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Evaluating the air quality transmission among Southeast Asian cities 1 

ABSTRACT 2 

This study evaluates the air quality transmission among Southeast Asian cities which include 3 

Ho Chi Minh City, Hanoi, Bangkok, Singapore, Kuala Lumpur, and Jakarta. We investigate 4 

the daily air quality datasets from 28 August 2019 to 04 April 2023 using the multivariate 5 

generalized autoregressive conditional heteroskedasticity modeling framework combined with 6 

the conditional correlation mechanism. We find significant bilateral interactions between Ho 7 

Chi Minh City and Bangkok and between Kuala Lumpur and Singapore. In specific, the air 8 

quality in Ho Chi Minh City and Bangkok positively affects to each other. Besides, the air 9 

quality in Singapore positively drives the air quality in Kuala Lumpur, but the inverse relation 10 

is negative. These findings preliminary suggest bilateral environmental agreements among sub-11 

regions of Southeast Asia. Such treaties are expected to lay the background for future agenda 12 

in relation to environmental protection, especially in pursuit of sustainable development. 13 

Key words: Air quality transmission; Environmental agreement; ASEAN. 14 

1. Introduction 15 

Sustainability is the common concern of the occurring era, where economic growth shall come 16 

along environmental protection. This objective becomes more necessary for emerging regions 17 

such as Southeast Asia, especially in the context of global volatility following the Covid-19 18 

pandemic. There have been several trade agreements in the region issued by the Association of 19 

Southeast Asian Nations (ASEAN) which captures the economic aspect of sustainable 20 

development goals. Given the regional environment (ASEAN, 2023), Southeast Asian nations 21 

have been cooperating in environmental protection (ASEAN, 2017). On the other hand, jointly 22 

environmental agreements seem to mismatch the corresponding economic collaboration. 23 

Therefore, we design this study to evaluate the environmental interaction among nations of the 24 

region, as represented by the air quality transmission between popular cities. Due to geographic 25 

characteristics of Southeast Asia, six selected cities include Hanoi (HAN) and Ho Chi Minh 26 

City (HCM) of Vietnam, Bangkok (BKK) of Thailand, Singapore City (SIN) of Singapore, 27 

Kuala Lumpur (KUL) of Malaysia, and Jakarta (JKT) of Indonesia. Accordingly, findings are 28 

expected to suggest whether policymakers of Southeast Asia proceed a jointly environment 29 

agreement in future by evaluating the air quality transmission in the region. 30 

In Asia, the ASEAN Agreement on Trans-boundary Haze Pollution exemplifies regional 31 

cooperation. Established by ASEAN in 2003, this legally binding treaty aims to combat land 32 
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and forest fires that cause trans-boundary haze. It emphasizes monitoring, mitigation, response, 33 

research, and communication. Recognizing that air pollution knows no borders, ASEAN 34 

member states have united to protect their populations and shared environment. The UN 35 

ESCAP Regional Action Program on Air Pollution is another important initiative in the fight 36 

against transboundary air pollution. Led by the United Nations Economic and Social 37 

Commission for Asia and the Pacific (UN ESCAP), this program addresses the Asia-Pacific 38 

region, which is facing rapid urbanization and industrial growth. Its goal is to promote 39 

cooperation among nations to tackle air pollution and its negative effects collectively. In East 40 

Asia, the Acid Deposition Monitoring Network in East Asia (EANET), established in 2001, 41 

emerged from intergovernmental collaboration to understand and combat acid deposition. Over 42 

the years, EANET has broadened its focus to include various air pollution challenges, resulting 43 

in the creation of the EANET Project Fund. Through shared research and knowledge, 44 

participating nations work together to enhance decision-making and collaboration in the region. 45 

In South Asia, the Malé Declaration on Control and Prevention of Air Pollution and Its Likely 46 

Trans-Boundary Effects, adopted in 1998, represents the first regional agreement on pollution 47 

in South Asia. This pioneering declaration has inspired collaborative efforts among countries 48 

such as India, Pakistan, and Nepal to develop emission inventories, monitor air pollutants, and 49 

evaluate their impacts across different sectors. The recent revival of the declaration highlights 50 

the region's commitment to addressing air pollution as a shared challenge. 51 

In fact, Southeast Asian countries have a sufficient agreement (ASEAN, 2017) which facilitates 52 

each party to cooperate in environmental protection. On the other hand, this background prefers 53 

multilateral to bilateral collaboration. This issue is common across international treaties, 54 

especially in environment (Lallas, 2001). Therefore, we design this study to evaluate pairwise 55 

correlations of air quality transmission among selected Southeast Asian cities. Indeed, air 56 

quality is commonly measured by particulate matter in the atmosphere. Accordingly, air quality 57 

of a city is not only affected by its own air quality, but also by neighbors. Therefore, this study 58 

focuses on bilateral relationships between air quality of adjacent cities, in terms of geographic 59 

distance. This characteristic excludes the Philippines from our investigation due to its specific 60 

location. Henceforth, our approach within this study is expected to generate novel findings in 61 

relation to regional environmental integration. 62 

Following this introduction, Section 2 reviews previous literature, Section 3 proposes methods, 63 

Section 4 present findings, and Section 5 concludes. 64 
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2. Literature review 65 

Air quality has a profound effect on environment and public health (Manisalidis, Stavropoulou, 66 

Stavropoulos, & Bezirtzoglou, 2020), which contributes to various health issues, including 67 

respiratory and cardiovascular diseases, along with mental health disorders such as Seasonal 68 

