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Supplementary Text and Figures

(1) Sample and in situ transport measurements.

Under an applied external field, incommensurable CDW systems may slide. They exhibit

two regimes. Below the threshold field, transport measurements show Ohmic behavior with

constant differential resistance. Above threshold, on the other hand, an excess current appears

in the sample, directly involving the CDW itself. In situ transport measurements clearly show

the presence of both regimes in our NbSe3 sample with a threshold field equal to IS=0.8mA (see

the sample image in Fig. S1 and the differential resistance in Fig. S2).

Fig. S1. Sample image. (A) Image in the middle of the sample obtained with an optical
microscope. The sample size is 39µm × 3µm × 2.25mm. A step is visible on the crystal
surface. (B) Drawing of the sample with its dimensions and electrical contacts in yellow.

(2) Satellite reflections versus applied current.

Fig. S3 shows the square root integrated CDW peak intensity at different currents. This

corresponds to the CDW averaged amplitude over the measured region. Variations of less than

5% are observed. Since the average CDW amplitude is weakly affected by the applied current,

we consider only phase variations to describe the evolution of the CDW under current.

Let us first discuss the overall evolution of the 2kF satellite with applied current. Fig. S4A

and Fig. S4B show the peak transverse profiles and Fig. S4C and Fig. S4D show the longitu-

dinal one. The amplitude of variations along the longitudinal qx direction is much smaller than

in transverse direction. The scale in qx is 4 times larger than in qy but the shift near threshold
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Fig. S2. Transport measurement. Differential resistance measured during the experiment
displaying a clear discontinuity at the threshold current IS=0.8mA.

is nevertheless clearly visible. The peak center of mass (peak position) and standard deviation

(proportional to the peak width) are shown in Fig. S5, in both transverse and longitudinal di-

rections. Below threshold, the transverse shift and the transverse width increase with current,

reaching a maximum at 1mA (IS=0.8mA). Above threshold, a decrease of both parameters is

observed. We will see later that transverse relaxation above threshold is more clearly observed

when considering a quadratic phase model or the genetic code (see also Fig. 5 in the main text).

The longitudinal direction, on the other hand, exhibits a very different behaviour. No change

in the longitudinal peak position is observed below threshold. However, an abrupt longitudinal

shift is observed at the threshold current, with a saturation above 3mA (see Fig. S5C). This

shift in peak position corresponds to a CDW compression, which is compatible with a CDW

solitonic charge transport (34) where periodic CDW localized 2π phase shifts travels through

the sample leading to an increase of the number of CDW wavelengths in the measured region.

This CDW compression in the sliding regime, although smaller than close to the electrodes, was

also observed far from the electrodes in (20). A decreasing standard deviation for current above

threshold is observed along the longitudinal direction (see Fig. S5D), similar to the transverse
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Fig. S3. Integrated intensity. Square root of the integrated peak intensity proportional to the
CDW amplitude with less than 5% variations for the different applied currents.

direction but with an amplitude of variation one order of magnitude smaller. This longitudinal

peak sharpening in the middle part of the sample was also observed in (23) and corresponds to

an increase of the longitudinal CDW correlation length above threshold.

(3) Theory of elastic CDW, strongly pinned by sample surfaces

and submitted to external electric field

As discussed in the main paper, sliding phenomenon is closely linked to a deformation of

the CDW structure. Above threshold, a contraction and a dilatation of the CDW period at the

two electrical contacts is observed (20,23). Below threshold, a shear effect in the middle part of

the sample has been observed in (25) and in the present paper. In both cases, the two types of

deformation, longitudinal and transverse, extend over a very long distance. Shear deformation,

which leads to wavefront curvature, extends over several tens of micrometers, more than 4

orders of magnitude larger than the CDW wavelength (λF = 14Å).

The two types of deformations, in the elastic regime below threshold, can be reproduced

by considering the CDW as an elastic object, strongly pinned by sample surfaces (26). The

CDW is described as a periodic charge modulation associated to a periodic lattice distortion,

ρ(r⃗) = A(r⃗) cos(2kFx + ϕ(r⃗)), where A(r⃗) and ϕ(r⃗) are respectively the CDW amplitude
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Fig. S4. Diffraction profiles. 2kF satellite profile as a function of applied currents. (A-B)
Transverse peak profile at different currents and (C-D) longitudinal peak profile. We
emphasize that the range along the longitudinal qx direction is smaller than along the

transverse qy, showing that the longitudinal variations, in position and in width, are much
smaller than along the transverse one.

and the CDW phase with spatial dependence. We only consider a phase model and an applied

electric field with component E along the 2kF direction, parallel to the x axis. The CDW

behavior can be described by the following free energy:

F [ϕ] ∝
∫
V
d3r⃗

{
Cijϕiϕj + Vimp(ϕ)− ηExϕx

}
(1)

