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A B S T R A C T

In recent times, the safety of infrastructure systems has been challenged by the increasing severity of extreme
weather events caused by the effects of climate change . This trend is expected to continue, as shown by the
simulations of future climate conditions under high-emission scenarios. The paper presents a general stochastic
process, known as the Linear Extension of the Yule Process (LEYP), to model the non-stationary frequency
and intensity of extremes. The LEYP model overcomes a major limitation of the classical Poisson process by
including the statistical dependence among extreme events.

The paper presents a probabilistic framework for non-stationary structural reliability analysis, which
includes new results for the return period, waiting time for the next event, correlation coefficient, and the
distribution of the maximum load in a given time interval. The examples provided in the paper demonstrate
that even a modest degree of dependence can significantly reduce the interval between events and increase
the probability of failure with time. Furthermore, the paper illustrates the non-stationary modelling of future
precipitation data, as simulated by the Canadian Earth Systems Model (CanESM5). The results of this study
are expected to be useful for revising current "stationary" design codes and ensuring structural safety in the
changing climate.
1. Introduction

1.1. Background

The increase in greenhouse gas emissions is contributing to climate
change, as seen by long-term shifts in the temperature and weather
patterns across the globe. These changes are leading to the increased
frequency and intensity of extreme weather events, such as heat waves,
droughts, precipitation, and wildfires in many parts of the world.
The increasing severity of weather extremes is challenging the safety
of existing infrastructure and increasing the repair cost of damaged
systems. Therefore, the prediction of weather extremes has become
an emerging area of research to ensure the structural safety in the
changing climate.

Global Climate Models (GCMs) have become important tools for
investigating the impact of different emission scenarios on the future
climate. The GCM is essentially a complex mathematical representation
of major components of the atmosphere, land surface, ocean, and sea
ice systems and interactions among them.

Future climate data simulated by GCMs are increasingly used in
predicting the trends in extreme weather events. Kharin and Zwiers

∗ Corresponding author.
E-mail address: mdpandey@uwaterloo.ca (M.D. Pandey).

[1] pioneered the statistical analysis of simulated climate extremes
under different scenarios of anthropogenic forcing. The non-stationary
GEV/Gumbel distribution was used to model extremes of temperature
and precipitation, and the annual maxima method was used to estimate
the time-dependent distribution parameters [2]. In the climate litera-
ture, this method has become a standard approach for detecting and
modelling trends in future extremes [3]. The non-stationary Gumbel
distribution was used in the structural reliability analysis under chang-
ing climate [4,5]. The effect of climate change on the tsunami hazard
was investigated by Alhamid et al. [6].

The GEV/Gumbel distribution provides a high-level approach to
incorporate the overall effect of non-stationary changes in extreme
values generated by an environmental process. However, it cannot at-
tribute the overall change to the frequency and intensity of the process.
Suppose, for example, that the GEV model predicts an overall increase
of 𝑥% in the 95th percentile of the annual maximum precipitation.
However, it cannot separate the individual contributions made by the
changes in frequency and intensity to this overall change. Furthermore,
the GEV model does not allow to evaluate non-stationary changes in the
distributions of inter-arrival times of extreme events. Such limitations
https://doi.org/10.1016/j.strusafe.2024.102569
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of the GEV approach can be overcome through a more formal modelling
of extreme events as a stochastic process, such as the non-homogeneous
Poisson process (NHPP) proposed by Pandey and Lounis [7].

A main drawbacks of the non-stationary GEV and NHPP models
is the assumption of ‘‘independence’’. The NHPP model assumes that
he distributions of the number of events in any two disjoint intervals

are independent. Similarly, the GEV model assumes that the annual
maximum distribution for a given year is independent of all other years.
However, the assumption of independence might be tenuous in the
changing climate, since a gradual buildup of greenhouse gases over
time can introduce the dependence among extreme events. Natural
phenomena such as El Niño and La Niña are known to introduce
short-term dependence among various weather events. To address this
limitation, the paper proposes a more general model based on the non-
homogeneous birth process, which can model non-stationary frequency,
similar to the NHPP, and also includes the dependence on the history
of the process [8].

1.2. Research objectives

The main objective of this paper is to develop a general stochastic
rocess model that can explicitly consider non-stationary changes in the
requency and intensity of extreme events, as well as statistical depen-
ence among them. The Linear Extension of the Yule Process (LEYP)
s selected for modelling purposes. Another objective is to illustrate the
tatistical estimation of non-stationary effects using future precipitation
ata simulated by the Canadian Earth System Model (CanESM5).

The proposed LEYP model leads to a precise, finite-time solution
for the extreme value distribution, which is an important input for
structural reliability analysis. This model also shows that traditional
concepts, such as the return period, are no longer applicable in the non-
stationary climate, highlighting the need for revising existing codes and
standards.

1.3. Organization

The next Section introduces the basic terminology of the stochastic
point process, and Section 3 presents probabilistic properties of the
proposed LEYP model. In Section 4, analytical solutions are presented
for the return period, defined as the average inter-arrival time, and
the mean waiting time for the next event. The distribution of LEYP
extremes and its application to reliability analysis are presented in
Section 5. For a homogeneous birth process, closed-form analytical
esults are presented in Section 6 for the 𝑛th return period, correlation

coefficient, and maximum value distribution. These results serve as
reference solutions for parametric studies and verification of numerical
esults. Additionally, two sets of numerical examples are presented in
ection 7 for the homogeneous and non-homogeneous forms of the

birth process. Section 8 presents a practical example of modelling
of heavy precipitation events using the future climate data (2020–
2100). The conclusions of this study are summarized in the final
Section. Appendices A to C include mathematical derivations of several
nalytical results presented in the paper.

2. Stochastic point process

2.1. Definitions

A sequence of events arriving randomly over time can be modelled
s a point process in which arrival times are represented by an increas-

ing sequence of positive random variables, 𝑆0(= 0) < 𝑆1 < 𝑆2 < ⋯,
see Fig. 1). A counting process, 𝑁(𝑡), is associated with this sequence,

which denotes the number of events occurred in an interval (0, 𝑡] .
A point process can be specified using the Conditional Intensity (CI)

unction, 𝜆 (⋅), which represents the rate of occurrence of an event at
𝐶

2 
Fig. 1. A point process model of random arrivals of events.

time 𝑡, conditioned on the history of the process over the interval, [0, 𝑡).
It is formally defined as [9, p.232],

𝜆𝐶 (𝑡)d𝑡 ≈ E [d𝑁(𝑡)|(𝑡−)] (1)

where (𝑡−) denotes the history, i.e., the number of events, 𝑁(𝑡−),
occurred up to just before time 𝑡.

This paper considers a specific form of the birth point processes with
he CI function,

𝜆𝐶 (𝑡) = ℎ(𝑁(𝑡−)) 𝜆(𝑡) (2)

which includes two distinct components:

1. A stochastic function, ℎ(𝑁(𝑡−)), which depends on the history of
the process, and

2. A time-dependent rate function, 𝜆(𝑡).

Such a processes is also known as the self-exiting process, since its
stochastic intensity at time 𝑡 depends on the number of events occurred
up to time 𝑡−.

The probability of occurrence of an event in an infinitesimal inter-
val, (𝑡, 𝑡 + d𝑡], can be written in terms of the CI function as [10],

P [𝑁(𝑡 + d𝑡) −𝑁(𝑡) = 1|𝑁(𝑡−) = 𝑛] = 𝜆𝐶
(

𝑡|𝑁(𝑡−) = 𝑛
)

+ 𝑜(d𝑡)

= ℎ(𝑛)𝜆(𝑡) + 𝑜(d𝑡), (d𝑡 → 0+)

Here, 𝑜(d𝑡) denotes the terms of the order of d𝑡. Using this relation, a
differential equation for 𝑃𝑛(𝑡) = P [𝑁(𝑡) = 𝑛] can be derived as

𝑃 ′
𝑛(𝑡) = −ℎ(𝑛)𝜆(𝑡)𝑃𝑛(𝑡) + ℎ(𝑛 − 1)𝜆(𝑡)𝑃𝑛−1(𝑡) (𝑛 ⩾ 1) (3)

with 𝑃 ′
0(𝑡) = −ℎ(0)𝜆(𝑡) for 𝑛 = 0. This differential equation can

be analytically solved for some specific forms of the CI function, as
discussed next.

2.1.1. Poisson process
When the conditional intensity is independent of the history, i.e., 𝜆𝐶

𝑡
)

= 𝜆(𝑡), it leads to a well known Non-Homogeneous Poisson Process
NHPP) with an explicit solution of Eq. (3):

𝑃𝑛(𝑡) =
(𝛬(𝑡))𝑛

𝑛!
𝑒−𝛬(𝑡), (0 ⩽ 𝑛 <∞) (4)

where 𝛬(𝑡) is known as the mean value function, i.e., 𝛬(𝑡) = E [𝑁(𝑡)] =
∫ 𝑡0 𝜆(𝑥)d𝑥. A process with a constant rate, 𝜆(𝑡) = 𝜆, is known as the
homogeneous Poisson process (HPP).

The ‘‘independence’’ is the most important property of this process,
mplying that the number of events in non-overlapping intervals are
ndependent Poisson random variables. Although the independence
roperty leads to significant simplifications in the analysis, it does not
llow the NHPP to model a sequence of dependent events, which is a
ajor limitation the NHPP model.

2.1.2. Pólya and Yule processes, and extensions
Some simple forms of the history function, ℎ(⋅), in Eq. (2) lead to

analytical solutions of Eq. (3). For example, ℎ(𝑛) = 𝑛 leads to the
classical Yule process [10].

A process with a linear function, ℎ(𝑛) = 𝑎𝑛 + 𝑏, is referred to as the
eneralized Pólya process (GPP) [11]. Le Gat [12] refers the GPP with
 fixed parameter, 𝑏 = 1, as the ‘‘Linear Extension of the Yule Process’’
LEYP).

Badía et al. [8] analysed more general forms of the history function,
such as ℎ(𝑛) = (𝑎 + 𝑛)𝜌1 and ℎ(𝑛) = 𝜌𝑛2 for 𝜌1 ∈ R and 𝜌2 > 0. Such
processes are referred as the ‘‘Extended Pólya Process’’ (EPP).
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Since the conditional intensity of the LEYP depends on its history,
he number of events in any two disjoint intervals are no longer
ndependent. In this manner, the LEYP model overcomes the main
imitation of the Poisson process.