Affective Disorder (SAD) (Rosenthal, et al., 1984). Studies suggest that exposure to air 69 

pollution can worsen SAD symptoms, as pollutants may interfere with neurotransmitter activity 70 

(Chen, Oliva, & Zhang, 2024), mood regulation (Radua, et al., 2024) and the references therein. 71 

For example, fine particulate matter can disrupt circadian rhythms, potentially intensifying 72 

mood disorders in seasons with less sunlight. Monitoring and communicating air quality is 73 

effectively achieved through the Air Quality Index (AQI). By raising awareness and prompting 74 

responses to changes in air quality, the AQI is crucial in managing health risks related to air 75 

pollution. Elevated levels of particulate matter (PM2.5) and nitrogen dioxide (NO2) have been 76 

associated with higher rates of asthma, lung cancer, and heart attacks (Cohen, et al., 2017). 77 

Research indicates that changes in the AQI can notably affect public health, influencing 78 

activities like outdoor exercise, especially during high pollution episodes (McCarron, et al., 79 

2023). In urban centers such as Jakarta, Bangkok, and Hanoi, the AQI provides real-time 80 

information on key pollutants like PM2.5, NO2, and ozone (O3), helping residents make 81 

informed choices about outdoor activities (Rentschler & Leonova, 2022). Trans-boundary 82 

pollution from agricultural burning and industrial emissions complicates air quality 83 

management, with AQI levels often surpassing safe limits in neighboring countries (Nguyen, 84 

et al., 2022). Thus, there is a strong correlation between elevated AQI levels and increased rates 85 

of respiratory and cardiovascular diseases, emphasizing the urgent need for effective air quality 86 

management. 87 

In Southeast Asian cities, valuating air quality transmission reveals significant challenges 88 

arising from rapid urbanization and industrialization. Research indicates that cities like Jakarta, 89 

Bangkok, and Hanoi experience high PM2.5 levels due to vehicle emissions, industrial 90 

activities, and biomass burning (World Bank and Institute for Health Metrics and Evaluation, 91 

2016). Satellite data and ground monitoring studies have shown that air pollution can cross 92 

borders, increasing health risks in adjacent areas. Wind patterns and climate conditions in 93 

Southeast Asia significantly affect weather and environmental circumstances. The region 94 

experiences a tropical climate with distinct wet and dry seasons, largely dictated by monsoonal 95 

winds. The southwest monsoon, from May to September, brings heavy rainfall and humidity 96 

from the Indian Ocean, while the northeast monsoon, from November to March, leads to cooler, 97 
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drier weather (World Meteorological Organization, 2022). Studies reveal that winds can carry 98 

contaminants across borders, impacting neighboring areas (Cambaliza, Yu, Latif, Lestari, & 99 

Wu, 2023). Additionally, local geography and land use interact with wind systems, further 100 

influencing micro-climates and agricultural productivity (Cach-Pérez, Villanueva López, 101 

Alayón Gamboa, Nahed Toral, & Casanova Lugo, 2022). Understanding these dynamics is 102 

essential for effective climate adaptation and environmental management in the region. In 103 

response, governments are increasingly implementing stricter environmental regulations 104 

(ASEAN, 2017) and fostering regional collaboration to tackle these trans-boundary pollution 105 

challenges (ASEAN, 2023). By integrating advanced monitoring technologies and policy 106 

strategies, Southeast Asian nations strive for better air quality and improved public health 107 

outcomes. 108 

Environmental treaties are vital in tackling global environmental issues, fostering international 109 

cooperation, and establishing binding commitments among countries. Important agreements 110 

like the Paris Agreement aim to mitigate global warming by reducing greenhouse gas 111 

emissions, involving nearly 200 countries (UNFCCC, 2015). The Convention on Biological 112 

Diversity (CBD) focuses on conserving biodiversity and promoting sustainable resource use, 113 

demonstrating a collective commitment to ecosystem preservation (UN & IRB, 1992). The 114 

Stockholm Convention on Persistent Organic Pollutants seeks to eliminate harmful chemicals 115 

that threaten human health and the environment (Lallas, 2001). Air pollution remains a critical 116 

threat to both human health and the environment. As the world faces the urgent challenge of 117 

trans-boundary air pollution, these agreements provide a measure of hope. Countries from 118 

Southeast Asia to the Arctic are increasingly recognizing the interdependence of our planet and 119 

collaborating to ensure cleaner air for future generations. These partnerships reflect a shared 120 

responsibility to protect the air we all breathe, transcending borders for a healthier future—121 

together as #TogetherForCleanAir. The Climate and Clean Air Coalition (CCAC), convened 122 

by the United Nations Environment Program, is the sole international initiative focused on 123 

reducing potent but short-lived climate pollutants that contribute to climate change and air 124 

pollution. This coalition includes 80 countries and over 80 non-state organizations. 125 

Based on this theoretical framework, we expect to determine the literature gap on evaluating 126 

the air quality transmission. Accordingly, we design this study to capture the issue among 127 

selected Southeast Asian cities. Since air quality datasets are constructed daily, we employ the 128 

multivariate stochastic modeling, which is commonly used on financial economics, to 129 

investigate the air quality transmission among selected cities. Accordingly, expected results 130 
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include daily interactions and volatility spillovers between pairwise correlations. As a result, 131 

both rights and obligations of each city are quantitatively examined with statistical significance. 132 

This methodological framework reflects multidisciplinary and interdisciplinary aspects in the 133 

digital era. 134 

3. Materials and methods 135 

3.1. Data and preliminary analysis 136 

We use the daily datasets of air quality in six southeast Asian cities1, which include Hanoi 137 