ϕi = ∂iϕ, r⃗ ∈ V ≡
{
r⃗ ∈ R3 with xi ≤ Li/2

}
(2)

where i, j = x, y, z, Cij = cicjδ
ij with cx, cy, cz being the CDW longitudinal and transverse

elastic coefficients, Lx is the contact distance, Ly and Lz are the transverse sample lengths. We
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Fig. S5. Transverse and longitudinal behavior with current. 2kF satellite profile as a
function of applied currents. (A) Center of mass along the transverse direction showing a

global shift near the threshold current IS=0.8mA. (B) Transverse profile standard deviation.
The peak width reaches a maximum at 1mA. (C) Center of mass along the longitudinal

direction and (D) the longitudinal standard deviation. We emphasize that the range in qx and in
σx are smaller than qy and σy.

choose to consider a bulk impurity pinning potential Vimp(ϕ) ≡ ω2
0[1−cos(ϕ)] with the pinning

frequency ω0 (35,36) . The last term corresponds to the interaction between the CDW and the

applied electric field coupling the longitudinal gradient ϕx and the applied electric potential Ex

where η is a temperature dependent coupling coefficient (37) . Minimizing F [ϕ] gives:

2
(
c2xϕxx + c2yϕyy + c2zϕzz

)
− ω2

0ϕ ≈ ηE (3)

In that case, the second-order equation (Eq.3) has to be solved with boundary conditions by

setting the phase to zero on all surfaces:

ϕ(r⃗) = 0, ∀r⃗ ∈ ∂V . (4)
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By rescaling xj = cj
√

2
η
x′
j , Lj = cj

√
2
η
L′
j and ω2 =

ω2
0

η
, the phase equation Eq.3 become:

(
∆′ − ω2

)
ϕ = E (5)

with the Dirichlet conditions:

ϕ(r⃗′) = 0, ∀r⃗′ ∈ ∂V ′ (6)

where ∆′ = ∂2

∂x′2 + ∂2

∂y′2
+ ∂2

∂z′2
is the rescaled Laplacian operator. Eq.5 is the screened Pois-

Lx

Ly

Fig. S6. Quadratic pinned model: analytical first order solution. CDW under electric field
by considering surface pinning leading to extended CDW deformations through the entire

crystal with a compression and dilatation at the electrodes and bent wavefronts in the central
part. For clarity, the CDW period is considerably increased compared to the sample size. In

reality, the CDW wavelength in NbSe3 is λF = 14Å, while the typical sample width is around
40µm.

son equation whose solution can be obtained by using the Green function and image charge

method (38). The exact solution takes the form of an infinite sum (26) that converges rapidly

so that keeping the first term is a good approximation (the first-order approximation is a good

approximation especially when Lx

cx
∼ Ly

cy
∼ Lz

cz
and ω0 < 1). The first-order expression reads:

ϕ(r⃗) ∝ −Eηβ cos(π
x

Lx

) cos(π
y

Ly

) cos(π
z

Lz

) (7)

with the sample-size dependent parameter β:

β =
1

c2x
L2
x
+

c2y
L2
y
+ c2z

L2
z
+

ω2
0

2π2
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The Dirichlet conditions are well fulfilled in Eq.7 (ϕ(±Lx/2, y, z) = ϕ(x,±Ly/2, z) = ϕ(x, y,±Lz/2)=0).

At the first order, the CDW phase ϕ(r⃗) is proportional to a simple product of cosine functions

leading to a CDW compression and dilatation at both ends and a shear in the central part of

the sample. The typical CDW deformation under external current is displayed in Fig. S6. This

static model is not intended to describe the non-linearity observed above threshold field, but

correctly describes the increase in curvature observed at the center of the sample, considering a

weak bulk frequency pinning ω0 (25).

Fig. S7. Quadratic pinned model: numerical solution. CDW deformation obtained by
numerically solving Eq.3 with ω0 = cz = 0 and by decreasing the ratio cy/cx with current.

Although this static model is phenomenological, it does reproduce the overall situation
observed here, with an increasing compression and a decrease in curvature between two

pinning centers above threshold.

(4) Diffraction pattern interpreted through a quadratic phase.

Let’s now consider the case where the evolution of diffraction patterns is mainly due to

wavefront curvature. A good approximation to describe the diffraction patterns is to consider a

quadratic phase, proportional to y2, to account for bent wavefronts, plus an additional linear y
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dependent term to account for wavefront tilt:

ϕ(y) ≡ αy2 + βy (8)

where y is the transverse position, α and β are fitting parameters. Assuming a constant CDW

amplitude, the corresponding diffracted intensity around the CDW satellite is given by:
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Fig. S8. Fit from a quadratic phase. Transverse profile fits considering a quadratic CDW
phase and a tilt.