2.2. Negative binomial distribution

Konno [13] presented an analytical solution of Eq. (3) for an LEYP
and proved that 𝑁(𝑡) follows the negative binomial (NB) distribution
with the following probability mass function (PMF):

𝑃𝑛(𝑡) =
𝛤 (𝛼 + 𝑛)

𝛤 (𝑛 + 1)𝛤 (𝛼) (𝛽)
𝛼 (1 − 𝛽)𝑛 (𝑛 ⩾ 0) (5)

Here, 𝛼 ⩾ 0 and 𝛽 ⩾ 0, are the distribution parameters, and 𝛤 (⋅) denotes
the gamma function. Note that 𝛤 (𝑛+ 1) = 𝑛! for an integer 𝑛. For the sake
of brevity, this distribution is denoted as  (𝛼 , 𝛽) in the subsequent
discussions.

Applying a normalizing constraint, ∑∞
𝑛=0 𝑃𝑛(𝑡) = 1, in conjunction

ith Eq. (5) leads to a useful relation:
∞

𝑛=0

𝛤 (𝛼 + 𝑛)
𝛤 (𝑛 + 1)𝛤 (𝛼) (1 − 𝛽)

𝑛 = (𝛽)−𝛼 (6)

The mean (𝜇𝑁 ), mean square (𝜇2𝑁 ), and variance (𝜎2𝑁 ) of this
distribution are given as [14]:

𝜇𝑁 = 𝛼
1 − 𝛽
𝛽

, 𝜇2𝑁 = 𝜇𝑁

(

1
𝛽
+ 𝜇𝑁

)

, and 𝜎2𝑁 =
𝜇𝑁
𝛽

(7)

3. LEYP: Probabilistic properties

This Section summarizes basic probabilistic properties of the non-
omogeneous LEYP, which will be required to derive expressions for
he inter-arrival time and the maximum load distribution. This process
s defined by a linear history function, ℎ(𝑛) = 𝑎𝑛+𝑏, and a positive time-
ependent rate function, 𝜆(𝑡). The stochastic CI function is therefore
iven as,

𝜆𝐶 (𝑛, 𝑡) = ℎ(𝑛)𝜆(𝑡) = (𝑎𝑛 + 𝑏)𝜆(𝑡), (𝑎 ≥ 0, 𝑏 > 0) (8)

Note that the statistical identifiability of the parameters of ℎ(𝑛) can be
nsured by fixing 𝑏 = 1, as discussed by Badía et al. [8]. The LEYP is
quivalent to the NHPP when 𝑎 = 0.

For the sake of brevity, the time interval associated with a variable
is specified by its subscript. For example, 𝑁𝑡 denotes the number of
events in an interval, (0, 𝑡] , and 𝑁𝑠𝑡 the number of events in (𝑠, 𝑡]with
 < 𝑡.

3.1. Number of events

The marginal distribution of the number of events in (0, 𝑡] follows
 (𝛼 , 𝛽𝑡) [13]:

P
[

𝑁𝑡 = 𝑛
]

=
𝛤 (𝛼 + 𝑛)

𝛤 (𝑛 + 1)𝛤 (𝛼)
(

𝛽𝑡
)𝛼 (1 − 𝛽𝑡

)𝑛 (9)

where the distribution parameters are defined as

𝛼 = 𝑏
𝑎
, 𝛽𝑡 = 𝑒−𝑎𝛬(𝑡), and 𝛬(𝑡) = ∫

𝑡

0
𝜆(𝑢)d𝑢, (𝛼 > 0, 𝜆(𝑡) ⩾ 0) (10)

It can be shown that 𝛽𝑡 is bounded between 0 and 1 as follows. As
𝑡 → ∞, 𝛬(𝑡) → ∞, such that 𝛽𝑡 → 0. Similarly, 𝑡 → 0 leads to 𝛬(𝑡) → 0
nd 𝛽𝑡 → 1. The bounded nature of 𝛽𝑡 ensures the numerical stability of
omputational algorithms. The mean and standard deviation of 𝑁𝑡 are
btained using Eq. (7) as

𝜇𝑡 = 𝛼
(

1
𝛽𝑡

− 1
)

, 𝜎𝑡 =
√

𝜇𝑡
𝛽𝑡

(11)

The ‘‘restarting property’’ of the LEYP is highly useful in deriving
various analytical results presented in this paper. Let 𝑁(𝑡) be an LEYP
 e

3 
with parameters, (𝜆(𝑡), 𝑎, 𝑏). At an arbitrary time, 𝑠 and given the
istory, 𝑁(𝑠−) = 𝑘, the conditional future process, 𝑁(𝑠 + 𝑡), 𝑡 ⩾ 0, is
lso an LEYP with parameters, (𝜆(𝑠 + 𝑡), 𝑎, 𝑏 + 𝑎𝑘) [12].

The restarting property implies that the increment, 𝑁 (𝑠, 𝑡) = 𝑁(𝑡) −
𝑁(𝑠), conditioned on 𝑁(𝑠) = 𝑘, 0 < 𝑠 < 𝑡, follows the distribution,

 (𝛼 + 𝑘, 𝛽𝑠𝑡),
P
[

𝑁𝑠𝑡 = 𝑛|𝑁𝑠 = 𝑘
]

=
𝛤 (𝛼 + 𝑘 + 𝑛)

𝛤 (𝑛 + 1)𝛤 (𝛼 + 𝑘)
(

𝛽𝑠𝑡
)𝛼+𝑘 (1 − 𝛽𝑠𝑡

)𝑛 (12)

where

𝛽𝑠𝑡 = 𝑒−𝑎𝛬(𝑠,𝑡) and 𝛬(𝑠, 𝑡) = ∫

𝑡

𝑠
𝜆(𝑢)d𝑢 = 𝛬(𝑡) − 𝛬(𝑠), such t hat

𝑠𝑡 =
𝛽𝑡
𝛽𝑠
, (𝑠 ⩽ 𝑡).

Thus, the marginal distribution of 𝑁𝑠𝑡 can be derived using the total
robability theorem as

P
[

𝑁𝑠𝑡 = 𝑛
]

=
∞
∑

𝑘=0
P
[

𝑁𝑠𝑡 = 𝑛, 𝑁𝑠 = 𝑘
]

=
∞
∑

𝑘=0
P
[

𝑁𝑠𝑡 = 𝑛|𝑁𝑠 = 𝑘
]

P
[

𝑁𝑠 = 𝑘
]

(13)

Substituting from Eqs. (9) and (12) and using the property of the NB
eries given by Eq. (6) leads to the following result:

P
[

𝑁𝑠𝑡 = 𝑛
]

=
𝛤 (𝛼 + 𝑛)

𝛤 (𝑛 + 1)𝛤 (𝛼)
(𝛽∗𝑠𝑡)

𝛼 (1 − 𝛽∗𝑠𝑡)𝑛 (14)

This distribution is  (𝛼 , 𝛽∗𝑠𝑡) with

𝛽∗𝑠𝑡 =
𝛽𝑡

1 + 𝛽𝑡 − 𝛽𝑠𝑡
, or 1

𝛽∗𝑠𝑡
= 1 + 1

𝛽𝑡
− 1
𝛽𝑠

(15)

The parameter 𝛽∗𝑠𝑡 is also bounded between 0 and 1, as 𝑡 → ∞ and 𝑡 → 0,
respectively.

Using Eqs. (7) and (15), the expected number of events in (𝑠, 𝑡] can
be given as

E
[

𝑁𝑠𝑡
]

= 𝜇𝑠𝑡 = 𝛼
1 − 𝛽∗𝑠𝑡
𝛽∗𝑠𝑡

= 𝛼
1 − 𝛽𝑠𝑡
𝛽𝑡

, (𝑠 ⩽ 𝑡)

or
𝜇𝑠𝑡
𝛼

= 1
𝛽𝑡

− 1
𝛽𝑠

(16)

The variance of 𝑁𝑠𝑡 is given by

VAR[𝑁𝑠𝑡] = 𝜎2𝑠𝑡 =
𝜇𝑠𝑡
𝛽∗𝑠𝑡

(17)

3.2. Correlation coefficient: A measure of dependence

In an LEYP, the number of events in the two adjacent intervals,
𝑡1, 𝑡2] and (𝑡2, 𝑡3] with 0 ≤ 𝑡1 < 𝑡2 < 𝑡3, are statistically dependent.
he degree of dependence can be quantified in terms of the coefficient
f correlation, as discussed here.

For the sake of brevity, the number of events in an interval,
𝑡𝑖, 𝑡𝑗 ], 𝑡𝑖 < 𝑡𝑗 , is denoted as 𝑁𝑖𝑗 . Similarly, 𝜇𝑖𝑗 and 𝜎𝑖𝑗 denote the mean
nd standard deviation of 𝑁𝑖𝑗 , which can be computed using Eqs. (16)

and (17), respectively.
The correlation coefficient between 𝑁12 and 𝑁23 is defined in the

usual manner as

𝜌[𝑁12, 𝑁23] =
COV

[

𝑁12, 𝑁23
]

𝜎12 𝜎23
(18)

where COV [⋅, ⋅] denotes the covariance between the variables inside the
bracket. Based on the derivation presented in Appendix A, the following
oncise expression is derived:
[

𝜌
(

𝑁12, 𝑁23
)]2 =

(

𝜇12
𝛼 + 𝜇12

) (
𝜇23

𝛼 + 𝜇23

)

= (1 − 𝛽∗12)(1 − 𝛽∗23) (19)

Sensitivity of the correlation coefficient to the LEYP parameters is
xplored through numerical examples presented in Section 7.
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4. Analysis of inter-arrival times

4.1. Definitions

In general, the return period can be defined as the mean of the inter-
rrival time (𝑇𝑛) between any two consecutive events [7]. In Fig. 1,

the 𝑛th inter-arrival time is defined as, 𝑇𝑛 = 𝑆𝑛 − 𝑆𝑛−1 for 𝑛 ≥ 1 and
0 = 0, i.e., the time for the 𝑛th event to occur after the (𝑛− 1)th event.
herefore, E

[

𝑇𝑛
]

denotes the 𝑛th mean inter-arrival time, which can
lso be referred to as the 𝑛th return period.

In the HPP, all inter-arrival times are independent and identically
distributed exponential random variables with a constant mean. This
results in a single value of the return period, i.e., E

[

𝑇𝑛
]

= (1∕𝜆)
for all 𝑛 ⩾ 1. Since the HPP is commonly used to model stationary
environmental loads, the return period has become a convenient way
to define design values in the existing codes. However, this is not the
case for a non-stationary process.

Since it is not feasible to keep track of the number of events occurred
n the past, the 𝑛th return period is not practical to use in the non-
tationary climate. Instead, the concept of mean waiting time for the
ext event is more useful. At any time 𝑡, the waiting time, 𝑊 (𝑡), is the
ime to occurrence of the next event regardless of the history of the
rocess, as shown in Fig. 2.