(HAN), Bangkok (BKK), Ho Chi Minh City (HCM), Singapore (SIN), Kuala Lumpur (KUL), 138 

and Jakarta (JKT). In which, the regional environment is represented by the particulate matter 139 

(PM2.5) index, except Kuala Lumpur whose proxy is the Air Quality Index (AQI)2. We merge 140 

the sub-dataset of each city to obtain an integrated dataset from 28 August 2019 to 04 April 141 

2023. This period captures the Covid-19 outbreak and international conflicts in recent years. 142 

Figure 1 visualizes our used data with 1,000 observations. Based on geographic locations and 143 

the visual air quality of cities, we further consider two sub-samples. In which, the northwestern 144 

sub-sample include Hanoi, Bangkok, and Ho Chi Minh City; and the southeastern sub-sample 145 

include Singapore, Kuala Lumpur, and Jakarta. 146 

Table 1 presents summary statistics of the dataset. The air quality in each city is preliminarily 147 

described with mean, standard deviation, skewness, and kurtosis. In addition, we consider the 148 

stochasticity which include normality, autocorrelation, heteroskedasticity, and stationarity. In 149 

accordance, we find statistically significant evidence of these characteristics. In summary, we 150 

reach initial bases which facilitate to proceed the modeling strategy. Descriptive statistics allow 151 

to construct the air quality network across selected southeast Asian cities. At the same time, 152 

reliable stochastic properties support our usage of the multivariate generalized autoregressive 153 

conditional heteroskedasticity to investigate the air quality transmission. This confirmation is 154 

tremendous for our further modeling strategy. 155 

[Figure 1 and Table 1 around here] 156 

We expect to visualize the connections between air quality six Southeast Asian cities using 157 

dendrogram and graph theory. In specific, the air quality distance 𝑑𝑖𝑗 between cities 𝑖 and 𝑗 are 158 

calculated as follow: 159 

                                                 
1 Source: Air quality historical data platform, retrieved from https://aqicn.org/data-platform/register/. 
2 AQI is retrieved from the weight average of PM2.5, PM10, O3, NO2, SO2, and CO. 

https://aqicn.org/data-platform/register/
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𝑑𝑖𝑗 = √2(1 − 𝜌𝑖𝑗) (1) 

In (1), 𝜌𝑖𝑗 is the correlation between air quality of cities 𝑖 and 𝑗 during the studied period. The 160 

distance is accordingly standardized to lie between 0 and 2. 161 

Based on the air quality distance matrix as retrieved from (1), we expect to construct the visual 162 

dendrogram and graph. We may compare this visualization to geographical distances between 163 

selected cities to initially affirm the air quality transmission effect. 164 

[Table 2 around here] 165 

3.2. Modeling strategy 166 

Thanks to the timeseries characteristic of the air quality datasets, we employ the multivariate 167 

generalized autoregressive conditional heteroskedasticity (GARCH) model along the dynamic 168 

conditional correlation (DCC) process to investigate the air quality transmission between cities 169 

from Southeast Asia. In specific, we use the DCC-GARCH model (Engle, 2002) to estimate 170 

the air quality transmission as follow: 171 

{
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In (2), 𝑦𝑡 = (𝑦𝑡
𝑖 𝑦𝑡

𝑗)
′
 is the vector representing air quality of cities 𝑖 and 𝑗 on day 𝑡. 𝜇 =172 

(𝜇𝑖 𝜇𝑗)′ is a vector of intercepts. Φ is a fully sized matrix of coefficients reflecting the vector 173 

autoregressive (VAR) process. 𝑢𝑡 = (𝑢𝑡
𝑖 𝑢𝑡

𝑗)
′
 is the vector of error terms. 𝜂𝑡 = (𝜂𝑡

𝑖 𝜂𝑡
𝑗)
′
 is 174 

the vector of standardized errors, assumed to be independently and identically distributed.  175 

Given the datasets, we are supposed to select the number of lags (𝑠) thanks to Akaike (AIC), 176 

Schwarz Bayesian (SBC), and Hannan-Quinn (HQ) information criteria for the VAR 177 

estimation. 𝐻𝑡 is the time-varying conditional covariance matrix between air quality of cities 𝑖 178 

and 𝑗. 𝐶 = (𝑐𝑖 𝑐𝑗)
′ is a vector of intercepts in the GARCH process. 𝐴 = 𝑑𝑖𝑎𝑔{𝑎𝑖, 𝑎𝑗} is a 179 

diagonal matrix which covers short-term volatility. 𝐵 = 𝑑𝑖𝑎𝑔{𝑏𝑖, 𝑏𝑗} is a diagonal matrix 180 

which covers long-term volatility. In fact, we shall determine the optimal lag of both short-181 
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term (𝑞) and long-term (𝑝) volatilities to construct the GARCH(𝑝, 𝑞) estimation. ℎ𝑡
𝑖𝑗

 is the 182 

conditional covariance between air quality of cities 𝑖 and 𝑗. 𝜌𝑡 is the conditional correlation 183 

term between air quality of cities 𝑖 and 𝑗. ℎ𝑡
𝑖  and ℎ𝑡

𝑗
 are conditional variances of air quality in 184 

cities 𝑖 and 𝑗, respectively. Under the DCC-GARCH model, 𝜌𝑡 in (2) is further decomposed as 185 

follow: 186 

{
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 (3) 

