since it works only in bounded sets, we are naturally led to truncate
the source measure ρ, as in the log-concave case handled in Section 2.2. For r ≥ 0, recall that
Br = B(0, r) ⊂ Rd denotes the open Euclidean ball of center 0 and radius r. We denote by ϕµ,r
(resp. ϕν,r) the restriction of ϕµ (resp. ϕν) to Br, and we consider the probability measures

ρr =
ρ|Br

ρ(Br)
, µr = (∇ϕµ,r)#ρr, νr = (∇ϕν,r)#ρr. (6.1)

Finally we set ψµ,r = ϕ∗µ,r and ψν,r = ϕ∗ν,r. Simple arguments similar to (2.21) based on the fact
that ϕµ,r and ϕν,r are RY -Lipschitz imply that for large r,

Varρ(ϕµ − ϕν) ≤ Varρr(ϕµ,r − ϕν,r) + Cd,Yr
d+2−β.

Since Br is a bounded convex domain on which ρ is bounded from above and below, Theorem
2.1 yields

Varρr(ϕµ,r − ϕν,r) ≤ Cd,Y rβ+1⟨ψµ,r − ψν,r|νr − µr⟩. (6.2)

Now we observe that ψµ,r−ψν,r is 2r-Lipschitz (because diam(Br) = 2r) hence using Kantorovich-
Rubinstein duality in the right-hand side of (6.2) we obtain

Varρ(ϕµ − ϕν) ≤ Cd,Y rd+2−β + Cd,Y rβ+2W1(µr, νr). (6.3)
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There remains to find an upper bound for W1(µr, νr) in terms of W1(µ, ν). The best we can
hope for is that for large r,

W1(µr, νr) ≤W1(µ, ν) + CY rd−β

(due to (2.22)). Plugging into (6.3) we see that the remainder term is too large to obtain (1.5),
the method needs to be refined.

However, this strategy tells us that a key point is to be able to establish in Br a variance
inequality like (6.2) with an improved dependence in r. This is precisely what we do in our
proof of Theorem 1.12. It relies on the same basic idea as Theorem 1.7, that of decomposing
X (here, Rd) into convex sets Q ∈ F , and we do this in a way that the ratio MρQ/mρQ of the
maximum density over the minimum density in each convex set Q is bounded above uniformly
in Q ∈ F . Then we apply the variance inequality in each Q, and finally we glue together all
these local variance inequalities to obtain a global one.

To do the gluing, it does not seem possible to adapt the strategy used to prove Theorem 1.7,
namely to apply a Boman chain-type argument in Br (and then letting r → +∞). Therefore,
in the sequel, we follow a different strategy, which is based on the construction and the spectral
analysis of a graph. We construct a decomposition of Rd into convex sets, and each of them is seen
as one vertex of an infinite graph, endowed with a weight corresponding to its mass. The edges
of this graph are given by those pairs of convex sets which intersect, and each edge is endowed
with a weight equal to the mass of the intersection of the two convex sets. Then, the gluing
argument for variance inequalities is obtained through a Cheeger inequality in finite truncations
of the weighted graph that we just described. Using the Cheeger inequality is a robust strategy,
with which it is possible for instance to recover Theorem 1.7 (at least in Lipschitz domains), and
this is why we use it here; we briefly explain in Remark 6.9 an alternative argument to replace
the part of the proof where the Cheeger inequality is used, but which is quite specific to the
power law case considered in Theorem 1.12 and does not seem to generalize well.

6.2. Laplacians in weighted graphs and Cheeger inequality. We gather in this section
general facts regarding Laplacians in infinite weighted graphs and the associated Cheeger in-
equality. Our presentation follows closely [6].

6.2.1. Weighted graphs. Let V be a countable set equipped with the discrete topology. We
assume that V is endowed with a function δ : V → (0,∞) which can be turned into a Radon
measure on V of full support by the formula δ(U) =

∑
i∈U δi for U ⊆ V (we denote by δi the

value of δ at i ∈ V ). Then let w : V × V → [0,∞) be a symmetric function vanishing on the
diagonal and satisfying

∀i ∈ V,
∑
j∈V

wij < +∞

(here an in the sequel, wij = w(i, j)). We denote by E the set of all edges, i.e., the set of all
(i, j) ∈ V × V such that wij > 0. If (i, j) ∈ E, we say that i and j are neighbors. The weighted
graph (V,E, δ, w) is said locally finite if each vertex has only finitely many neighbors.