Analytical expressions for the mean inter-arrival and mean waiting
time are presented in the following subsections.

4.2. Marginal distribution of the arrival time, 𝑆𝑛

Using the fact that the events [𝑆𝑛 > 𝑡] and [𝑁(𝑡) < 𝑛] are equivalent,
he marginal distribution of 𝑆𝑛 can be written as,

P
[

𝑆𝑛 > 𝑡] = 𝐹𝑆𝑛 (𝑡) =
𝑛−1
∑

𝑘=0
P [𝑁(𝑡) = 𝑘] (20)

Based on the derivation presented in Appendix B.1, it can be written in
terms of the incomplete beta function ratio as

𝐹𝑆𝑛 (𝑡) = 𝐼𝛽𝑡 (𝛼 , 𝑛) =
𝐵𝛽𝑡 (𝛼 , 𝑛)
𝐵(𝛼 , 𝑛) (21)

where 𝐵(𝛼 , 𝑛) denotes the complete Beta function defined as

𝐵(𝛼 , 𝑛) = ∫

1

0
𝑥𝛼−1(1 − 𝑥)𝑛−1d𝑥 =

𝛤 (𝛼)𝛤 (𝑛)
𝛤 (𝛼 + 𝑛)

(22)

Similarly, 𝐵𝛽𝑡 (𝛼 , 𝑛) denotes an incomplete beta function given as

𝐵𝛽𝑡 (𝛼 , 𝑛) = ∫

𝛽𝑡

0
𝑥𝛼−1(1 − 𝑥)𝑛−1d𝑥 (23)

Based on the derivation presented in Appendix B.2, the probability
ensity function (PDF) of 𝑆𝑛 can be written as

𝑓𝑆𝑛 (𝑡) =
𝑎𝜆(𝑡)
𝐵 (𝛼 , 𝑛) (𝛽𝑡)

𝛼(1 − 𝛽𝑡)𝑛−1 (24)

4.3. Distribution of the inter-arrival time, 𝑇𝑛

The event [𝑇𝑛 > 𝑢] is equivalent to the event that no event occurs
n the interval, (𝑆𝑛−1, 𝑆𝑛−1 + 𝑢]. Thus,

P
[

𝑇𝑛 > 𝑢] = 𝐹 𝑇𝑛 (𝑢) = P
[

𝑁(𝑆𝑛−1, 𝑆𝑛−1 + 𝑢) = 0]

= ∫

∞

0
P
[

𝑁(𝑠, 𝑠 + 𝑢) = 0|𝑆𝑛−1 = 𝑠
]

𝑓𝑆𝑛−1 (𝑠)d𝑠 (25)

The case of 𝑛 = 1, i.e., the time of first arrival, is a special case for
hich

𝐹 𝑇1 (𝑢) = P
[

𝑁(𝑆0, 𝑆0 + 𝑢) = 0] (26)

Since 𝑆0 = 0, this probability can be directly obtained from Eq. (9) as
[ ] 𝛼
𝐹 𝑇1 (𝑢) = P 𝑁𝑢 = 0 = (𝛽𝑢) (27) a

4 
Fig. 2. Definition of the waiting time to the next event at time 𝑡.

Fig. 3. The LEYP process of time-dependent loads.

For 𝑛 ≥ 2, the conditional probability term inside the integration in
Eq. (25) can be simplified by noting that events, [𝑆𝑛−1 = 𝑠] ≡ [𝑁(0, 𝑠) =
− 1], i.e.,

P
[

𝑁(𝑠, 𝑠 + 𝑢) = 0|𝑆𝑛−1 = 𝑠
]

= P [𝑁(𝑠, 𝑠 + 𝑢) = 0|𝑁(0, 𝑠) = 𝑛 − 1]
Using the restarting property of the LEYP, Eq. (12), it can be concluded
that

P [𝑁(𝑠, 𝑠 + 𝑢) = 0|𝑁(0, 𝑠) = 𝑛 − 1] = (𝛽𝑠,𝑠+𝑢)𝛼+𝑛−1 (28)

Substituting this result and the expression for 𝑓𝑆𝑛−1 (𝑠) from Eq. (24)
into Eq. (25) leads to
𝐹 𝑇𝑛 (𝑢) =

𝑎
𝐵 (𝛼 , 𝑛 − 1) ∫

∞

0
(𝛽𝑠,𝑠+𝑢)𝛼+𝑛−1𝜆(𝑠) (𝛽𝑠)𝛼(1 − 𝛽𝑠)𝑛−2d𝑠 (29)

Noting that (𝛽𝑠,𝑠+𝑢)𝛼(𝛽𝑠)𝛼 = (𝛽𝑠+𝑢)𝛼 , the terms inside the integral can be
implified to
𝐹 𝑇𝑛 (𝑢) =

𝑎
𝐵 (𝛼 , 𝑛 − 1) ∫

∞

0
(𝛽𝑠+𝑢)𝛼(𝛽𝑠,𝑠+𝑢)𝑛−1(1 − 𝛽𝑠)𝑛−2𝜆(𝑠) d𝑠 (30)

The expected value of the 𝑛th inter-arrival time, also referred to the
th return period, can be computed by integrating the complementary

CDF as,

E
[

𝑇𝑛
]

= ∫

∞

0
𝐹 𝑇𝑛 (𝑢)d𝑢 (31)

4.4. Waiting time for the next event

At a given time, 𝑡, the waiting time, 𝑊 (𝑡), for the occurrence of the
ext event is defined as, 𝑊 (𝑡) = 𝑆𝑁(𝑡)+1 − 𝑡, as shown in Fig. 2. The
istribution of 𝑊 (𝑡) can be obtained from the equivalence:

P [𝑊 (𝑡) > 𝑤] = 𝐹𝑊 (𝑤; 𝑡) = P [𝑁(𝑡, 𝑡 +𝑤) = 0]
The probability term in the RHS can be evaluated from the marginal
distribution of 𝑁(𝑠, 𝑡) given by Eq. (14) with 𝑛 = 0, which leads to
𝐹𝑊 (𝑤; 𝑡) = (𝛽∗𝑡,𝑡+𝑤)𝛼 =

(

𝛽𝑡+𝑤
1 + 𝛽𝑡+𝑤 − 𝛽𝑡,𝑡+𝑤

)𝛼
(32)

The mean waiting time can then be computed by integrating the
omplementary CDF function, as given by Eq. (31).

5. Distribution of maximum load and reliability analysis

5.1. Proposed non-stationary model

In Fig. 3, the LEYP shock process is presented as the model of
 sequence of loads occurring over the service life of a structure.
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The non-homogeneous LEYP with the conditional intensity function,
𝐶 (𝑛, 𝑡) = ℎ(𝑛)𝜆(𝑡), and time-dependent loads incorporates the following
on-stationary effects of climate change:

(1) Frequency: The frequency of loading events is modelled through
the time-dependent rate, 𝜆(𝑡), which captures the non-stationary
changes in the frequency of loading events.

(2) Dependence: The history function, ℎ(𝑛) = (𝑎𝑛 + 𝑏), models the
statistical dependence among the loading events, which can be
quantified by the time-dependent correlation coefficient given
by Eq. (19).

(3) Intensity: The non-stationary intensity is modelled by expressing
the load magnitude, 𝑋𝑐 𝑘(𝑆𝑘), as a time-dependent function,

𝑋𝑐 𝑘(𝑠𝑘) = 𝜙1(𝑠𝑘) + 𝜙2(𝑠𝑘)𝑋𝑘 , (𝑘 = 1, 2,…) (33)

It is important to note that the load depends on its time of
arrival (𝑆𝐾 = 𝑠𝑘) to account for the prevailing conditions, such
as temperature and concentration of greenhouse gases in the
atmosphere.
Here, 𝜙1(𝑠𝑘) and 𝜙2(𝑠𝑘) are real positive (at least for 𝜙2) additive
and multiplicative functions of time, respectively, which can
take any general form. Further, 𝑋𝑖’s are i.i.d. random variables
with a common CDF, 𝐹𝑋 (𝑥), and independent of the arrival
process. By choosing different forms of 𝜙1(𝑠𝑘) and 𝜙2(𝑠𝑘), a wide
variety of time-dependent loads can be modelled.

The CDF of the time-dependent load can be written as

P
[

𝑋𝑐 𝑘(𝑠) ⩽ 𝑥
]

= P
[

𝜙1(𝑠) + 𝜙2(𝑠)𝑋𝑘 ⩽ 𝑥
]

= 𝐹𝑋
(

𝜓(𝑥, 𝑠))

wher e 𝜓(𝑥, 𝑠) = 𝑥 − 𝜙1(𝑠)
𝜙2(𝑠)

(34)

The distribution of maximum load, 𝑋𝑚𝑎𝑥(𝑡1, 𝑡2), generated by the
LEYP shock process over a specified time interval, (𝑡1, 𝑡2] , is a key input
o the structural reliability assessment. It is defined as [7]:

𝐹𝑚𝑎𝑥(𝑥, 𝑡1, 𝑡2) =
{

P
[

𝑋𝑐 𝑁1+1(𝑆𝑁1+1) ⩽ 𝑥,… , 𝑋𝑐 𝑁2
(𝑆𝑁2

) ⩽ 𝑥
]

, if 𝑁12 ⩾ 1,
0 if 𝑁12 = 0

(35)

where 𝑁𝑖 = 𝑁(𝑡𝑖), 𝑖 = 1, 2 and 𝑁12 = 𝑁2 −𝑁1. Based on the derivation
given in Appendix C, the final expression for this distribution is given
as

𝐹𝑚𝑎𝑥(𝑥, 𝑡1, 𝑡2) =
[

1 + 𝜇12
𝛼

− 𝑎𝑞∗(𝑥, 𝑡1, 𝑡2)
]−𝛼 (36)

where

𝑞∗(𝑥, 𝑡1, 𝑡2) = ∫

𝑡2

𝑡1

𝜆(𝑠)
𝛽𝑠

𝐹𝑋 (𝜓(𝑥, 𝑠))d𝑠

wit h 𝜓(𝑥, 𝑠) = 𝑥 − 𝜙1(𝑠)
𝜙2(𝑠)

, 𝛽𝑠 = 𝑒−𝑎𝛬(𝑠), and 𝛬(𝑠) = ∫

𝑠

0
𝜆(𝑢) d𝑢 (37)

5.2. Reliability analysis

The time-dependent probability of failure in an interval, (𝑡1, 𝑡2] , can
be defined as 𝑃𝑓 (𝑡1, 𝑡2) = P

[

𝑅 −𝑋𝑚𝑎𝑥(𝑡1, 𝑡2) ⩽ 0
]