In (3), 𝑄𝑡 ≻ 0 is a symmetric positive definite matrix, (𝑄𝑡
∗)−1 2⁄ = 𝑑𝑖𝑎𝑔(𝑄𝑡), �̅� = 𝐸(𝜂𝑡𝜂𝑡

′) is 187 

the matrix of unconditional correlations between standardized errors 𝜂𝑡, and 𝛼 and 𝛽 are non-188 

negative scalars such that 𝛼 + 𝛽 < 1. The superiority of this modeling framework is its 189 

capability of capturing the return and volatility transmission, which is previously applied in 190 

evaluating the relation between stock market and air quality (Nguyễn & Lê, 2023). 191 

In terms of robustness check, we evaluate the air quality transmission between most adjacent 192 

cities using the constant conditional correlation GARCH modeling. From Table 2, those pairs 193 

are Singapore – Kuala Lumpur and Ho Chi Minh City – Bangkok. Under this estimation, 𝜌𝑡 in 194 

(2) becomes 𝜌 which is constant during the examined timeframe. Specific players include 195 

CCC-GARCH (Bollerslev, 1990) and VARMA-GARCH (Ling & McAleer, 2003) models. In 196 

which, the CCC-GARCH model chooses diagonal matrices 𝐴 and 𝐵 in (2) while the VARMA-197 

GARCH model employs full matrices 𝐴 and 𝐵. The generalization in the VARMA-GARCH 198 

model captures short- and long-term volatility transmissions between examined variables. To 199 

ensure stationarity, both CCC- and VARMA-GARCH models require that eigenvalue(s) of 200 

matrices 𝐴 and 𝐵 should be inside the unit circle. 201 

Regarding multivariate assessments, we expand (2) into tri-variate and hexa-variate DCC-202 

GARCH models to further assess the air quality transmission in Southeast Asia. The trilateral 203 

assessments include two sub-samples of this study, those are (i) Hanoi-Bangkok-Ho Chi Minh 204 

City; and (ii) Singapore-Kuala Lumpur-Jakarta. We expect to consider Gaussian, Student’s t 205 

(which requires to find 𝜈, the degree of freedom of errors), and skew-t density (Bauwens & 206 

Laurent, 2005) to evaluate tail behaviors relating to the tri-variate GARCH process. We further 207 
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assess a multilateral assessment which includes all six cities in an estimation. Since CCC- and 208 

VARMA-GARCH models are characterized by constant conditional correlations, this class 209 

shall not be applied for multivariate examinations unless otherwise reasonable. 210 

4. Findings 211 

This section presents air quality interactions based on bivariate GARCH models along the 212 

dynamic conditional correlation mechanism. Potential results indicate how air quality of a city 213 

interacts to air quality of another city. We expect to summarize interactions between 15 pairs 214 

combined from six cities. During each estimation, we shall select the best-suited model thanks 215 

to selection criteria and diagnostic tests for stochasticity (autocorrelation and heteroskedasticity 216 

effects) of residuals. We expect that bilateral interactions within each sub-sample, those are, 217 

(i) HCM-BKK-HAN; and (ii) JKT-KUL-SIN are more reliable and specific in terms of 218 

statistical significance and geographic distances, as demonstrated in Table 2. Accordingly, we 219 

construct the time-varying conditional correlation plots between six pairs, those are, (a) HCM-220 

BKK; (b) HAN-BKK; (c) HCM-HAN; (d) KUL-SIN; (e) JKT-KUL; and (f) JKT-SIN. 221 

Table 3 reports the bilateral air quality transmission among selected Southeast Asian cities 222 

based on the DCC-GARCH model. The statistical significance of each estimation is determined 223 

thanks to (i) lags in the VAR equation (𝑠); (ii) lags in the GARCH process (𝑝 and 𝑞); (iii) signs 224 

of characterized coefficients (𝛼, 𝛽, and 𝛼 + 𝛽) and; (iv) disappearances of stochasticity in final 225 

residuals, those are, the autocorrelation effect under Ljung-Box and McLeod-Li tests and 226 

heteroskedasticity under the ARCH test. Thus, estimations from Table 3 exclude HCM-HAN, 227 

JKT-KUL, and JKT-SIN transmissions due to negative 𝛼. The KUL-SIN interaction is slightly 228 

unpersuasive as 𝛼 and 𝛽 are statistically insignificant. Respective disqualified criteria are 229 

bolded and highlighted in Table 3. Following these model selection procedures, we find reliable 230 

air quality transmissions among HCM-BKK and HAN-BKK correlations. In specific, the air 231 

quality transmissions among these pairs are mutually positive. Results are more obvious while 232 

𝑠 = 𝑝 = 𝑞 = 1 and all coefficients in VAR mean equations are statistically significant, as key 233 

results are bolded and highlighted. Henceforth, we find mutually positive linkage in quality 234 

between Ho Chi Minh City and Bangkok as well as between Hanoi and Bangkok. This finding 235 

confirms the necessity of a bilateral environmental agreement between Vietnam and Thailand, 236 

which is expected to boost the air quality among popular cities of both countries. 237 

[Table 3, Table 4, and Table 5 around here] 238 
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Given geographic distances between Southeast Asian cities (in Table 2) and DCC-GARCH 239 

estimations (in Table 3), we further analyze the air quality transmission between Ho Chi Minh 240 

City and Bangkok as well as between Kuala Lumpur and Singapore using competing bivariate 241 

GARCH models. Table 4 reports the HCM-BKK and KUL-SIN air quality transmissions under 242 