6.2.2. Graph Laplacians. Denote by Cc(V ) the space of real valued functions on V with finite
support. We set

ℓ2(V, δ) =

{
u : V → R |

∑
i∈V

δiu(i)2 < +∞

}

and endow it with the scalar product ⟨u, v⟩δ =
∑

i∈V δiu(i)v(i) and the norm ∥u∥δ = ⟨u, u⟩1/2δ .
Let the quadratic form Q = Qw with domain D be given by

Q(u) =
1

2

∑
i,j∈V

wij(u(i) − u(j))2, D = Cc(V )
∥·∥Q

,
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where ∥ · ∥Q = (Q(·) + ∥ · ∥2δ)1/2. The form Q defines a regular Dirichlet form on L2(V, δ) (see
[31], [40]). The corresponding positive selfadjoint operator L acts as

Lu(i) =
1

δi

∑
j∈V

wij(u(i) − u(j)) (6.4)

(see [40, Theorem 9]). In the cases that will be considered in this paper, there exists C > 0 such
that

∀i ∈ V, Cδi ≥
∑
j∈V

wij . (6.5)

Therefore, L is a bounded operator. We notice that the function 1 ∈ D equal to 1 on all V is in
the kernel of L. We set

λ2(L) = inf{Q(u) | ∥u∥δ = 1, ⟨u,1⟩δ = 0}.

The Cheeger inequality is a lower bound on λ2(L) in terms of a constant measuring how well
the graph is connected, called the isoperimetric constant of G.

6.2.3. Isoperimetric constant and Cheeger inequality. For U ⊂ V we denote by

vol(U) =
∑
i∈U

δi

its volume and by

|∂U | =
∑

i∈U,j /∈U

wij (6.6)

the size of its boundary. Finally the isoperimetric constant of G is

h = inf
U⊂V

0<vol(U)≤ 1
2

|∂U |
vol(U)

. (6.7)

The following Cheeger inequality will be instrumental.

Proposition 6.1. If (6.5) holds, then λ2(L) ≥ 1
2Ch

2 where C is the constant in (6.5).

For completeness, we provide in Appendix B an elementary proof assuming that V is finite,
which is sufficient for the present paper since we apply Proposition 6.1 only to finite graphs (in
Lemma 6.8). A proof of Proposition 6.1 for infinite graphs may be found in [48, Theorem 3.5].
A more general Cheeger inequality, applying as well to infinite graphs which do not verify (6.5)
has been proved in [6, Theorem 3.1].

6.3. Gluing variance inequalities.

Definition 6.2. Let A,B < +∞. An absolutely continuous probability measure ρ(x)dx on a
bounded set X is said to be of type (A,B) with respect to a finite family (Qi)i∈V of convex sets
such that

spt(ρ) =
⋃
i∈V

Qi (6.8)

if the following properties are verified:

(i) Each Qi intersects at most A other Qj’s.
(ii) For any i ∈ V ,

supx∈Qi
ρ|Qi

(x)

infx∈Qi ρ|Qi
(x)

≤ B. (6.9)

We simply say that ρ is of type (A,B) if it is of type (A,B) with respect to some finite family
(Qi)i∈V satisfying the above conditions.

To any probability measure of type (A,B) it is possible to associate an undirected weighted
graph as follows.
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Definition 6.3 (Weighted graph associated to a measure of type (A,B)). To an absolutely con-
tinuous probability measure ρ of type (A,B) with respect to a finite family (Qi)i∈V we associate
a weighted graph G = (V,E, δ, w) as follows. Its vertices are given by the set V , and each i ∈ V
has weight

δi = ρ(Qi).

The edges E of G are the couples (i, j) for which wij > 0 (and in particular i ̸= j). Each edge
(i, j) is endowed with a weight

wij = ρ(Qi ∩Qj).

The positive graph Laplacian L on D ⊂ ℓ2(V, δ) acts as (6.4). The condition (6.5) is verified
with C := A.

This subsection is devoted to the proof of the following result, which is an analogue of Theorem
2.1 for measures ρ of type (A,B). Our proof follows and improves the strategy of proof of [17,
Proposition B.2]. Recall that the dual Brenier potentials ψµ, ψν have been introduced in (4.1).

Theorem 6.4. Let ρ be an absolutely continuous probability measure on a bounded set X ⊂ Rd
of type (A,B), whose graph Laplacian associated to the decomposition (6.8) is denoted by L.
We assume that λ2(L) > 0. Let Y ⊂ Rd be compact. Then, for any probability measures µ, ν
supported in Y,

Varρ(ϕµ − ϕν) ≤ eRYdiam(X )A2B

(
1 +

2A

λ2(L)

)
⟨ψµ − ψν |ν − µ⟩. (6.10)

Notice that since the set X is bounded, ψµ and ψν are continuous functions in Y. A key step
in the proof is the following lemma, which plays the role of Lemma 3.3 in the present case:

Lemma 6.5. For any i ∈ V , let ρi = 1
ρ(Qi)