, where 𝑅 denotes the
strength of a structural component [7]. It can be evaluated as,

𝑃𝑓 (𝑡1, 𝑡2) = ∫

∞

0
𝐹𝑚𝑎𝑥(𝑥, 𝑡1, 𝑡2)𝑓𝑅(𝑥)d𝑥 (38)

The Monte Carlo integration method is used in the computation. A
ample of strength values, 𝑥1,… , 𝑥𝑛, is simulated from the distribution,
𝑅(𝑥). For a given 𝑥𝑖, 𝐹𝑚𝑎𝑥(𝑥𝑖, 𝑡1, 𝑡2) is computed using Eq. (36). Finally,
he failure probability is estimated as

𝑃𝑓 (𝑡1, 𝑡2) ≈ 1
𝑛

𝑛
∑

𝑖=1
𝐹𝑚𝑎𝑥(𝑥𝑖, 𝑡1, 𝑡2) (39)

Other efficient algorithms can be developed for solving more com-
plex reliability problems, such the importance sampling method.
5 
6. Analytical solutions

In the previous Sections, general expressions have been derived for
several variables, such as the return period or mean inter-arrival time,
orrelation coefficient, and maximum load distribution. For a non-
omogeneous LEYP, these expressions involve complex time integrals,
hich can be solved only by numerical integration. Therefore, it is
esirable to have closed-form analytical results for these quantities to
ain an intuitive understanding of the impact of different model param-
ters. With this motivation, several analytical results are presented for
 homogeneous birth process (HBP) with a constant rate, 𝜆(𝑡) = 𝜆, such
hat 𝛬(𝑡) = 𝜆 𝑡, and 𝛽𝑡 = 𝑒−𝑎𝜆𝑡.

6.1. 𝑛th inter-arrival time

For the HBP, inter-arrival times are independent but non-identical
exponential random variables. To prove this result, the following sub-
titutions are made in the complementary CDF (CCDF) of the 𝑛th
nter-arrival time defined by Eq. (29),

𝛽𝑠 = 𝑒−𝑎𝜆𝑠, 𝛽𝑢 = 𝑒−𝑎𝜆𝑢, 𝛽𝑠+𝑢 = 𝑒−𝑎𝜆(𝑠+𝑢) = 𝛽𝑠𝛽𝑢, and 𝛽𝑠,𝑠+𝑢 =
𝛽𝑠+𝑢
𝛽𝑠

= 𝛽𝑢,

(40)

which leads to
𝐹 𝑇𝑛 (𝑢) =

𝑎(𝛽𝑢)𝛼+𝑛−1

𝐵 (𝛼 , 𝑛 − 1) ∫
∞

0

(

𝛽𝑠
)𝛼(1 − 𝛽𝑠)𝑛−2𝜆d𝑠 (41)

Recognizing that d𝛽𝑠 = −𝑎𝜆𝛽𝑠d𝑠, the above integral term can be
transformed in terms of 𝛽𝑠 as

∫

∞

0

(

𝛽𝑠
)𝛼(1 − 𝛽𝑠)𝑛−2 d𝑠 = 1

𝑎𝜆 ∫

1

0
𝛽𝛼−1𝑠 (1 − 𝛽𝑠)𝑛−2 d𝛽𝑠 = 1

𝑎𝜆
𝐵(𝛼 , 𝑛 − 1)

Substituting this result in Eq. (41) leads to the following result,

𝐹 𝑇𝑛 (𝑢) = (𝛽𝑢)𝛼+𝑛−1 = 𝑒−𝑎𝜆(𝛼+𝑛−1)𝑢 (42)

This is the CCDF of an exponential distribution with parameter, 𝜆𝑛 =
𝑎𝜆(𝛼+𝑛− 1). Therefore, the mean of an 𝑛th-inter arrival time (or return
period) of this distribution is equivalent to

E
[

𝑇𝑛
]

= 1
𝜆𝑛

= 1
𝑎𝜆(𝛼 + 𝑛 − 1) =

E
[

𝑇𝑠
]

𝑎(𝛼 + 𝑛 − 1) , (𝑛 ⩾ 1) (43)

where, E
[

𝑇𝑠
]

= 1∕𝜆, is the constant return period in the HPP represent-
ing a stationary climate process. It is clear from this expression that
ll mean inter-arrival times are unequal and they will decrease with
ncreasing 𝑛.

6.2. Mean waiting time

The mean waiting time can be evaluated using Eq. (32) as

E [𝑊 (𝑡)] = ∫

∞

0
𝐹𝑊 (𝑤; 𝑡) d𝑤 = ∫

∞

0

(

𝛽𝑡+𝑤
1 + 𝛽𝑡+𝑤 − 𝛽𝑡,𝑡+𝑤

)𝛼
d𝑤 (44)

Using relations given by Eq. (40), the above equation can be rewritten
as

E [𝑊 (𝑡)] = (𝛽𝑡)𝛼 ∫
∞

0

( 𝛽𝑤
1 + (𝛽𝑡 − 1)𝛽𝑤

)𝛼 d𝑤 (45)

For an integer value of 𝛼, this integral can be solved by substituting
𝑥 = 𝛽𝑤 = 𝑒−𝑎𝜆𝑤 and d𝑥 = −𝑎𝜆𝛽𝑤d𝑤, which lead to
E [𝑊 (𝑡)] =

(𝛽𝑡)𝛼

𝑎𝜆 ∫

1

0

𝑥𝛼−1
(

1 + (𝛽𝑡 − 1)𝑥)𝛼
d𝑥 (46)

A solution of this form of integral can be written as [15, p.69, formula
2.111(3)]:

𝑥𝑚−1 d𝑥 = −𝑥𝑚−1 + 1 𝑥𝑚−2 d𝑥 (47)
∫ (𝑐1 + 𝑐2𝑥)𝑚 𝑐2(𝑚 − 1)(𝑐1 + 𝑐2𝑥)𝑚−1 𝑐2 ∫ (𝑐1 + 𝑐2𝑥)𝑚−1
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Using this solution, an explicit result is obtained for 𝛼 = 2 as

E [𝑊 (𝑡)] =
(

−𝑡(𝛽𝑡)2

(𝛽𝑡 − 1)2 −
𝛽𝑡

𝑎𝜆(𝛽𝑡 − 1)
)

(48)

Results for other integer values 𝛼 can be similarly derived.

6.3. Correlation coefficient

The correlation coefficient given by Eq. (19) can be analytically
valuated for the HBP.

Consider the correlation between the number of events in two
adjacent intervals, 𝑡 ± 𝛿, i.e., 𝑡1 = 𝑡 − 𝛿 , 𝑡2 = 𝑡, and 𝑡3 = 𝑡 + 𝛿 , 𝛿 > 0.
ince in this case, 𝛽12 = 𝛽23 = 𝑒−𝑎𝜆𝛿 , the term, 𝛽∗12, in Eq. (19) can be
valuated as

𝛽∗12 =
𝑒−𝑎𝜆𝑡

1 + 𝑒−𝑎𝜆𝑡 − 𝑒−𝑎𝜆𝛿
Using this relation, an explicit expression for the correlation coefficient
is obtained as
[

𝜌
(

𝑁12, 𝑁23
)]2 = 1 − 𝑒−𝑎𝜆𝛿

1 + 𝑒−𝑎𝜆𝑡 − 𝑒−𝑎𝜆𝛿 × 1 − 𝑒−𝑎𝜆𝛿
1 + 𝑒−𝑎𝜆(𝑡+𝛿) − 𝑒−𝑎𝜆𝛿 (49)

It is interesting to note that the correlation coefficient depends on
oth the length of the interval, 𝛿, and its location, 𝑡, in time.

Since 𝑎 = 0 for the HPP, Eq. (49) would lead to 𝜌 (𝑁12, 𝑁23
)

= 0, in
accordance with the independence property of the Poisson process.

6.4. Maximum load distribution

An analytical result for the maximum load distribution, given by
q. (36), can be derived assuming that the load magnitude is indepen-
ent of time, i.e., 𝜙1(𝑠𝑘) = 0 and 𝜙2(𝑠𝑘) = 1, such that 𝑋𝑐 𝑘(𝑠𝑘) = 𝑋𝑘
nd 𝜓(𝑥, 𝑠) = 𝑥. Using these results and Eq. (16) for 𝜇12∕𝛼, the integral
erm, 𝑞∗(𝑥, 𝑡1, 𝑡2), can be rewritten as

𝑞∗(𝑥, 𝑡1, 𝑡2) = ∫

𝑡2

𝑡1
𝜆𝑒−𝑎𝜆𝑠𝐹𝑋 (𝑥)d𝑠 = 𝜆𝐹𝑋 (𝑥)

1
𝑎𝜆

(

1
𝛽2

− 1
𝛽1

)

= 1
𝑎
𝐹𝑋 (𝑥)

𝜇12
𝛼

(50)

Substituting this result in Eq. (36) leads to the following simple expres-
sion:

𝐹𝑚𝑎𝑥(𝑥, 𝑡1, 𝑡2) =
[

1 + 𝜇12
𝛼

(

1 − 𝐹𝑋 (𝑥)
)]−𝛼 (51)

A 𝑝th percentile of the maximum load can be computed by inverting
the above CDF as,

𝑥𝑝(𝑡1, 𝑡2) = 𝐹−1
𝑋

[

1 − 𝛼
𝜇12

(

1
𝑝1∕𝛼

− 1
)]

(52)

When 𝛼 → ∞, a limiting case corresponding to the homogeneous
oisson process is obtained as

𝐹𝑚𝑎𝑥(𝑥, 𝑡1, 𝑡2) → exp
(

−𝜇12
(

1 − 𝐹𝑋 (𝑥)
))

, (𝛼 → ∞) (53)

where 𝜇12 = 𝜆𝑏(𝑡2 − 𝑡1) with a fixed value of 𝑏, e.g., 𝑏 = 1.

7. Illustrative examples

7.1. Homogeneous birth process (HBP)

Using the analytical results derived in Section 6, the effect of
ependence is investigated on the probabilistic properties of the HBP.
n numerical calculation, the following values are chosen: 𝜆 = 0.02
er year corresponding to a 50-year return period in the HPP model
hich represents a reference case of the stationary climate. For a fixed
, the correlation coefficient depends only on 𝑎 and is independent of
, as shown by Eq. (49). Therefore, the parameter 𝑏 is fixed as 𝑏 = 1
ithout the loss of generality. The parameter, 𝑎, also referred to as the
 i

6 
Fig. 4. The decadal correlation coefficient between the number of events (HBP).

Fig. 5. The trend in the first six return periods (HBP).

Yule scale parameter, is primarily varied to examine its effect on the
correlation coefficient, waiting time, and reliability index.