VARMA-, CCC-, and DCC-GARCH models. The model selection procedure shall include (i) 243 

maximum log likelihood or minimum information criteria; (ii) disappearances of stochasticity; 244 

(iii) significance of characterized coefficients (constant or dynamic conditional correlation); 245 

and (iv) number of lags during the VAR mean equation and the GARCH process. 246 

Model selection criteria reveal the advantage of constant conditional correlation models in 247 

explaining the air quality transmission between Ho Chi Minh City and Bangkok. In which, log 248 

likelihood and Akaike information criterion favor the VARMA-GARCH model while Schwarz 249 

Bayesian and Hannan-Quinn information criteria favor the CCC-GARCH model. Under this 250 

circumstance, the VARMA-GARCH model gains advantage thanks to its more complicated 251 

time-varying covariance matrix. Key numbers are highlighted in Table 4. Nevertheless, 252 

estimated results are consistent with the output from the DCC-GARCH model that air quality 253 

in Ho Chi Minh City and Bangkok positively affect to each other. At the same time, the DCC-254 

GARCH model turns superior in explaining the air quality transmission between Kuala Lumpur 255 

and Singapore, despite its insignificant coefficients of the dynamic conditional correlation. In 256 

general, empirical results under all three models indicate a trade-off between air quality of 257 

Kuala Lumpur and Singapore. It is noticeable that the past air quality of Singapore positively 258 

influences the air quality of Kuala Lumpur, but the past air quality of Kuala Lumpur negatively 259 

drives the air quality of Singapore. Considering the geographic distance between two cities, a 260 

bilateral environmental agreement is therefore in need for this situation. The case between 261 

Singapore and Malaysia is even more necessary than the case between Vietnam and Thailand. 262 

These findings are reasonably robust compared to trilateral and multilateral evaluations as 263 

reported in Table 5. Our bilateral findings are consistent with HCM-BKK-HAN, JKT-KUL-264 

SIN, and all-city estimations. In which, noticeable results are the mutually positive linkage 265 

between Ho Chi Minh City and Bangkok and the negative co-movement between Kuala 266 

Lumpur and Singapore. Key numbers in Table 5 are bolded and highlighted to emphasize the 267 

robustness among our findings. Figure 2 illustrates the time-varying dynamic conditional 268 

correlation of air quality among Southeast Asian cities. In general, those correlations are 269 

positive. This pattern lays the background for future environmental agreement across sub-270 

regions of Southeast Asia. 271 
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[Figure 2 around here] 272 

5. Conclusion 273 

This study evaluates the air quality transmission among six selected cities in Southeast Asia, 274 

which includes Ho Chi Minh City, Hanoi, Bangkok, Singapore, Kuala Lumpur, and Jakarta. 275 

We find reliable evidence on the mutually positive interaction between Ho Chi Minh City and 276 

Bangkok and the negative relationship between Kuala Lumpur and Singapore. While the air 277 

quality of neighbors is considered one of externalities, our results internalize such impacts to 278 

seek regional or sub-regional environmental agreements. In terms of theory, we employ the 279 

multivariate GARCH framework to investigate bilateral and multilateral particulate matter 280 

transmissions in Southeast Asia. This interdisciplinary approach is expected to generate good 281 

precedents for future studies which examine environmental and social relations using financial 282 

economics modeling. In terms of practice, our findings affirm the necessity for sub-regional 283 

environmental agreements among Southeast Asia countries based on empirical findings, those 284 

are, the interchangeable benefit of Vietnam and Thailand and the inverse connection between 285 

Singapore and Malaysia. Those bilateral memoranda lay the background for comprehensive 286 

environmental agreements all over the globe in future, especially in pursuit of sustainable 287 

development goals. 288 
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FIGURES 349 

Figure 1. Data illustration from 28 August 2019 to 04 April 2023 350 

  

  

  

Source: Air quality historical data platform, retrieved from https://aqicn.org/data-platform/register/. 351 
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Figure 2. Bilateral air quality transmission in terms of time-varying dynamic conditional 353 

correlation 354 

  

  

 

 

Source: Authors’ calculations. 355 
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TABLES 

Table 1. Descriptive statistics and stochastic properties 

 HAN BKK HCM SIN KUL JKT 

Observations 1000 1000 1000 1000 1000 1000 

Mean 108.82 79.19 75.05 46.76 57.62 91.53 

Std dev 37.41 32.22 23.86 15.16 11.51 28.10 

Skewness 0.5656 0.8634 0.8159 1.3374 3.8124 -0.1451 

Kurtosis -0.0292 0.1723 1.6203 4.1381 28.47 -0.7636 

Jarque-Bera 53.36*** 125.49*** 220.35*** 1012*** 36188*** 27.81*** 

Ljung-Box 2613*** 5656*** 3676*** 2791*** 2344*** 3925*** 

McLeod-Li 2369*** 4674*** 3265*** 2989*** 2581*** 3772*** 

ARCH 580*** 745*** 582*** 513*** 527*** 552*** 

ADF -12.04*** -7.96*** -11.56*** -12.99*** -10.78*** -12.30*** 

PP -11.61*** -7.50*** -10.92*** -12.53*** -10.42*** -11.54*** 

Descriptive statistics include observations, mean, standard deviation (std dev), skewness, and kurtosis. Stochastic 

properties include normality with the Jarque-Bera test, autocorrelation effect with 15-lagged Ljung-Box and 

McLeod-Li tests, heteroskedasticity effect with the 15-lagged ARCH test, and stationarity with the augmented 

Dickey-Fuller (ADF) and Phillips-Perron (PP) and unit root tests. *, **, and *** represent statistical significance 

of 90%, 95%, and 99%, respectively. 