ρ|Qi
. Let f : Rd → R be a continuous function. Then

Varρ(f) ≤ A

(
1 +

2A

λ2(L)

)∑
i∈V

δiVarρi(f). (6.11)

Proof of Lemma 6.5. We set S =
∑

j∈V δj . We first show that

Varρ(f) ≤ S
∑
i∈V

δiVarρi(f) +
1

2

∑
i,j∈V

(mi −mj)
2δiδj (6.12)

where mi =
∫
Qi
fdρi. The proof goes as follows:

Varρ(f) =
1

2

∫
Rd×Rd

(f(x) − f(y))2dρ(x)dρ(y)

≤ 1

2

∑
i,j∈V

∫
Qi×Qj

(f(x) − f(y))2dρ(x)dρ(y)

=
1

2

∑
i,j∈V

∫
Qi×Qj

(f(x) −mi +mi −mj +mj − f(y))2dρ(x)dρ(y)

= S
∑
i∈V

∫
Qi

(f(x) −mi)
2dρ(x) +

1

2

∑
i,j∈V

(mi −mj)
2ρ(Qi)ρ(Qj)

which is exactly (6.12).
Let m = (mi)i∈V . We denote the weighted mean of the mi by m̃ = S−1

∑
i∈V δimi. The

computations below show that m − m̃ ∈ ℓ2(V, δ) and Q(m − m̃) < +∞ (of course for this we
need to assume that the right-hand side in (6.11) is finite, which we do in the sequel). Moreover,
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⟨m− m̃,1⟩δ = 0. We compute

1

2

∑
i,j∈V

(mi −mj)
2δiδj = S∥m− m̃∥2δ ≤

S

λ2(L)
⟨m− m̃, L(m− m̃)⟩δ

=
S

2λ2(L)

∑
i,j∈V

wij(mi −mj)
2. (6.13)

For any i ̸= j such that wij > 0, denoting mi∩j = 1
ρ(Qi∩Qj)

∫
Qi∩Qj

fdρ, one has

1

2
(mi −mj)

2 ≤ (mi∩j −mi)
2 + (mi∩j −mj)

2.

For such i, j ∈ V ,

(mi∩j −mi)
2 =

(
1

ρ(Qi ∩Qj)

∫
Qi∩Qj

(f −mi)dρ

)2

≤ 1

ρ(Qi ∩Qj)

∫
Qi∩Qj

(f −mi)
2dρ

≤ 1

ρ(Qi ∩Qj)

∫
Qi

(f −mi)
2dρ =

ρ(Qi)

wij
Varρi(f),

and similarly for (mi∩j −mj)
2, therefore we get

1

2
(mi −mj)

2 ≤ δi
wij

Varρi(f) +
δj
wij

Varρj (f).

Plugging into (6.13) yields

1

2

∑
i,j∈V

(mi −mj)
2δiδj ≤

S

λ2(L)

∑
i∈V

∑
j|Qi∩Qj ̸=∅

(δiVarρi(f) + δjVarρj (f))

≤ 2AS

λ2(L)

∑
i∈V

δiVarρi(f).

All in all and using that S ≤ A, we have proved (6.11). □

Proof of Theorem 6.4. Lemma 6.5 for f = ϕµ − ϕν gives

Varρ(ϕµ − ϕν) ≤ A

(
1 +

2A

λ2(L)

)∑
i∈V

δiVarρi(ϕµ − ϕν). (6.14)

For any i ∈ V , we apply Theorem 2.1 to ρi (supported in Qi) with σ being the normalized
Lebesgue measure on Qi. The functions ψµ and ψν are both continuous in Y. Since ψ∗

µ = ϕµ
and ψ∗

ν = ϕν , we get

Varρi(ϕµ − ϕν) ≤ eRYdiam(X )

(
Mρi

mρi

)
⟨ψµ − ψν |(∇ϕν)#ρi − (∇ϕµ)#ρi⟩ (6.15)

where Mρi and mρi are defined according to (3.16). Finally we observe that∑
i∈V

δi⟨ψµ − ψν |(∇ϕν)#ρi − (∇ϕµ)#ρi⟩ =
∑
i∈V

⟨ψµ − ψν |(∇ϕν)#ρ|Qi
− (∇ϕµ)#ρ|Qi

⟩

≤ A⟨ψµ − ψν |(∇ϕν)#ρ− (∇ϕµ)#ρ⟩.
(6.16)

since the above sum contains only non-negative terms (due to (6.15)) and each point x ∈ X
belongs to at most A sets Qi. Combining (6.9), (6.14), (6.15) and (6.16), we get (6.10). □
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6.4. Estimates for generalized Cauchy distributions. In the present section, assuming
that ρ is of the form

ρ(x) = c(x)⟨x⟩−β, m ≤ c(x) ≤M, (6.17)

we construct a decomposition of Rd into a family (Qi)i∈V of convex sets satisfying Definition 6.2,
and we check all properties that will be needed to apply Theorem 6.4. As already mentioned in
Section 6.1, it will be necessary to consider truncations ρr of ρ in order to apply Theorem 6.4,
and therefore we consider for each r a subfamily of (Qi)i∈V which covers the support of ρr.