The decadal correlation coefficient, 𝜌
[

𝑁𝑡−10, 𝑁𝑡+10
]

is calculated as
a function of 𝑡 using Eq. (49). The three values of 𝑎 are chosen as
0.25, 0.5, and 1 in order to cover a wide range of the correlation
oefficient. Results presented in Fig. 4 show two interesting trends.
irst, the correlation coefficient increases continuously as 𝑡 is increased
rom 10 to 80 years. Second, the rate and the magnitude of this increase
re controlled by 𝑎.

The first six mean inter-arrival times (or return periods) are cal-
ulated using Eq. (43) and plotted in Fig. 5. Note that the mean of

the 𝑛thinter-arrival time is defined as, E
[

𝑇𝑛
]

= E
[

𝑆𝑛 − 𝑆𝑛−1
]

, 𝑛 ≥
, 𝑆0 = 0. The mean inter-arrival time decreases rapidly as the number

of occurrences, 𝑛, increases. For example, for 𝑎 = 0.5, the third return
eriod reduces to half (≈ 25 years) of that in the stationary climate
=50 years). It is also evident that the magnitude of this decrease is
ighly sensitive to the Yule scale parameter (𝑎).

The mean waiting time for the next event is calculated as a function
of time using Eq. (46) and plotted in Fig. 6. For 𝑎 = 0.5, it decreases
rom 50 to 30 years over an 80-year period indicating an increase in
he frequency of events. The mean waiting time also decreases with
ncreasing dependence, as reflected by increasing values of 𝑎.
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Fig. 6. The mean waiting time for the next event (HBP).

Fig. 7. Increase in the expected number of events, E
[

𝑁𝑡
]

, over time (HBP).

The expected value of the cumulative number of events in (0, 𝑡] are
computed as 𝜇𝑡 = (1∕𝑎)(𝑒𝑎𝜆𝑡 − 1) and compared with the expected
umber of events in the stationary climate (= 𝜆𝑡). Fig. 7 plots the

percentage increases in the expected number of events in the HBP as
ompared to that in the HPP model in the same period, calculated as
𝜇𝑡 − 𝜆𝑡)∕𝜆𝑡. It is clear that the expected number of events increases
apidly with an increase in the value of 𝑎. The increasing number of

events is a reason for a decreasing trend in the inter-arrival time.

Figs. 5–7, illustrate that even a modest change in the correlation
coefficient has a significant impact on probabilistic properties of the
HBP. For example, when 𝑎 = 0.5, the correlation coefficient increases
modestly from 0.1 to 0.2 as 𝑡 increases from 10 to 80 years. Over this
eriod, the mean number of events increases by over 40% as shown by

Fig. 7. In case of 𝑎 = 1, as the correlation increases from 0.2 to 0.5,
the mean number of events increases almost by 150%, and the mean
waiting time decreases from 50 years to 20 years, as shown by Fig. 6.

Further, the effect of 𝑎 on the maximum load generated by the
BP is examined by assuming that the load magnitude (𝑋) follows an
xponential distribution with a mean, 𝜇𝑋 = 1 unit, and the loading
ccurs at a rate of 𝜆 = 0.1 events per year. Fig. 8 shows an increase in

the 95th percentile of the maximum load with time for different values
of 𝑎. For a comparison, results are also plotted for the HPP with the
same 𝜆 and 𝑋. It is clear that dependence between the number of events
7 
Fig. 8. The 95th percentile of the maximum load vs. time (HBP).

Fig. 9. The 50-year reliability index vs. the Yule scale parameter (HBP).

in the HBP would lead to higher extreme loads as compared to the HPP.
The higher the correlation coefficient, as implied by increasing values
of 𝑎, the higher is the load magnitude. For example for 𝑎 = 1, the 95th
oad percentile almost doubles in 50 years as compared to that of the
PP.

To evaluate the effect of dependence on reliability, consider a base
case of the HPP load process as used before (𝜆 = 0.1 event/year and
𝑋 ∼ 𝐸 𝑥𝑝(1). The structural strength of a component (𝑅) is assumed
to be normally distributed with a COV of 0.10. The mean strength was
determined as, 𝜇𝑅 = 8.55, corresponding to a 50-year reliability index of
3, or the probability of failure, 𝑃𝑓 (50) = 1.35 × 10−3, under the stationary
climate.

Since the percentile function of the maximum load distribution is
iven in an explicit form by Eq. (52), the First-Order Reliability Method

(FORM) was used to compute the reliability index. Results plotted in
Fig. 9 show that the 50-year reliability index, as expected, decreases
with increasing values of 𝑎.

In summary, results presented in this section demonstrate that the
statistical dependence alone has a profound effect on the mean number
of events, return/waiting period, extreme percentiles, and the probabil-
ity of failure. This effect is scaled up by the Yule scale parameter (𝑎)
by increasing the correlation coefficient between the number of events.
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Fig. 10. Expected number of events in the LEYP load model (𝑎 = 0.5).

These effects will be further amplified in cases where the rate (= 𝜆(𝑡))
is non-stationary.

7.2. Non-homogeneous LEYP

This Section illustrates the effect of a non-stationary load process
on the probability of failure of a structural component. Recall that
the conditional intensity of the non-homogeneous LEYP is given as
𝜆𝐶 (𝑛, 𝑡) = ℎ(𝑛)𝜆(𝑡). In the present example, the occurrence rate of events
s assumed to increase linearly from 𝜆𝑜 to 𝑘𝐹 𝜆𝑜 over the time horizon
f 𝑡𝑒 years:

𝜆(𝑡) = 𝜆𝑜

(

1 + (𝑘𝐹 − 1) 𝑡
𝑡𝑒

)

(54)

The parameters of the LEYP’s conditional intensity represent the fol-
lowing three stochastic effects associated with the load arrival process:
5

1. Pure stationary effect represented by a constant base rate, 𝜆𝑜.
2. Temporal effect of the non-stationary climate represented by

𝜆(𝑡), as given by Eq. (54).
3. Dependence effect represented by ℎ(𝑛) = (𝑎 𝑛 + 1), given by

Eq. (8).

Similarly, a linearly increasing function is chosen to model the load
agnitude occurring at time 𝑠𝑘 as,

𝑋𝑐 𝑘(𝑠𝑘) = 𝜙2(𝑠𝑘)𝑋𝑘 =
(

1 + (𝑘𝐿 − 1) 𝑠𝑘
𝑡𝑒

)

𝑋𝑘, (𝑘 = 1, 2,…) (55)

A linear variation is assumed in both the occurrence rate and the
load magnitude for the sake of simplicity. An advantage of the linear
function is that only one factor is required (𝑘𝐿 or 𝑘𝐹 ) to model the non-
stationary effect. Note that the amplification factors, 𝑘𝐹 and 𝑘𝐿, denote
the order of magnitude of increases in the loading frequency and mag-
nitude, respectively, over their stationary values. Thus, these factors
provide a quick and simple way to estimate the order of increase in
he probability of failure under some bounding cases of non-stationary
hanges. For example, if the climate change causes the loading fre-
uency to double over the next 80 years, what will be the order of
ncrease in 𝑃𝑓 . Such scenarios are illustrated next through examples.
he following parameters are fixed in all the examples presented here,
𝑜 = 0.1 events/year, and the time horizon, 𝑡𝑒 = 50 years (from 2050 to
100).

The expected number of events over a 50 year period were com-
uted for 𝑎 = 0.5, which represents a modest increase in correlation
8 
Fig. 11. Effect of non-stationary frequency on the probability of failure (𝑎 = 0.5, 𝑘𝐿 = 1).

Fig. 12. Effect of non-stationary load intensity on the probability of failure (𝑎 =
0.5, 𝑘𝐹 = 1.5).

coefficient (0.1–0.2). Results are plotted in Fig. 10 for three different
values of the frequency amplification factor, 𝑘𝐹 = 1, 1.5 and 2. Results
show that a non-stationary increase in the rate leads to a significant
increase in the expected number of events, especially in the latter part
of the time horizon.

The impact of the non-stationary rate on the probability of failure
is presented in Fig. 11. The load and strength data for this example
are the same as those used in computing results shown in Fig. 9. The
cumulative probability of failure, 𝑃𝑓 (𝑡) in a interval, (0, 𝑡]was computed
using 250,000 simulations in Eq. (39). Fig. 11 shows that the increase in
𝑘𝐹 further amplifies the increase in 𝑃𝑓 (𝑡) in a more modest manner than
the increase in the expected number of events, as shown by Fig. 10.

In addition to the non-stationary frequency (with 𝑘𝐹 = 1.5), a time-
ependent increase in the load magnitude would further increase the
robability of failure, as shown by Fig. 12. For example, a 20% increase
n the load (𝑘𝐿 = 1.2) over 50 years leads to a significant increase in
he probability of failure.

In summary, the dependence effect of the LEYP is further amplified
y the non-stationary increases in the frequency and magnitude of load

events, which causes a marked increase in the probability of failure
over time. A non-stationary increase in the load magnitude has a more
pronounced effect on 𝑃𝑓 than a comparable increase in the frequency
of loading events.
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Fig. 13. Heavy daily-precipitation events in the future climate (CanESM5 model, 2020–
2100).

8. Practical example: Extreme precipitation in the future climate

8.1. Data

The current generation of climate models provides a comprehensive
representation of various atmospheric systems and processes affecting
the climate. These models have played a crucial role in studying the
effects of different emission scenarios on future climate conditions, in-
cluding temperature and precipitation [3]. This Section presents a prac-
tical example of statistical fitting of the LEYP model to the precipitation
ata simulated under a high-emission scenario.

Heavy rainfall events vary significantly from region to region in
terms of amounts, spatial and temporal scales, occurrence rates, and
easonality. Atmospheric processes, such as synoptic, convective, and
ropical cyclones/hurricanes, are typically linked to extreme rainfall
vents [16]. Given a time series of simulated precipitation data, it

is challenging to determine which specific process is generating the
data in a given time interval. Therefore, this analysis adopts a simple
approach in which the events with total daily (24-hour) precipitation
(rain and snow) exceeding 35 mm are separated and treated as being
generated by a stochastic process that is distinct from the day-to-
day precipitation of small amounts. This straightforward approach is
considered reasonable for illustrating the statistical fitting of the LEYP
parameters.