Table 2. Bilateral AQI and geographic distances (from min to max) 

Pair AQI Distance  Pair Distance (km) 

BKK-HCM 0.872347  SIN-KUL 315.07 

BKK-HAN 0.907469  BKK-HCM 750.42 

HCM-HAN 1.016609  SIN-JKT 893.36 

SIN-KUL 1.029175  BKK-HAN 988.01 

SIN-JKT 1.284425  KUL-HCM 1010.30 

KUL-JKT 1.308775  SIN-HCM 1100.91 

SIN-HCM 1.402543  HCM-HAN 1143.52 

SIN-HAN 1.413401  KUL-JKT 1182.49 

KUL-HAN 1.423730  KUL-BKK 1186.12 

SIN-BKK 1.449364  SIN-BKK 1434.09 

KUL-HCM 1.449577  JKT-HCM 1884.95 

KUL-BKK 1.485206  KUL-HAN 2037.33 

JKT-HCM 1.536472  SIN-HAN 2205.60 

JKT-HAN 1.601476  JKT-BKK 2323.35 

JKT-BKK 1.665171  JKT-HAN 3026.71 
AQI distances by Authors’ calculations. Geographic distances are retrieved from 

https://www.distancecalculator.net/.

https://www.distancecalculator.net/
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Table 3. Bilateral AQI transmission in Southeast Asia under the DCC-GARCH estimation 

  HCM-BKK HAN-BKK HCM-HAN KUL-SIN JKT-KUL JKT-SIN 

 𝑖 = 𝐻𝐶𝑀 𝑗 = 𝐵𝐾𝐾 𝑖 = 𝐻𝐴𝑁 𝑗 = 𝐵𝐾𝐾 𝑖 = 𝐻𝐶𝑀 𝑗 = 𝐻𝐴𝑁 𝑖 = 𝐾𝑈L 𝑗 = 𝑆𝐼𝑁 𝑖 = 𝐽𝐾𝑇 𝑗 = 𝐾𝑈𝐿 𝑖 = 𝐽𝐾𝑇 𝑗 = 𝑆𝐼𝑁 

  𝑦𝑡
𝑖 𝑦𝑡

𝑗
 𝑦𝑡

𝑖 𝑦𝑡
𝑗
 𝑦𝑡

𝑖 𝑦𝑡
𝑗
 𝑦𝑡

𝑖 𝑦𝑡
𝑗
 𝑦𝑡

𝑖 𝑦𝑡
𝑗
 𝑦𝑡

𝑖 𝑦𝑡
𝑗
 

𝜇 13.9599*** 1.7076* 18.5396*** 3.1048** 9.1051*** 13.7257*** 17.6733*** 15.2135*** 10.5098*** 17.3438*** 19.8326*** 12.2352*** 

𝑦𝑡−1
𝑖  0.6750*** 0.1423*** 0.6683*** 0.0889*** 0.6488*** 0.2007*** 0.6766*** -0.1082** 0.5988*** 0.0202*** 0.7496*** 0.0196*** 

𝑦𝑡−1
𝑗

 0.1143*** 0.8277*** 0.2093*** 0.8235*** 0.0321*** 0.7711*** 0.0672*** 0.5910*** -0.0840*** 0.7064*** 0.0703 0.6871*** 

𝑦𝑡−2
𝑖          0.0422*** -0.0394*** -0.0288 0.0427 0.0886*** 0.0068**   

𝑦𝑡−2
𝑗

         -0.0050*** -0.1854*** -0.0177 0.1503*** 0.1178*** -0.0593**   

𝑦𝑡−3
𝑖          0.0625*** -0.0005     0.1539*** -0.0182**     

𝑦𝑡−3
𝑗

         0.0530*** 0.1659***     0.0432*** 0.0332**     

𝐶 9.5053* 6.3651** 7.5185 5.4795* 107.29*** 265.36*** 4.7045 22.3720** 269.4607*** 6.7690** 46.0930** 15.1751*** 

𝐴𝑡−1 0.0512*** 0.0931*** 0.0481*** 0.1022*** 0.0606* 0.1186*** 0.2266*** 0.1302*** 0.1134*** 0.2355*** 0.0440* 0.1577*** 

𝐴𝑡−2         0.0839*** 0.0660*** -0.1181 0.1324** 0.1255*** -0.0231   

𝐴𝑡−3         0.0673*** 0.0619***     0.0946*** -0.0307     

𝐵𝑡−1 0.9093*** 0.8832*** 0.9417*** 0.8775*** 0.0862*** 0.0822*** 0.7661 0.1220 -0.3234*** 0.3896*** 0.8280*** 0.7014*** 

𝐵𝑡−2         0.0792*** 0.0884*** -0.0011 0.4289*** -0.3763*** 0.3119***   

𝐵𝑡−3         0.1349*** 0.1451***     0.6625*** -0.0601     

𝛼 0.0269   0.0406   -0.0291***   0.0424   -0.0042**   -0.0097***   

𝛽 0.7597***   0.7618***   0.6712***   0.0970   0.7919***   0.9423***   

𝜈  6.1787***   7.9353***   8.4241***   8.9796***   10.4092***   26.8381***   

JB 221.67*** 85.9450*** 79.8640*** 95.4400*** 130.43*** 26.3389** 160.37*** 7.1080** 0.7250 151.38*** 27.0590*** 10.5280** 