6.4.1. Decomposition of Rd and construction of a family of weighted graphs. Let ρ be of the form
(6.17). We construct a locally finite family (Qj)j∈V of subsets of Rd (depending on β, omitted in

the notation), indexed by V = N×{−1, 1}d. We refer the reader to Figure 2 for an illustration.

x1

x2

1 2 4 8

Figure 2. The decomposition of Rd for d = 2. Four domains Q(J,σ) are drawn:
in blue, in green, with a grid and with crosshatches.

We set C0 = B(0, 2) and

CJ = B(0, 2J+1) \B(0, 2J−1) (6.18)

for J ∈ N∗. There holds

Rd =
⋃
J∈N

CJ .

This is not a partition since some of the CJ overlap, but any point in Rd belongs to at most two
of these sets. We consider the 2d orthants

Hσ = {x ∈ Rd | ∀i ∈ [d], σixi ≥ 0}

for σ = (σ1, . . . , σd) ∈ {−1, 1}d. We denote by Conv the convex-hull, and we finally define for
(J, σ) ∈ N∗ × {−1, 1}d

Q(J,σ) = Conv(CJ ∩Hσ) (6.19)

(which is included in the convex set Hσ) and Q(0,σ) = C0 = B(0, 2) for any σ ∈ {−1, 1}d.
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We consider the graph G = (V,E, δ, w) associated to the sets Q(J,σ) as in Definition 6.3. We
could prove various properties of the graph G, for instance that it has a positive spectral gap.
But since we need later to perform a truncation of Rd in order to prove Theorem 1.4 (as explained
in Section 6.1), we instead define a family of truncated graph depending on a parameter r, and
prove properties of this family which are “uniform in r”.

We define this family of truncated graphs (i.e., subgraphs of G) as follows, see Figure 3 for
an illustration. For any r ≥ 1 of the form r = 2n for some n ∈ N∗, Gr = (Vr, Er, δr, wr) is the
restriction of G = (V,E, δ, w) to the set of vertices (J, σ) ∈ V such that Q(J,σ) ⊂ Br. The weights
on the vertices Vr and edges Er are unchanged compared to those on V,E. Due to (6.18) and
(6.19), for any r = 2n,

ρr =
ρ|Br

ρ(Br)
verifies spt(ρr) =

⋃
(J,σ)∈Vr

Q(J,σ).

Q(0,(1,1))

Q(1,(1,1))

Q(2,(1,1))

Q(0,(1,−1))

Q(1,(1,−1))

Q(2,(1,−1))

Figure 3. The graph Gr for r = 23 and d = 2. Only a few labels are written.

6.4.2. Uniform type. In Section 6.5 we apply Theorem 6.4 to ρr for r large enough. For this, we
prove here a uniform upper bound (independent of r) on the constants A,B appearing in the
right-hand side of (6.10):

Lemma 6.6. There exist A,B < +∞ such that for any r = 2n, n ∈ N∗, ρr is of type (A,B)
with respect to (Q(J,σ))(J,σ)∈Vr .

Proof. Let (J, σ) ∈ V and assume J ̸= 0 (for J = 0, the number of intersections with other sets
is automatically bounded and (6.9) may be checked by hand). We observe that

Q(J,σ) ⊂
{
x ∈ Rd |

d∑
i=1

σixi ≥ 2J−1
}
⊂ Rd \B(0, d−1/22J−1)

hence

Q(J,σ) ⊂ B(0, 2J+1) \B(0, d−1/22J−1). (6.20)

If Q(J,σ) and Q(J ′,σ′) intersect for some (J ′, σ′) ∈ V , then due to (6.20), 2J
′+1 ≥ d−1/22J−1 and

2J+1 ≥ d−1/22J
′−1. The number of such J ′ is bounded above by 5 + log2(d), hence the number
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of Q(J ′,σ′) intersecting Q(J,σ) is at most 2d(5 + log2(d)), which is independent of (J, σ) ∈ V and
r. Besides, (6.20) also implies that if x, y ∈ Q(J,σ), then

ρ(x)

ρ(y)
≤ M

m

(d−1/22J−1)−β

2−β(J+1)
≤ M

m
(4
√
d)β

which concludes the proof. □

6.4.3. Uniform lower bound on the isoperimetric constant. We set rn = 2n for n ∈ N∗ and
denote by hrn the isoperimetric constant of Grn (see (6.7)).