The analysis considers the future daily precipitation data (2020–
100) simulated by the Canadian Earth System Model version 5
CanESM5.0.3), which is also a part of the phase 6 of the Cou-
led Model Intercomparison Project (CMIP6) [17]. The dataset was
ownloaded from https://climatedata.ca for a grid box of 6 × 10 k m2

ize (0.0833◦ latitude × 0.0833◦ longitude) in the city of Toronto
(43.6532◦N, 79.3832◦W), Ontario, Canada. The dataset corresponds to
the Shared Socioeconomic Pathway, SSP5-8.5 (Fossil-fuelled develop-
ment) in which the mean global temperature is expected to increase
by 4.4 ◦C by the end of the 21st century. The heavy precipitation data,
133 events over 80 years, are plotted in Fig. 13. These events are taken
t least 10 days apart to ensure that multiple extremes from a single
torm event are not included in the analysis.

8.2. Statistical analysis and results

The frequency of precipitation events is assumed to follow the linear
function given by Eqs. (54). Using the maximum likelihood method, as
described by Badía et al. [8], the model parameters were estimated as
𝜆 = 0.91 events/year, 𝑘 = 1.55, and 𝑎 = 0.00734.
𝑜 𝐹 r

9 
Fig. 14. Impact of different effects included in the LEYP intensity function (CanESM5
data, 2020–2100).

The three stochastic effects included in the frequency function, as
discussed below Eq. (54), are illustrated by Fig. 14, which includes
a plot of the mean (cumulative) number of events versus the arrival
time. A constant base rate of 𝜆𝑜 = 0.91 implies that 73 events are
xpected to occur over an 80-year period under stationary conditions.
he factor, 𝑘𝐹 = 1.55, implies an overall 55% increase in the frequency
ver 80 years, leading to the expected number of 92 events over this
eriod. This is referred to as the ‘‘temporal effect’’ of non-stationary
limate. The dependence effect, represented by 𝑎 = 0.00734, is rela-
ively small. To quantify its impact, the decadal correlation coefficient,
[

𝑁𝑡−10, 𝑁𝑡+10
]

, was computed using Eq. (19). Between 2020–30 and
2030–40 decades, the correlation coefficient was computed as 0.07,
which increased to 0.16 for the last two decades of the time horizon
(2060–70 and 2070–80). Even this modest correlation has a discernible
effect, as shown by an increase in the expected number of events to 132
from 92 over 80 years. Finally, Fig. 14 confirms that the LEYP model
including all the three effects provides a high degree of goodness-of-fit
to precipitation data.

The precipitation amount was modelled as an exponential random
variable with a linear increase given by Eq. (55) as,

P
[

𝑋𝑐 (𝑠) < 𝑥] = 1 − exp
(

−𝜆𝑋 (𝑥 − 𝑥0)
𝜙2(𝑠)

)

(56)

where 𝑥0 = 35 mm and 𝜙2(𝑠) = 1 + (𝑘𝐿 − 1)𝑠∕80. Using the maximum
likelihood method, the model parameters were estimated as 𝜆𝑋 =
0.0767/mm and 𝑘𝐿 = 1.009. Since 𝑘𝐿 ≈ 1, the precipitation magnitude
s modelled as a time-invariant random variable.

Intense short-term precipitation events can cause flash flooding and
amage to various infrastructure systems. Suppose the design of a water
nfrastructure system requires the 95th percentile of the maximum
recipitation over a 50-year service life (2050–2100). Using Eq. (36),
his value is estimated as 134 mm.

To determine a comparable value in the stationary climate, an
additional analysis of climate data simulated for a preindustrial period
(e.g., 1950–1980), is required [3]. This task is however beyond the
cope of the current study.

8.3. Remarks

Some aspects of the example of precipitation data analysis are
iscussed as follows.

The previous precipitation example is based on a single dataset
aken from a large repository of climate data, which may not fully
epresent the qualitative and quantitative effects of climate change.

https://climatedata.ca
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For instance, a low correlation coefficient in this data does not nec-
ssarily imply that the dependence effect is completely absent from
on-stationary climate conditions.

An evaluation of the climate change effect in a specific region
equires a more comprehensive analysis. Typically, data generated by
everal climate models (more than 20 models) are analysed, and the

results are averaged over multiple grid boxes to minimize the effect
of internal variability [3]. Finally, the multi-model average or median
alue is used to assess the overall impact of the climate change. To
enchmark changes in the future precipitation with reference to the
tationary climate, a similar detailed analysis data simulated for a
reindustrial period, such as 1950–1980, is required [3]. Such detailed

statistical analyses are beyond the scope of this paper.
To conclude, the present example is only an illustration of the

statistical fitting of the LEYP model. An additional utility of this model
is that it provides a more scientific basis to evaluate the degree of
dependence in any given climate dataset.

9. Conclusions

The climate change effects are responsible for the increasing fre-
quency and intensity of weather extremes in recent times. Simulations
of climate conditions under high emission scenarios also confirm the
intensification of weather extremes in the future. To ensure the safety
of existing and to-be-built infrastructure systems under the changing
limate, the probabilistic modelling of climate extremes is emerging as
n important area of research.

The paper presents a general stochastic process model to incorporate
the non-stationary nature of extreme weather events at the three levels:
requency of occurrence of events, intensity or magnitude of events,
nd statistical dependence among them. The paper proposes a class of

non-stationary birth processes, namely, the Linear Extension of the Yule
Process (LEYP), for this purpose. Although the mathematical details of
this model have been discussed in the literature, the paper presents
several new results to support the time-dependent reliability analysis
of infrastructure systems, such as

• Derivation of the correlation coefficient between the number of
events in two adjacent time intervals as a measure of dependence
in the LEYP model.

• Accurate formulae for computing the 𝑛th return period, or the
mean inter-arrival time between the (𝑛 − 1) and 𝑛th events.

• Evaluation of the mean waiting time for the next event, which
is a more appropriate measure for structural design under non-
stationary conditions.

• Derivation of the probability distribution of the maximum value
generated by an LEYP in a given time interval. In contrast with
traditional methods of annual maxima and Peaks-over-Threshold,
the proposed approach does not invoke any asymptotic argument.

• In the case of the homogeneous birth process (HBP), the deriva-
tion of explicit formulae for the correlation coefficient, 𝑛th return
period, and maximum value distribution.

• An exposition of the reliability analysis under non-stationary load
processes.

The paper presents several numerical examples including both the
omogeneous and non-homogeneous LEYP. Unlike in a stationary cli-
ate, the mean inter-arrival time between events varies in the changing

limate. These examples illustrate that increasing dependence has a
ignificant impact on the mean inter-arrival time and waiting time
or the next event. Even a modest degree of dependence among the
vents results in a considerable decrease in both of these quantities.
he mean waiting time for the next event is proposed as a more
ractical measure for designing future infrastructure systems, since
t does not rely on the process history. The statistical fitting of the
10 
LEYP model is demonstrated using a precipitation dataset simulated by
he Canadian Earth Systems Model (CanESM5) under a high-emission
cenario (SSP5-8.5).

The LEYP model overcomes a major limitation of the classical
oisson process by including the statistical dependence among extreme

events. The correlation coefficient between the number of events in two
adjacent intervals also increases with time, and the rate of increase
is controlled by the Yule scale parameter (𝑎). The upper tail of the
extreme load distribution increases, and as a result, the probability of
failure increases with the increasing degree of dependence. This effect
is further amplified by non-stationary increases in the frequency and
intensity of load events. Therefore, ignoring the dependence among
extreme events can result in a significant underestimation of the prob-
ability of failure, which will have an adverse impact on the safety of
infrastructure systems in the changing climate.

In the current literature, the non-stationary generalized extreme
value (GEV) distribution is utilized as a high-level approach to model
the annual maxima data. This model cannot account for the dependence
effect, and is unable to account for individual changes in the fre-
quency and intensity of the process. In contrast, the proposed approach
explicitly models all non-stationary effects (frequency, intensity, and
dependence) as basic components of the LEYP model, which are then
aggregated into the distribution of maximum value. In this regard,
the paper introduces a more structured approach to the probabilistic
modelling of extremes in the changing climate.
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Appendix A. Derivation of the correlation coefficient

A.1. Approach

The statistical correlation coefficient between 𝑁12 and 𝑁23 is de-
ined as

𝜌[𝑁12, 𝑁23] =
COV

[

𝑁12, 𝑁23
]

𝜎12 𝜎23
(A.1)

The covariance function in the numerator has the standard definition:

COV
[

𝑁12, 𝑁23
]

= E
[

(𝑁12 − 𝜇12)(𝑁23 − 𝜇23)
]

= E
[

𝑁12𝑁23
]

− 𝜇12 𝜇23
(A.2)

Thus, the main task is to obtain an expression for the product moment,
E
[

𝑁12𝑁23
]

, which is derived in Appendix A.2, and the final result is as
follows:

E
[

𝑁12𝑁23
]

= 𝛼 + 1
𝛼

𝜇12𝜇23 (A.3)

Substituting this relation in Eq. (A.2) leads to
[ ] 1
COV 𝑁12, 𝑁23 =

𝛼
𝜇12𝜇23 (A.4)
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Recall that the variance is given by Eq. (17) as, 𝜎2𝑠𝑡 = 𝜇𝑠𝑡∕𝛽∗𝑠𝑡, and
q. (16) gives 𝛽∗𝑠𝑡 as

𝛽∗𝑠𝑡 =
𝛼

𝜇𝑠𝑡 + 𝛼

Therefore, the variance can be expressed in terms of the mean value
nd 𝛼 as

𝜎2𝑠𝑡 =
1
𝛼
𝜇𝑠𝑡(𝛼 + 𝜇𝑠𝑡)

Substituting relations for the covariance and variance in Eq. (A.1)
eads to the following expression:
(

𝜌[𝑁12, 𝑁23]
)2 =

𝜇12
𝛼 + 𝜇12

𝜇23
𝛼 + 𝜇23

(A.5)

Using Eq. (16), this relation can also be written in terms of 𝛽∗𝑠𝑡 as
(

𝜌[𝑁12, 𝑁23]
)2 = (1 − 𝛽∗12) (1 − 𝛽∗23) (A.6)

This relation shows that the correlation coefficient does not depend on
the parameter 𝑏 of the LEYP.