I(q) ∝

∣∣∣∣∣∣
b∫

a

eiqyeiϕ(y) dy

∣∣∣∣∣∣
2

(9)

where a nd b are the beam transverse limits (since the x-ray beam is smaller than the sample

width), q is the transverse wavevector. The analytical solution reads :

I(q) = A

∣∣∣∣∣erf
[
eiπ4

√
(α)

(
b+

q + β

2α

)]
− erf

[
eiπ4

√
(α)

(
a+

q + β

2α

)]∣∣∣∣∣
2

(10)
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where A is an overall factor and erf is the complex error function defined by

erf(z) =
2√
π

z∫
0

e−t2dt (11)

In order to take into account beam pointing errors and intensity fluctuations, an additional
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Fig. S9. Parameters obtained with the quadratic phase model. (A) Transverse phase
obtained after fitting the experimental profiles and by considering a quadratic phase profile:
ϕ(y) = αy2 + βy. (B) Variation of α and (C) β with applied current. The amplitude of CDW
wavefront curvature reaches a maximum at 1mA, then start decreasing back at higher currents.

Lorentzian convolution with a free width fitting parameter has been added to fit the experi-

mental profiles. This Lorentzian width is kept constant between all current during the fitting

procedure. The resulting fits are shown in Fig. S8. As we can see, despite the reduced number

of parameters, taking into account bent CDW wavefronts, roughly reproduces the global be-

havior of the diffraction profiles with current. The corresponding parameters with currents are

shown in Fig. S9. The increase of the CDW curvature α with increasing current is still observed

until 1mA (see Fig. S9B). Above 1 mA, a strong decrease is observed. This threshold effect is

visible for the α and β parameters (Fig. S9B and Fig. S9C). However, as visible in Fig. S8, a

simple quadratic CDW phase can not reproduce the measured peak asymmetry.

(5) Phase retrieval using genetic code

As explained in the main text, we used a genetic code to retrieve the CDW phase more

precisely, without neglecting the asymmetry of peak profiles. The most complex part of the code
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is the calculation of profiles (involving a Fourier transform and convolution) for a population of

trial vectors, at each iteration of the DE algorithm. This part was coded in OpenCL and run on

the NVIDIA RTX 3060 GPU, enabling 700 thousand test configurations per second.

The phase was expanded on a Fourier basis closely related to the elastic pinned model

discussed previously, with the expected cosine function as the first term:

Fig. S10. Components of Fourier series versus current. (A) First Fourier coefficient and (B)
the higher order terms as a function of current. The overall envelope of coefficients increases

above threshold and decreases for larger currents (see dotted lines).

ϕ(y) = c1 cos(π
y

Ly

) +
6∑

n=2

[cn cos(nπ
y

Ly

) + sn sin(nπ
y

Ly

)] + αy (12)

with y ∈ [−Ly/2, Ly/2]. The first coefficient c1 is nothing else but the effective electric field

Ee felt by the CDW in the previous model. The slope α is the way to take into account the shift

observed along the vertical direction of the camera (see Fig. 2A in the main text), and without

considering too many sinus terms in the series. The actual number of terms required in the series

was determined by trying different fits with an increasing number of terms in the series until

no substantial improvement was found. Note that all fits were run several times with different

initial coefficient values, to check that the procedure always converges to the same phase ϕ(y).

In addition to the phase expansion, the diffraction pattern results from a convolution. Two

Lorentzian have been used as a resolution function to take into account the extended feet of
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profiles. A tiny slope in the background is also used. Finally, 14 free parameters have been

considered. The evolution of the Fourier coefficients appearing in Eq.12 are displayed in Fig.

S10B versus current. Despite the number of parameters and the few constraints imposed on

them, the components show a relatively smooth evolution.

(6) Transverse profile with currents: different methods

Several methods can be used to follow the CDW average shear deformation at different

currents. In this section, we show 4 different methods showing the same trend.

The 1st method shown in Fig. S11A is the peak standard deviation along the transverse

direction which is proportional to the peak transverse width evolution.

The 2nd method shown in Fig. S11B takes the CDW phase reconstructed from the transverse

fit shown in Fig. 3B of the main text. We then proceed to compute the second order gradient

and take the averaged absolute value.

The 3rd method is similar to the previous one, but we instead make a linear fit of the phase

derivative shown in Fig. 3C of the main text. The slope calculated from this fit is then shown in

absolute value in Sup. Fig. S11C.

Finally, our 4th method shown in Sup. Fig. S11D consists in plotting the c1 fitted coefficient

from Eq12.

Despite slight variations, the same trend is observed for each method with a strong increase

in CDW shear up to 1mA. This shear effect then decreases at higher currents due to a CDW

relaxation in the transverse direction.
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Fig. S11. Transverse shear verus current. (A) Peak transverse profile standard deviation.
(B) Average of the fitted phase second derivative (absolute value). (C) Slope from the linear fit

of the phase derivative shown in Fig. 3 of the main text. (D) c1 parameter from Eq12. The
threshold current IS=0.8mA position is shown with a borken red line.
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