Lemma 6.7. There holds lim infn→+∞ hrn > 0.

Proof of Lemma 6.7. For n ∈ N∗, the graph Grn is finite, connected and non-empty. Since Grn
is defined as a subgraph of G with same weights, the volume of a set U ⊂ Vrn is the same as
the volume of U considered as a subset of V , and is equal to vol(U) =

∑
i∈U ρ(Qi). Let n0 ∈ N∗

such that vol(Vrn0
) ≥ 3

4vol(V ). We denote by wmin > 0 the minimum of the weights of edges

between elements of Vrn0
. We consider n ≥ n0. For U ⊂ V we denote by Im(U) its image in Rd,

i.e.,

Im(U) =
⋃
i∈U

Qi.

Let us consider U ⊂ Vrn with 0 < vol(U) ≤ 1
2vol(Vrn). In particular, Vrn0

\ U ̸= ∅. We seek for
a lower bound on |∂U |/vol(U).

If 0 ∈ Im(U), pick (J, σ) ∈ Vrn0
\U . Necessarily there exists 0 ≤ J ′ < J with (J ′, σ) ∈ U and

(J ′ + 1, σ) /∈ U . The edge between the vertices (J ′, σ) and (J ′ + 1, σ) joins U to U c. Its weight
is bounded below by wmin. Since vol(U) is bounded above by vol(V ) which is finite, this proves
that |∂U |/vol(U) is bounded below independently of U (and n ≥ n0) if 0 ∈ Im(U).

Assume now 0 /∈ Im(U). Denote by S the set of σ ∈ {−1, 1}d such that there exists J ∈ N
for which (J, σ) ∈ U . For σ ∈ S, we denote by J(σ) ∈ N∗ the smallest integer J such that
(J, σ) ∈ U . By definition, the edge between (J(σ), σ) and (J(σ) − 1, σ) joins U to U c. We set

rσ = 2J(σ)−1. Due to (6.18) and (6.19),

ρ(Q(J(σ),σ) ∩Q(J(σ)−1,σ)) ≥ Cρmr
d−β
σ .

Hence
|∂U | ≥ Cρ

∑
σ∈S

rd−βσ . (6.21)

To find an upper bound on vol(U) we notice that Im(U) ⊂
⋃
σ∈S Hσ ∩ B(0, rσ)c due to the

definition of J(σ). Since each point in Im(U) belongs to at most A sets Qj , we obtain

vol(U) ≤ AM
∑
σ∈S

∫ +∞

rσ

sd−1−βds ≤ C ′
ρ

∑
σ∈S

rd−βσ . (6.22)

The key fact is that the bounds (6.21) and (6.22) are independent of r. Hence |∂U |/vol(U) is
bounded below independently of U and r. This finishes the proof of Lemma 6.7. □

6.4.4. Uniform spectral gap. It can be proved that λ2(L) > 0 where L is the graph Laplacian (see
Definition 6.3) associated to the graph G introduced in Section 6.4.1, but this is not what we will
need in Section 6.5. Instead, we prove in this section a lower bound on λ2(Lrn) which is uniform
in n, where Lrn is the graph Laplacian associated to the weighted graph (Vrn , Ern , δrn , wrn)
introduced in Section 6.4.1 (and rn = 2n).

Lemma 6.8. There holds lim infn→+∞ λ2(Lrn) > 0.

Proof of Lemma 6.8. Due to Proposition 6.1, there holds λ2(Lrn) ≥ h2rn
2A and A is uniform in n

according to Lemma 6.6. Lemma 6.8 then follows from Lemma 6.7. □

Remark 6.9. It is possible to prove Lemma 6.8 directly using the explicit form of the graphs
and elementary (but fairly long) computations in the one-dimensional branches (see Figure 3).
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6.5. Conclusion of the proof of Theorem 1.12. In the sequel, r = 2n for some large n ∈ N
which is fixed later. We denote by ϕµ,r and ϕν,r the restriction of ϕµ and ϕν to Br (extended by
+∞ outside Br). We set ψµ,r = ϕ∗µ,r and ψν,r = ϕ∗ν,r; then ψ∗

µ,r = ϕµ,r and ψ∗
ν,r = ϕν,r. Recall

also the notation ρr, µr and νr from (6.1). We apply Theorem 6.4 together with Lemma 6.6 and
Lemma 6.8. This gives

Varρr(ϕµ,r − ϕν,r) ≤ Cρ,Yr⟨ψµ,r − ψν,r|νr − µr⟩ (6.23)

where Cρ,Y does not depend on r. The arguments from (2.13) to (2.23) work here too (they do
not rely on any specific property of ρ), and we obtain exactly (2.23), i.e.,

∥ϕµ − ϕν∥2L2(ρ) ≤ Cρ,Y
(
r2W1(µ, ν) + r2m0(r) +m1(r)

2 +m2(r)
)

(6.24)

where the truncated moments m0(r), m1(r), m2(r) are defined in (2.18). Notice that m0(r),
m1(r) and m2(r) are finite due to the assumption that β > d+ 2.