A.2. Derivation of the product moment, E [

𝑁12𝑁23
]

The product moment of the number of events in the two consec-
utive time intervals is derived using a fundamental property of the
expectation,

E
[

𝑁12𝑁23
]

= E𝑁12

[

E
[

𝑁12𝑁23|𝑁12
]]

(A.7)

this can be simplified as

E
[

𝑁12𝑁23
]

=
∞
∑

𝑚=0
𝑚E

[

𝑁23|𝑁12 = 𝑚
]

P
[

𝑁12 = 𝑚
]

(A.8)

The conditional expectation, E
[

𝑁23|𝑁12 = 𝑚
]

, is derived in the next
Appendix A.3. Substituting the final expression given by Eq. (A.14) in
he above equation leads to

E
[

𝑁12𝑁23
]

=
𝜇23
𝛼
𝛽∗12

∞
∑

𝑚=0
𝑚(𝛼 + 𝑚)P

[

𝑁12 = 𝑚
]

=
𝜇23
𝛼
𝛽∗12

(

∞
∑

𝑚=0
𝛼 𝑚P [

𝑁12 = 𝑚
]

+
∞
∑

𝑚=0
𝑚2P

[

𝑁12 = 𝑚
])

=
𝜇23
𝛼
𝛽∗12

(

𝛼E
[

𝑁12
]

+ E
[

𝑁2
12
])

(A.9)

Since 𝑁12
𝑑
=  (𝛼 , 𝛽∗12), its mean-square is obtained from Eq. (7) as

E
[

𝑁2
12
]

= 𝜇212 +
𝜇12
𝛽∗12

Substituting this relation in Eq. (A.9) leads to

E
[

𝑁12𝑁23
]

=
𝜇23
𝛼
𝛽∗12

(

𝛼 𝜇12 + 𝜇212 +
𝜇12
𝛽∗12

)

(A.10)

Noting that Eq. (16) implies that 𝛽∗12
(

𝜇12 + 𝛼
)

= 𝛼, the final result is
obtained:

E
[

𝑁12𝑁23
]

= 𝛼 + 1
𝛼

𝜇12𝜇23 (A.11)

A.3. Derivation of the conditional expectation, E [

𝑁23|𝑁12 = 𝑚
]

The conditional random variable, 𝑁23|(𝑁12 = 𝑚), follows a negative
binomial distribution, as shown by [18, Sec.4.2.5, p.38], i.e., [𝑁23|𝑁12 =
𝑚]

𝑑
=  (𝛼 + 𝑚, 𝛽∗123) where

𝛽∗123 =
𝛽23 + 𝛽3 − 𝛽13
1 − 𝛽13 + 𝛽3

(A.12)

The expected value of this distribution is obtained using Eq. (7) as

E
[

𝑁23|𝑁12 = 𝑚
]

= (𝛼 + 𝑚)
1 − 𝛽∗123
𝛽∗123

= (𝛼 + 𝑚) 1 − 𝛽23
𝛽23 + 𝛽3 − 𝛽13

= (𝛼 + 𝑚) 1 − 𝛽23 𝛽3 (A.13)

𝛽3 𝛽23 + 𝛽3 − 𝛽13

11 
Using the relation 𝛽𝑠𝑡 = 𝛽𝑡∕𝛽𝑠 for 𝑠 ⩽ 𝑡, the following simplification is
chieved

𝛽3
𝛽23 + 𝛽3 − 𝛽13

=
𝛽2

1 + 𝛽2 − 𝛽12
= 𝛽∗12

It can be shown using Eq. (16) that
1 − 𝛽23
𝛽3

=
𝜇23
𝛼

Using these simplifications, the final expression is obtained as

E
[

𝑁23|𝑁12 = 𝑚
]

= (𝛼 + 𝑚)𝜇23
𝛼
𝛽∗12 (A.14)

Appendix B. Marginal distribution of the 𝒏th arrival time, 𝑺𝒏

B.1. Cumulative distribution of 𝑆𝑛

The CDF of 𝑆𝑛 can be written using Eq. (20) as

𝐹𝑆𝑛 (𝑡) = 1 −
𝑛−1
∑

𝑘=0
P [𝑁(𝑡) = 𝑘] =

∞
∑

𝑘=𝑛
P [𝑁(𝑡) = 𝑘] (B.1)

Substituting for P [𝑁(𝑡) = 𝑘] from Eq. (9) leads to

𝐹𝑆𝑛 (𝑡) =
∞
∑

𝑘=𝑛

𝛤 (𝛼 + 𝑘)
𝛤 (𝛼)𝛤 (𝑘 + 1) (𝛽𝑡)

𝛼 (1 − 𝛽𝑡)𝑘 (B.2)

Next, 𝐹𝑆𝑛 (𝑡) is differentiated with respect to 𝛽𝑡, which leads to
d𝐹𝑆𝑛 (𝑡)
d𝛽𝑡

=
∞
∑

𝑘=𝑛

𝛤 (𝛼 + 𝑘)
𝛤 (𝛼)𝛤 (𝑘 + 1)

(

𝛼 𝛽𝛼−1𝑡 (1 − 𝛽𝑡)𝑘 − 𝑘(𝛽𝑡)𝛼(1 − 𝛽𝑡)𝑘−1
)

(B.3)

Now add and subtract a term, 𝑘𝛽𝛼−1𝑡 (1 −𝛽𝑡)𝑘, as suggested by Rider [19],
and collect the common terms,
d𝐹𝑆𝑛 (𝑡)
d𝛽𝑡

=
𝛽𝛼−1𝑡
1 − 𝛽𝑡

∞
∑

𝑘=𝑛

𝛤 (𝛼 + 𝑘)
𝛤 (𝛼)𝛤 (𝑘 + 1)

(

(𝛼 + 𝑘)(1 − 𝛽𝑡)𝑘+1 − 𝑘(1 − 𝛽𝑡)𝑘
)

(B.4)

To simplify the above equation, the following relations are used

(𝛼 + 𝑘)𝛤 (𝛼 + 𝑘) = 𝛤 (𝛼 + 𝑘 + 1), and 𝑘
𝛤 (𝑘 + 1) = 1

𝛤 (𝑘)
,

Substituting these results in (B.4) leads to
d𝐹𝑆𝑛 (𝑡)
d𝛽𝑡

1 − 𝛽𝑡
𝛽𝛼−1𝑡

𝛤 (𝛼) =
∞
∑

𝑘=𝑛

𝛤 (𝛼 + 𝑘 + 1)
𝛤 (𝑘 + 1) (1 − 𝛽𝑡)𝑘+1 −

∞
∑

𝑘=𝑛

𝛤 (𝛼 + 𝑘)
𝛤 (𝑘)

(1 − 𝛽𝑡)𝑘

(B.5)

A typical term in the series can be denoted as

𝑑𝑘 =
𝛤 (𝛼 + 𝑘)
𝛤 (𝑘)

(1 − 𝛽𝑡)𝑘,

Thus, Eq. (B.5) involves a difference of sums of (𝑘+ 1)th and 𝑘th terms,
given as
d𝐹𝑆𝑛 (𝑡)
d𝛽𝑡

(1 − 𝛽𝑡)
𝛽𝛼−1𝑡

𝛤 (𝛼) =
∞
∑

𝑘=𝑛+1
𝑑𝑘 −

∞
∑

𝑘=𝑛
𝑑𝑘 (B.6)

Here, all the terms cancel out except the term −𝑑𝑛, which leads to
d𝐹𝑆𝑛 (𝑡)
d𝛽𝑡

(1 − 𝛽𝑡)
𝛽𝛼−1𝑡

𝛤 (𝛼) = −𝑑𝑛 =
−𝛤 (𝛼 + 𝑛)
𝛤 (𝑛)

(1 − 𝛽𝑡)𝑛

Using the definition of the Beta function given by Eq. (22), the above
quation is rewritten as
−d𝐹𝑆𝑛 (𝑡)

d𝛽𝑡
=
𝛽𝛼−1𝑡 (1 − 𝛽𝑡)𝑛−1

𝐵(𝛼 , 𝑛) (B.7)

Next, the incomplete beta function ratio, given in the RHS of
Eq. (21), is differentiated with respect to 𝛽𝑡,
d (

𝐼 (𝛼 , 𝑛)
)

= 1 d
( 𝛽𝑡

𝑥𝛼−1(1 − 𝑥)𝑛−1d𝑥
)

d𝛽𝑡
𝛽𝑡 𝐵(𝛼 , 𝑛) d𝛽𝑡 ∫0
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Since 𝛽𝑡 is included in the limit of the integral, the Leibnitz’s rule of
ifferentiating an integral is used to obtain,
d
d𝛽𝑡

(

𝐼𝛽𝑡 (𝛼 , 𝑛)
)

=
𝛽𝛼−1𝑡 (1 − 𝛽𝑡)𝑛−1

𝐵(𝛼 , 𝑛) (B.8)

Comparing Eqs. (B.7) and (B.8), it is concluded that
−d𝐹𝑆𝑛 (𝑡)

d𝛽𝑡
=

d𝐹𝑆𝑛 (𝑡)
d𝛽𝑡

= d
d𝛽𝑡

(

𝐼𝛽𝑡 (𝛼 , 𝑛)
)

(B.9)

By integrating both sides w.r.t. 𝛽𝑡 leads to
𝐹𝑆𝑛 (𝑡) = 𝐼𝛽𝑡 (𝛼 , 𝑛) + 𝐶
where 𝐶 is a constant of integration. In the limit as 𝑡 → ∞, 𝛽𝑡 → 0, it
esults in 𝐹𝑆𝑛 (𝑡) = 0 and 𝐼0(𝛼 , 𝑛) = 0. Therefore, 𝐶 = 0, which leads to
he final result:

𝐹𝑆𝑛 (𝑡) = 𝐼𝛽𝑡 (𝛼 , 𝑛) (B.10)

B.2. Probability density function of 𝑆𝑛

The PDF of 𝑆𝑛 is derived by differentiating the CDF, 𝐹𝑆𝑛 (𝑡), w.r.t.
ime and using the chain rule as follows:

𝑓𝑆𝑛 (𝑡) =
d𝐹𝑆𝑛 (𝑡)

d𝑡
=

d𝐹𝑆𝑛 (𝑡)
d𝛽𝑡

d𝛽𝑡
d𝑡

(B.11)

In the RHS, the first differential term is given by Eq. (B.8) and the
second term can be evaluated using the definition of 𝛽𝑡 given by
Eq. (10) as
d𝛽𝑡
d𝑡

= d
d𝑡
(𝑒−𝑎𝛬(𝑡)) = −𝑎𝜆(𝑡) 𝑒−𝑎𝛬(𝑡) = −𝑎𝜆(𝑡) 𝛽𝑡

Using this result, the final expression is obtained as

𝑓𝑆𝑛 (𝑡) =
𝑎𝜆(𝑡)
𝐵(𝛼 , 𝑛) (𝛽𝑡)

𝛼(1 − 𝛽𝑡)𝑛−1 (B.12)

Appendix C. Derivation of the maximum load distribution

C.1. Approach

This Section presents the derivation of the distribution of maximum
oad generated by a LEYP process with time-dependent loads, as shown
n Fig. 3.