LB 34.0915*** 18.1478 42.1671*** 19.6517 28.8270*** 13.2039 39.5060*** 35.4544*** 49.2598*** 28.2965** 83.4011*** 64.2257*** 

ML 13.4092 13.9785 15.3177 11.9858 23.0461** 15.5127 10.0992 13.3362 13.8879 7.5952 6.2012 13.8395 

ARCH 12.7820 14.4720 15.6310 12.2390 21.9540 15.6920 7.3950 15.1020 14.2390 7.3110 6.0790 16.8150 

𝛼 + 𝛽 0.7866   0.8024   0.6420   0.1395   0.7877   0.9326   

*, **, and *** represent statistical significance of 10%, 5%, and 1%, respectively. Diagnostic tests for stochastic properties of residuals include normality with the Jarque-Bera 

(JB) test; autocorrelation with 15-lagged Ljung-Box (LB) and McLeod-Li (ML) tests; and heteroscedasticity with the 15-lagged ARCH test. Estimation with the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm. 
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Table 4. Bilateral AQI transmission within adjacent cities under competing GARCH models 

  VARMA-GARCH CCC-GARCH DCC-GARCH VARMA-GARCH CCC-GARCH DCC-GARCH 

  𝑖 = 𝐻𝐶𝑀 𝑗 = 𝐵𝐾𝐾 𝑖 = 𝐻𝐶𝑀 𝑗 = 𝐵𝐾𝐾 𝑖 = 𝐻𝐶𝑀 𝑗 = 𝐵𝐾𝐾 𝑖 = 𝐾𝑈L 𝑗 = 𝑆𝐼𝑁 𝑖 = 𝐾𝑈L 𝑗 = 𝑆𝐼𝑁 𝑖 = 𝐾𝑈L 𝑗 = 𝑆𝐼𝑁 

  𝑦𝑡
𝑖 𝑦𝑡

𝑗
 𝑦𝑡

𝑖 𝑦𝑡
𝑗
 𝑦𝑡

𝑖 𝑦𝑡
𝑗
 𝑦𝑡

𝑖 𝑦𝑡
𝑗
 𝑦𝑡

𝑖 𝑦𝑡
𝑗
 𝑦𝑡

𝑖 𝑦𝑡
𝑗
 

𝜇 16.3662*** 4.1604*** 16.2404*** 3.8419*** 13.9599*** 1.7076* 17.3763*** 14.4372*** 16.9888*** 14.5794*** 17.6733*** 15.2135*** 

𝑦𝑡−1
𝑖  0.6533*** 0.1128*** 0.6508*** 0.1251*** 0.6750*** 0.1423*** 0.6792*** -0.0877*** 0.6877*** -0.0859** 0.6766*** -0.1082** 

𝑦𝑡−1
𝑗

 0.1115*** 0.8197*** 0.1119*** 0.8105*** 0.1143*** 0.8277*** 0.0591*** 0.5918*** 0.0577*** 0.5857*** 0.0672*** 0.5910*** 

𝑦𝑡−2
𝑖              -0.0267*** 0.0355 -0.0232 0.0334 -0.0288 0.0427 

𝑦𝑡−2
𝑗

             -0.0115 0.1504*** -0.0149 0.1538*** -0.0177 0.1503*** 

𝐶 87.4391*** 43.3668*** 10.6774 4.3843** 9.5053* 6.3651** 10.2882*** 55.1501*** 15.5872** 29.9170 4.7045 22.3720** 

𝐴𝑡−1 0.1726*** -0.0172 0.0454**   0.0512***   0.2242*** -0.0020*** 0.2510***   0.2266***   

  0.0880*** 0.0816***   0.0907**   0.0931*** 0.0184***  0.1584***   0.1568**   0.1302*** 

𝐴𝑡−2             -0.0916*** 0.0358*** 0.0657   -0.1181   

              0.5831*** 0.0876***   0.1401*   0.1324** 

𝐵𝑡−1 0.3706** 0.1010* 0.9080***   0.9093***   0.8992*** -0.1959*** -0.0008   0.7661   

  -0.2920** 0.9428***   0.8941***   0.8832*** -2.5474*** 0.0416***   0.0597   0.1220 

𝐵𝑡−2             -0.1848*** 0.1226*** 0.3051*   -0.0011   

              1.2371*** 0.4593***   0.3606   0.4289*** 

𝜌 0.2371***   0.2344***       0.2196***   0.2165***       

𝛼         0.0269           0.0424   

𝛽         0.7597***           0.0970   

𝜈          6.1787***           8.9796***   

LL -8136.61   -8143.34   -8582.30   -6883.40   -6893.75   -6865.37   

AIC 16.3240   16.3290   17.2120   13.8520   13.8570   13.8040   

SBC 16.4070   16.3930   17.2850   13.9950   13.9600   13.9170   

HQ 16.3550   16.3530   17.2120   13.9070   13.8960   13.8470   

JB 189.47*** 42.7310*** 210.05*** 67.0830*** 221.67*** 85.9450*** 133.00*** 4.9800* 138.84*** 7.7620** 160.37*** 7.1080** 

LB 41.7949*** 20.2234 39.6835*** 19.2315 34.0915*** 18.1478 38.3928*** 35.3577*** 34.2500*** 36.3444*** 39.5060*** 35.4544*** 