Now recall that ρ(x) = c(x)⟨x⟩−β with β > d+ 1 and 0 < m ≤ c(x) ≤M < +∞. Hence

mℓ(r) ≤ Cρ,ℓr
d+ℓ−β. (6.25)

We plug into (6.24) and we choose r = 2n with n = ⌈−(β − d)−1 log2(W1(µ, ν))⌉ where ⌈x⌉ =
inf{j ∈ N | j ≥ x}. We obtain (1.14). Concerning (1.15) we use Proposition 2.2 for K = Br
(r = 2n with n to be fixed later) and recall that ϕµ, ϕν are RY -Lipschitz. We get

∥Tµ − Tν∥2L2(λ,Br)
≤ Cρr

2(d−1)/3R
4/3
Y ∥ϕµ − ϕν∥2/3L2(λ,Br)

. (6.26)

This is written for the Lebesgue measure λ, but since ρ(x) ≤ M⟨x⟩−β we deduce immediately
that

∥Tµ − Tν∥2L2(ρ,Br)
≤ Cρ,Yr

2(d−1)/3rβ/3∥ϕµ − ϕν∥2/3L2(ρ)
.

Since ∥Tµ∥L∞ ≤ RY and ∥Tν∥L∞ ≤ RY , using (6.25) for ℓ = 0 we get

∥Tµ − Tν∥2L2(ρ) ≤ Cρ,Yr
2(d−1)/3rβ/3∥ϕµ − ϕν∥2/3L2(ρ)

+ Cρ,Yr
d−β.

We optimize over r, i.e, we choose r = 2n with n = ⌈−(2β − 1− d
2)−1 log2(∥ϕµ− ϕν∥L2(ρ))⌉. We

obtain

∥Tµ − Tν∥L2(ρ) ≤ Cρ,Y∥ϕµ − ϕν∥(β−d)/(4β−d−2)
L2(ρ)

.

Combining with (1.14) we get (1.15).

Remark 6.10. The proof strategy developed in this section may be adapted to prove stability

estimates analogous to (1.14) and (1.15) in the case where ρ(x) = c(x)e−κ|x|
−α

for α, κ > 0 and
0 < m ≤ c(x) ≤ M < +∞. The main difference lies in the definition of the cells CJ : instead
of (6.18), we have to define the cells in a way that ρ varies by not more than a multiplicative
factor which is uniform over all cells. This can be made via a radial decomposition similar in
spirit to (6.18). At the same time, in order for each cell to be convex and to intersect only a
bounded number of other cells, an angular decomposition needs to be performed. The details are
rather lengthy and we shall not pursue this here.

Remark 6.11. Our proof technique implies weighted Poincaré inequalities for generalized Cauchy
distributions similar to those established in the paper [8]. Indeed, we know that in each Qj con-
structed in Section 6.4.1, the Poincaré-Wirtinger inequality Varρj (f) ≤ Cj

∫
Qj

|∇f |2dρj holds.

The constant Cj can be taken proportional to diam(Qj)
2. Due to the properties of the decompo-

sition of Rd constructed in Section 6.4.1 this implies

Varρj (f) ≤ C

∫
Qj

|∇f(x)|2⟨x⟩2dρj(x)

with a constant C which is now independent of j (and f). Applying Lemma 6.5 we obtain

Varρ(f) ≤ C

∫
Rd

|∇f(x)|2⟨x⟩2dρ(x),
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which is the sought weighted Poincaré inequality. The results in [8] derive such inequalities with
other methods and address the dependence of C in the parameters β, d.

Remark 6.12. It is worth comparing the two methods used in this work to glue together variance
inequalities. The first one, based on the Boman chain condition, does not seem to generalize
to unbounded supports, see comments in Section 6.1. On the contrary, the method based on
spectral graph theory used in Section 6 could as well be used to prove stability for ρ supported in
a bounded domain X , by constructing the weighted graph associated to the Boman decomposition
of X (with one vertex per cube and one edge per pair of intersecting cubes). However, proving
that the Cheeger constant of this graph is > 0 quickly becomes a pain unless assuming some
stronger regularity on ∂X , for instance that X is a Lipschitz domain. This approach yields no
improvement over Theorem 1.7 but it could be leveraged to find other cases than Theorems 1.10
and 1.11 where stability estimates can be proved even though ρ is not assumed to be bounded
away from 0 and +∞. We leave this for future work.