The probabilistic structure of a point process in a time interval,
(𝑠, 𝑡], 𝑠 < 𝑡, is characterized by the joint distribution of the number of
events, 𝑁𝑠𝑡, and their arrivals times, 𝐒𝑠𝑡 = (𝑆𝑁(𝑠)+1, 𝑆𝑁(𝑠)+2,… , 𝑆𝑁(𝑡)).
For processes like LEYP and NHPP, it is convenient to write the joint
distribution in a conditional form,

𝑓𝐒𝑠𝑡 ,𝑁𝑠𝑡 (𝑠1,… , 𝑠𝑛, 𝑛) = 𝑓𝐒𝑠𝑡|𝑁𝑠𝑡 (𝑠1,… , 𝑠𝑛|𝑁𝑠𝑡 = 𝑛)𝑓𝑁𝑠𝑡 (𝑛) (C.1)

The reason is that the conditional distribution can be expressed explic-
tly using the order statistics property of the arrival times, as shown in

this section.
Suppose the number of events in (0, 𝑡1] is 𝑁1 and 𝑁2 in (0, 𝑡2].

Then, the interval (𝑡1, 𝑡2] contains 𝑁12 = 𝑁2 −𝑁1 events, numbered as
𝑁1 + 1,… , 𝑁2. For the sake of brevity, loads and their arrival times in
this interval are numbered as 𝑋𝑐 𝑖, 𝑆𝑖, 𝑖 = 1, 2,… , 𝑁12.

The maximum load CDF is defined as

𝐹𝑚𝑎𝑥(𝑥, 𝑡1, 𝑡2) = P
[

max
(

𝑋𝑐1(𝑆1),… , 𝑋𝑐 𝑁12
(𝑆𝑁12

)
)

⩽ 𝑥
]

= P
[

𝑁12
⋂

𝑖=1
𝑋𝑐 𝑖(𝑆𝑖) ⩽ 𝑥

]

= P
[

𝑁12
⋂

𝑖=1
𝑋𝑖 ⩽ 𝜓(𝑥, 𝑆𝑖)

]

(C.2)

where 𝜓(𝑥, 𝑠) is defined by Eq. (34).
12 
C.2. Derivation

Using the total probability theorem, Eq. (C.2) is simplified as,

𝐹𝑚𝑎𝑥(𝑥, 𝑡1, 𝑡2) =
∞
∑

𝑛=0
P
[

𝑛
⋂

𝑖=1
𝑋𝑖 ⩽ 𝜓(𝑥, 𝑆𝑖), 𝑁12 = 𝑛

]

=
∞
∑

𝑛=0
P
[

𝑛
⋂

𝑖=1
𝑋𝑖 ⩽ 𝜓(𝑥, 𝑆𝑖)|𝑁12 = 𝑛

]

P
[

𝑁12 = 𝑛
]

(C.3)

The conditional probability term in the above expression is the
function of a vector of RVs, 𝐒 ≡ (𝑆1,… , 𝑆𝑛). Therefore, this term is
evaluated as an expectation with respect to the joint distribution of
arrival times, 𝑆1,… , 𝑆𝑛, conditioned on (𝑁12 = 𝑛), as

P
[

𝑛
⋂

𝑖=1
𝑋𝑖 ⩽ 𝜓(𝑥, 𝑆𝑖)|𝑁12 = 𝑛

]

= ∫ ⋯∫𝑡1<𝑠1<⋯<𝑠𝑛⩽𝑡2
P
[

𝑋1 ⩽ 𝜓(𝑥, 𝑠1),… , 𝑋𝑛 ⩽ 𝜓(𝑥, 𝑠𝑛)
]

(𝑠1,… , 𝑠𝑛|𝑁12 = 𝑛) d𝑠1 … d𝑠𝑛
= ∫ ⋯∫𝑡1<𝑠1<⋯<𝑠𝑛⩽𝑡2

𝐹𝑋 (𝜓(𝑥, 𝑠1))⋯𝐹𝑋 (𝜓(𝑥, 𝑠𝑛))

(𝑠1,… , 𝑠𝑛|𝑁12 = 𝑛) d𝑠1 … d𝑠𝑛 (C.4)

The above equation uses the following two results. First, random vari-
ables, 𝑋1, . . . , 𝑋𝑛, are independent of 𝑆1,… , 𝑆𝑛. Second, 𝑋1, . . . , 𝑋𝑛
are themselves independent and identically distributed, which results
in the product of univariate CDFs in the third line of Eq. (C.4).

To evaluate the multivariate integral, the conditional distribution of
rrival times is required, which is equivalent to the joint distribution

of the 𝑛 order statistics, (𝑉 (1),… , 𝑉 (𝑛)), of an i.i.d. sample of a random
variable 𝑉 with the following PDF [11, Theorem 3]:

𝑓𝑉 (𝑣, 𝑡1, 𝑡2) =
𝑎𝜆(𝑣)𝑒𝑎𝛬(𝑣)

𝑒𝑎𝛬(𝑡2) − 𝑒𝑎𝛬(𝑡1)
, (𝑡1 < 𝑣 ≤ 𝑡2) (C.5)

This distribution can be rewritten in the present notation as

𝑓𝑉 (𝑣, 𝑡1, 𝑡2) =
𝑎𝜆(𝑣)
𝛽𝑣

𝛽2
1 − 𝛽12

= 𝑎𝛼
𝜇12

𝜆(𝑣)
𝛽𝑣

(𝑡1 < 𝑠 ≤ 𝑡2) (C.6)

Therefore, the conditional PDF of 𝑆1,… , 𝑆𝑛 given (𝑁12 = 𝑛) in Eq. (C.4)
can be replaced by the PDF of the order statistics, (𝑉 (1),… , 𝑉 (𝑛)) [20,
p. 317].

A further simplification is achieved by recognizing that the inte-
grand, the product of 𝑛 probabilities, is a symmetric function, meaning
that the function value is the same for any permutation of 𝑣(1),… , 𝑣(𝑛).
Consequently, the order statistics can be replaced by (unordered) iid
random variables, 𝑣1,… , 𝑣𝑛, with an identical distribution given by
Eq. (C.6) [21, Section 3.4]. This leads to

P
[

𝑛
⋂

𝑖=1
𝑋𝑖 ⩽ 𝜓(𝑥, 𝑆𝑖)|𝑁12 = 𝑛

]

= (C.7)

∫

𝑡2

𝑡1
⋯∫

𝑡2

𝑡1

[

𝐹𝑋 (𝜓(𝑥, 𝑣1))⋯𝐹𝑋 (𝜓(𝑥, 𝑣𝑛))
]

𝑓 (𝑣1) … 𝑓 (𝑣𝑛) d𝑣1 … d𝑣𝑛

The multi-dimensional integral is now separable in 𝑛 one-dimensiona
integrals, which can be written in the following compact form:

P
[

𝑛
⋂

𝑖=1
𝑋𝑖 ⩽ 𝜓(𝑥, 𝑆𝑖)|𝑁12 = 𝑛

]

=
[

∫

𝑡2

𝑡1
𝐹𝑋 (𝜓(𝑥, 𝑠))𝑓𝑉 (𝑠) d𝑠

]𝑛

=
[

𝑞(𝑥, 𝑡1, 𝑡2)
]𝑛

(C.8)

Substituting for 𝑓𝑉 (𝑠) given by Eq. (C.6), the function, 𝑞(𝑥, 𝑡1, 𝑡2), can
e written as

𝑞(𝑥, 𝑡1, 𝑡2) = ∫

𝑡2

𝑡1
𝐹𝑋 (𝜓(𝑥, 𝑠))𝑓𝑉 (𝑠) d𝑠 = 𝑎𝛼

𝜇12 ∫

𝑡2

𝑡1

𝜆(𝑠)
𝛽𝑠

𝐹𝑋 (𝜓(𝑥, 𝑠))d𝑠 (C.9)

Substituting this result in Eq. (C.3) along with P
[

𝑁12 = 𝑛
]

from
Eq. (14) leads to
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𝐹𝑚𝑎𝑥(𝑥, 𝑡1, 𝑡2) =
∞
∑

𝑛=0

[

𝑞(𝑥, 𝑡1, 𝑡2)
]𝑛 𝛤 (𝛼 + 𝑛)

𝑛!𝛤 (𝛼)
(𝛽∗12)

𝛼 (1 − 𝛽∗12)𝑛

= (𝛽∗12)𝛼
∞
∑

𝑛=0

𝛤 (𝛼 + 𝑛)
𝑛!𝛤 (𝛼)

(

𝑞(𝑥, 𝑡1, 𝑡2)(1 − 𝛽∗12)
)𝑛 (C.10)

The infinite sum can be simplified using the property of the negative
binomial distribution given by Eq. (6), which leads to a more concise
xpression,

𝐹𝑚𝑎𝑥(𝑥, 𝑡1, 𝑡2) = (𝛽∗12)𝛼
[

1 − 𝑞(𝑥, 𝑡1, 𝑡2)(1 − 𝛽∗12)
]−𝛼 (C.11)

Recall from Eq. (16) that 1 − 𝛽∗12 = 𝜇12𝛽∗12∕𝛼, and substituting for
(𝑥, 𝑡1, 𝑡2) from Eq. (C.9) leads to the following expression

𝐹𝑚𝑎𝑥(𝑥, 𝑡1, 𝑡2) = (𝛽∗12)𝛼
[

1 − 𝑎𝛽∗12𝑞∗(𝑥, 𝑡1, 𝑡2)
]−𝛼 (C.12)

where

𝑞∗(𝑥, 𝑡1, 𝑡2) = ∫

𝑡2

𝑡1

𝜆(𝑠)
𝛽𝑠

𝐹𝑋 (𝜓(𝑥, 𝑠))d𝑠 (C.13)

The above expression for 𝐹𝑚𝑎𝑥(𝑥, 𝑡1, 𝑡2) can be written in different forms,
ither in terms of the parameter 𝛽∗12 as

𝐹𝑚𝑎𝑥(𝑥, 𝑡1, 𝑡2) =
[ 1
𝛽∗12

− 𝑎𝑞∗(𝑥, 𝑡1, 𝑡2)
]−𝛼 (C.14)

or in terms of 𝜇12, which is the expected number of events in (𝑡1, 𝑡2], as

𝐹𝑚𝑎𝑥(𝑥, 𝑡1, 𝑡2) =
[

1 + 𝜇12
𝛼

− 𝑎𝑞∗(𝑥, 𝑡1, 𝑡2)
]−𝛼 (C.15)

Note that the above expression is obtained by substituting (1∕𝛽∗12) =
1 + (𝜇12∕𝛼).

In summary, the maximum value distribution depends on: (1) the
mean number of events in the interval, and (2) the distribution of the
magnitude of load, as included in the function, 𝑞∗(𝑥, 𝑡1, 𝑡2).

Data availability

Data will be made available on request.
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