ML 19.6561 15.1097 14.3138 14.2976 13.4092 13.9785 10.9784 15.5621 11.1151 13.2356 10.0992 13.3362 

ARCH 19.4320 15.2460 13.7570 15.0330 12.7820 14.4720 8.5610 17.0700 7.9300 15.4890 7.3950 15.1020 

𝜆𝑡−1 -0.5818 -0.9859 -0.9533 -0.9848     0.1831 -1.5065 -0.2165 -0.2502     

𝜆𝑡−2             0.5413 -0.8118 -0.3708 -0.5007     

𝛼 + 𝛽         0.7866           0.1395   

*, **, and *** represent statistical significance of 10%, 5%, and 1%, respectively. Model selection is referred to log likelihood (LL), Akaike (AIC), Schwarz Bayesian (SBC), 

and Hannan-Quinn (HQ) information criteria. Diagnostic tests for stochastic properties of residuals include normality with the Jarque-Bera (JB) test; autocorrelation with 15-

lagged Ljung-Box (LB) and McLeod-Li (ML) tests; and heteroscedasticity with the 15-lagged ARCH test. Estimation with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

algorithm. 
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Table 5. Multilateral AQI transmission in Southeast Asia under the DCC-GARCH estimation 

  Trilateral HCM-BKK-HAN Trilateral JKT-KUL-SIN Multilateral interactions 

  𝑖 = 𝐻𝐶𝑀 𝑗 = 𝐵𝐾𝐾 𝑘 = 𝐻𝐴𝑁 𝑖 = 𝐽𝐾𝑇 𝑗 = 𝐾𝑈𝐿 𝑘 = 𝑆𝐼𝑁 𝑖 = 𝐻𝐶𝑀 𝑗 = 𝐵𝐾𝐾 𝑘 = 𝐻𝐴𝑁 𝑙 = 𝐽𝐾𝑇 𝑚 = 𝐾𝑈𝐿 𝑛 = 𝑆𝐼𝑁 

  𝑦𝑡
𝑖  𝑦𝑡

𝑗
 𝑦𝑡

𝑘 𝑦𝑡
𝑖  𝑦𝑡

𝑗
 𝑦𝑡

𝑘 𝑦𝑡
𝑖  𝑦𝑡

𝑗
 𝑦𝑡

𝑘 𝑦𝑡
𝑙  𝑦𝑡

𝑚 𝑦𝑡
𝑛 

𝜇 13.2211*** -0.5655 13.1222*** 18.5430*** 15.7288*** 14.6292*** 16.7589*** 9.0425*** 13.4444*** 28.2201*** 16.0255*** 15.4285*** 

𝑦𝑡−1
𝑖  0.6652*** 0.1214*** 0.1354*** 0.7561*** 0.0130*** 0.0199** 0.6595*** 0.1178*** 0.1448*** 0.0792*** -0.0052 -0.0078 

𝑦𝑡−1
𝑗

 0.0979*** 0.7724*** 0.1458*** 0.0086 0.6577*** -0.0455*** 0.0882*** 0.7494*** 0.1213*** -0.1115*** 0.0027 0.0107* 

𝑦𝑡−1
𝑘  0.0266** 0.0748*** 0.6710*** 0.0770*** 0.0542*** 0.6901*** 0.0341*** 0.0744*** 0.6541*** -0.0227** 0.0002 -0.0046 

𝑦𝑡−1
𝑙            -0.0121 -0.0525*** -0.0717*** 0.7041*** 0.0148*** 0.0222*** 

𝑦𝑡−1
𝑚            0.0015 -0.0483** 0.1849*** 0.0235 0.6492*** -0.0629** 

𝑦𝑡−1
𝑛              -0.0433** 0.0050 -0.0263 0.0719*** 0.0581*** 0.6951*** 

𝐶 13.4276 5.8469** 170.25* 29.8084 9.7109*** 16.2293** 12.5401* 4.6620** 154.00*** 39.6641 8.4600** 15.4594** 

𝐴 0.0524** 0.0880*** 0.1589*** 0.0340 0.1902*** 0.1679*** 0.0486** 0.0876*** 0.1647*** 0.0454 0.1810*** 0.1622*** 

𝐵 0.8879*** 0.8867*** 0.5712*** 0.8870*** 0.5501*** 0.6917*** 0.8938*** 0.8923*** 0.5799*** 0.8482*** 0.6017*** 0.7044*** 

𝛼 0.0193    -0.0049***    0.0139       

𝛽 0.7259***    0.8955***    0.0408       

𝜈 8.1557***     12.8969***     13.6556***           

JB 186.02*** 76.1140*** 35.0020*** 30.5030*** 149.52*** 7.9230** 192.71*** 62.5210*** 35.4440*** 17.3950*** 158.49*** 7.8080** 

LB 34.6794*** 16.5881 38.2664*** 80.3393*** 32.6534*** 66.3146*** 36.3277*** 17.5765 36.7684*** 56.3070*** 35.9734*** 64.4665*** 

ML 14.3456 14.7609 13.8783 6.7874 12.4148 13.7185 13.7024 13.6797 12.6818 9.1751 11.4733 13.5606 

ARCH 13.7370 15.4550 12.8700 6.5370 9.7130 16.9090 13.1190 14.3920 11.2680 8.8300 9.3540 16.6360 

𝛼 + 𝛽 0.7452     0.8906     0.0548           

*, **, and *** represent statistical significance of 10%, 5%, and 1%, respectively. Diagnostic tests for stochastic properties of residuals include normality with the Jarque-Bera 

(JB) test; autocorrelation with 15-lagged Ljung-Box (LB) and McLeod-Li (ML) tests; and heteroscedasticity with the 15-lagged ARCH test. Estimation with the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm. 

 