Let us finally illustrate on a simple example an interesting feature shared by both approaches.
Let us consider a bounded domain X with dumbbell shape, i.e. two dsjoint balls joint by a thin
tube of length 1 and radius ε ≪ 1. We endow X with the Lebesgue measure, normalized to
be a probability measure. Then B in Definition 3.2 is of order ε−1 ≫ 1, and D in (3.7) is
consequently ≳ ε−d. If one now considers the graph associated to the Boman cube decomposition
of X , then one can check that λ2 ≲ εd+1. In both cases we see that the constants in the variance
inequalities (3.19) and (6.10) blow-up as ε → 0. Of course, this is related to the worsening of
the Poincaré constant of X as ε→ 0.

Appendix A. Proof of Lemma 3.4

For x ∈ X we denote by Fx the set of Q ∈ F for which x ∈ Q, and for g ∈ L1(ρ) we set

Mg(x) = sup
Q∈Fx

1

ρ(BQ)

∫
BQ

|g(y)|dρ(y).

We first prove that

∥Mg∥L2(ρ) ≤ 23/2D1/2∥g∥L2(ρ). (A.1)

For this it is sufficient to prove that there exists D > 0 such that

∀α > 0, ρ(Sα) ≤ Dα−1∥g∥L1(ρ) (A.2)

where Sα = {x ∈ X |Mg(x) > α}. Indeed, (A.1) follows immediately from (A.2), together with
the L∞(ρ)-boundedness of M and the Marcinkiewicz interpolation theorem [27, Theorem 9.1 in
Chapter VIII.9].

Let us prove (A.2). For any x ∈ Sα, we pick Qx ∈ Fx such that
∫
BQx

|g(y)|dρ(y) ≥ αρ(BQx).

Using the usual Vitali covering argument, we find a countable subset S′
α ⊂ Sα such that BQx ∩

BQx′ = ∅ for any distinct x, x′ ∈ S′
α, and

Sα ⊂
⋃
x∈S′

α

5B
√
dQx.

Hence, using assumption (3.7), B ≥ 1 and the disjointness of the sets BQx, we obtain

ρ(Sα) ≤ D
∑
x∈S′

α

ρ(Qx) ≤ D
∑
x∈S′

α

ρ(BQx) ≤ α−1D
∑
x∈S′

α

∫
BQx

|g(y)|dρ(y)

≤ α−1D∥g∥L1(ρ)

which concludes the proof of (A.2) and (A.1).
We turn to the proof of Lemma 3.4. Recall that aQ ≥ 0 for any Q ∈ F – this is the only

property of the sequence (aQ)Q∈F that we use below. We first observe that for any y ∈ Q there
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holds Mg(y) ≥ 1
ρ(BQ)

∫
BQ |g(x)|dρ(x). Hence,∣∣∣∫

Rd

∑
Q∈F

aQχBQ(x)g(x)dρ(x)
∣∣∣ ≤ ∑

Q∈F
aQρ(BQ)

1

ρ(BQ)

∫
BQ

|g(x)|dρ(x)

≤
∑
Q∈F

aQ
ρ(BQ)

ρ(Q)

∫
Q
Mg(y)dρ(y)

≤ D
∑
Q∈F

aQ

∫
Q
Mg(y)dρ(y)

= D

∫
Rd

∑
Q∈F

aQχQ(y)Mg(y)dρ(y),

where we used again assumption (3.7) to get the last inequality. Combining with (A.1), we get∣∣∣∫
Rd

∑
Q∈F

aQχBQ(x)g(x)dρ(x)
∣∣∣ ≤ D

∥∥∥∑
Q∈F

aQχQ

∥∥∥
L2(ρ)

∥Mg∥L2(ρ)

≤ (2D)3/2
∥∥∥∑
Q∈F

aQχQ

∥∥∥
L2(ρ)

∥g∥L2(ρ)

which concludes the proof, by duality.

Appendix B. Proof of Proposition 6.1 (Cheeger inequality)

For the proof of Proposition 6.1, we keep the notation introduced in Section 6.2. We adapt
the proof of [21, Theorem 2.2]. For u ∈ ℓ2(V, δ) we set

R(u) =
Q(u)

∥u∥2δ
. (B.1)

Let ε > 0 and let u : V → R such that R(u) ≤ λ2(L) + ε and ⟨u,1⟩δ = 0. Up to relabelling the
vertices we may assume that

u(1) ≥ . . . ≥ u(n)

where n = |V |. For k ∈ [n] let Sk = {1, . . . , k} and define

αG = min
k∈[n]

|∂Sk|
min(vol(Sk), vol(V \ Sk))

.

Let r ∈ [n] denote the largest integer such that vol(Sr) ≤ vol(G)/2. Since
∑

i∈[n] δiu(i) = 0,∑
i∈[n]

δiu(i)2 = min
c∈R

∑
i∈[n]

δi(u(i) − c)2 ≤
∑
i∈[n]

δi(u(i) − u(r))2

We define the positive part and the negative part of u(i) − u(r), denoted by u+(i) and u−(i)
respectively, as follows:

u+(i) =

{
u(i) − u(r) if u(i) ≥ u(r)

0 otherwise
u−(i) =

{
|u(i) − u(r)| if u(i) ≤ u(r)

0 otherwise

There holds

R(u) =

∑
i,j wij(u(i) − u(j))2∑

i δiu(i)2

≥
∑

i,j wij(u(i) − u(j))2∑
i δi(u(i) − u(r))2

≥
∑

i,j wij
(
(u+(i) − u+(j))2 + (u−(i) − u−(j))2

)∑
i δi(u+(i)2 + u−(i)2)

.
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Without loss of generality we have R(u+) ≤ R(u−) and therefore λ2(L) + ε ≥ R(u+) since
a+c
b+d ≥ min(ac ,

b
d) (if we assume λ2(L) + ε ≥ R(u−) instead, the subsequent computations can be

carried out in the same way). Then we have

λ2(L) + ε ≥ R(u+) =

∑
i,j wij(u+(i) − u+(j))2∑

i δiu+(i)2
· 1

=

∑
i,j wij(u+(i) − u+(j))2∑

i δiu+(i)2
·
∑

i,j wij(u+(i) + u+(j))2∑
i,j wij(u+(i) + u+(j))2

(B.2)

≥

(∑
i,j wij |u+(i)2 − u+(j)2|

)2
2C (

∑
i δiu+(i)2)2

(see explanations below) (B.3)

=

(∑
i(u+(i)2 − u+(i+ 1)2)|∂Si|

)2
2C (

∑
i δiu+(i)2)2

(B.4)

where in the last line |∂S| =
∑

k∈S,ℓ/∈S wkℓ. To go from (B.2) to (B.3) we use Cauchy-Schwarz

for the numerator; for the denominator we use (6.5). To go from (B.3) to (B.4) we see that
in the numerator of (B.3) each edge i ∼ j contributes wij |u+(i) − u+(j)|2 to the sum, while
in the numerator of (B.4), each edge i ∼ j (with for instance j > i) is in the boundary of

∂Si′ for i′ = i, . . . , j − 1 and thus contributes wij
∑j−1

i′=i u+(i)2 − u+(i + 1)2 which is exactly

wij |u+(i) − u+(j)|2.
We continue our computations: we set vol′(S) = min(vol(S), vol(G) − vol(S)), we have

λ2(L) + ε ≥
(∑

i(u+(i)2 − u+(i+ 1)2)αGvol′(Si)
)2

2C (
∑

i δiu+(i)2)2
(B.5)

=
α2
G

2C

(∑
i u+(i)2(vol′(Si) − vol′(Si−1))

)2
(
∑

i δiu+(i)2)2

=
α2
G

2C

where (B.5) follows from (B.4) and the definition of αG, and in the last line we used the fact that
vol(Sr) ≤ vol(G)/2. This being true for any ε > 0, we obtain λ2(L) ≥ α2

G/2C, which concludes
the proof since αG ≥ h.
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Mathematical Society 2.1 (1978): 81-93.

[3] Dominique Bakry, Ivan Gentil, and Michel Ledoux. Analysis and geometry of Markov diffusion operators. Vol.
103. Cham: Springer, 2014.

[4] Mohit Bansil, and Jun Kitagawa. “Quantitative stability in the geometry of semi-discrete optimal transport.”
International Mathematics Research Notices 2022.10 (2022): 7354-7389.

[5] Saurav Basu, Soheil Kolouri, and Gustavo K. Rohde. “Detecting and visualizing cell phenotype differences from
microscopy images using transport-based morphometry.” Proceedings of the National Academy of Sciences
111.9 (2014): 3448-3453.

[6] Frank Bauer, Matthias Keller, and Rados law K. Wojciechowski. “Cheeger inequalities for unbounded graph
Laplacians.” Journal of the European Mathematical Society 17.2 (2015): 259-271.

[7] Robert J. Berman. “Convergence rates for discretized Monge–Ampère equations and quantitative stability of
optimal transport.” Foundations of Computational Mathematics 21.4 (2021): 1099-1140.

[8] Sergey G. Bobkov, and Michel Ledoux. “Weighted Poincaré-type inequalities for Cauchy and other convex
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[55] Wei Wang, Dejan Slepčev, Saurav Basu, John A. Ozolek, and Gustavo K. Rohde. “A linear optimal trans-

portation framework for quantifying and visualizing variations in sets of images.” International journal of
computer vision 101 (2013): 254-269.
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