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The role of (active) dynamic wing twist on aerodynamic performance of three-dimensional

hovering flapping flight is explored using numerical simulations. A variety of cases with

different pitch angles and with (flexible wings) or without (rigid wings) dynamic twist are

compared. The results show that changes in aerodynamic performance due to dynamic

twist are comparable to those obtained without twist (rigid wing cases) by pitching the

whole wing and that lift and lift-to-power ratio generally collapse onto a single curve when

plotted as a function of the mid-stroke pitch angle at 2/3 wing radius. However, in some

cases dynamic twist yields enhanced time-averaged efficiency. Using the force and power

partitioning method (FPPM), it is shown that this enhancement results from the absence

of vortical structures near the wing root lower surface and to the presence of an extended

leading edge vortex on the wing upper surface, when compared to the most efficient rigid

wing case. These differences in flow topology lead to enhanced lift during the early phase

of the strokes without changes in power consumption.
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I. INTRODUCTION

The development of micro-electronics has allowed the continuous reduction in the size of un-

manned aerial vehicles. At extremely small scales, typically of the order of the centimeter and

below, flapping wings appear as an alternative to more conventional rotating and fixed wings. Ac-

cordingly, they have fostered considerable interest from researchers these past three decades. Over

this period, most studies focused on rigid wings undergoing flapping kinematics both in forward

and hovering flight1–3. Pioneer works revealed the predominant role of vortices (induced by the

flapping motion) in lift production as recently summarized by Liu et al.4, for example. Precisely,

the formation of a strongly attached, stable leading-edge vortex (LEV)5–10 on the suction side of

the wing has been recognized as the principal source of lift allowing flapping flight.

Despite obvious representation of wing bending11 and twisting12 in nature, flexible flapping

wings have been much less studied. Passive deformation of the wing received more and more at-

tention in recent years3 with studies aiming at understanding the effects of structural parameters on

aerodynamic performance of flapping wings. One general conclusion is that flexibility has a major

influence on aerodynamic performance. That is, the force production increases with the flexibil-

ity (e.g. with the increase in mass or frequency ratio) until a specific flexibility is reached13–15.

Further increasing the flexibility appears detrimental to force production. For example, Zhao et

al.13 showed that at high angles of attack, flexible wings generate more lift due to the orientation

of the net force vector induced by the chordwise flexion of the wing. Dai et al.14 found that when

flapping frequency is lower than 0.3 times the natural frequency of the wing, the efficiency can be

significantly improved. The mechanisms at play rely on the natural oscillation of the wing work-

ing with the aerodynamic forces to bend the chord, which leads to larger pitch angle with respect

to rigid wings. Shah et al.15 suggested that an optimum level of flexibility inhibits chaotic transi-

tion of the wake, otherwise encountered in rigid and highly flexible wing cases. They ultimately

correlated the quasi-periodicity of the wake with enhanced efficiency of flexible foils, contrasting

the chaotic nature of the flow, and lower efficiency, of rigid wings.

The deformation of flexible wings undergoing flapping kinematics can be decomposed into

three different modes16: spanwise bending, spanwise twisting and chordwise cambering illustrated

in Figure 1 a), b) and c), respectively, where the undeformed wing geometry is shown using black

plain lines and the deformed wing geometries are depicted using dotted, grey lines.

The role of chordwise flexibility has been investigated by Heatcote et al.17, Vanella et al.18 and
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FIG. 1. Illustration of flapping flexible wing undergoing different deformation16: a) spanwise bending, b)

spanwise twisting and c) chordwise cambering. Plain lines depict rigid wings while dotted lines illustrate

the flexible wing undergoing different deformation mechanisms.

Eldredge et al.19, for example. Heatcote et al.17 considered an airfoil started from rest and under-

going pure plunging motion with no freestream velocity. They showed that depending on plunge

frequency and amplitude, an optimal flexibility was found to promote the ratio between thrust and

input-power. Vanella et al.18 and Eldredge et al.19 considered 2D flapping wings under hovering

conditions. The conclusion from both studies was that the flexibility significantly modifies the

interactions between the wing and its wake from the previous stroke. Specifically, the LEV from

previous stroke has almost no influence on the development of a new LEV which results in larger

lift production with respect to that obtained with rigid wings.

The role of spanwise flexibility was addressed by Heatcote et al.20, Nakata and Liu21, Addo-

Akoto et al.22 and Diaz-Arriba et al.23 for various flight conditions (forward and hovering flight).

Overall, it was demonstrated that moderate spanwise flexibility promotes force production (thrust

or lift) by tuning the phase difference between revolving (affected by spanwise bending) and pitch-

ing (affected by spanwise twisting) motions and/or promoting the stability of the leading edge

vortex (LEV).

On the other hand, active wing deformation has been poorly investigated. By considering both

coupled and uncoupled wing cambering and twisting for insect wings under hovering flight condi-

tions, Gang and Sun24,25 concluded that camber has a large impact on lift production while twist

has a negligible impact. Conversely, they showed that the power required to achieve flapping

flight is reduced with wing twisting. This conclusion is in line with the ones from Thielicke and

Stamhuis26 who conducted an experimental study in the context of a slow-speed forward flapping
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flight. They showed that wing twisting, by lowering the effective angle of attack (with respect

to a rigid wing), is most likely to increase the efficiency at the cost of lower aerodynamic forces

production when compared to a rigid wing, emphasizing the trade-off between flapping flight ef-

ficiency and force production. More recently, Joshi and Bhattacharya27 performed experimental

characterization of an accelerating flat plate with active spanwise bending. The wing was held

normal to the flow and bent into or away the incoming flow. While the into-flow bent wing experi-

enced larger unsteady drag, the away-flow bent wing experienced significantly lower initial force

peak. This suggests that wing active deformation might be used to reach specific aerodynamic

forces at a given instant for maneuverability purposes, for example. Soto and Bhattacharya28 con-

ducted experiments on an actively twisted heaving flat plate in an incoming flow with a constant

angle of attack of 15°. They concluded that actively twisting the wing such that the effective angle

of attack is reduced results in lowering significantly the drag down to almost zero at the cost of

lower lift production. On the contrary, twisting the wing such that the effective angle of attack

is increased increases both lift and drag during the downstroke phase while the wing experiences

negative lift during the upstroke phase. Dong et al.29 performed numerical simulations on actively

twisted flapping wings in forward flight. Wing twisting was achieved such that the effective angle

of attack is constant along the span. By maintaining a proper spanwise distribution of the effective

angle of attack, the LEV stability was enhanced resulting in larger time-averaged thrust and ver-

tical force production, which contrasts previous studies24–26. Finally, Bouard et al.30 numerically

investigated the effect of prescibed bending deformation on 3D hovering flapping wings. The

bending-induced phase-lag has been systematically varied to assess its influence and out-of-phase

bending (i.e. wing bending is maximum at stroke reversal) was found to promote lift production.

It has been shown that this performance enhancement is correlated with larger flapping amplitude

of the morphing wing with respect to the rigid wing, which increases wing velocity (for a given

flapping frequency) and thus lift production.

Despite these few studies, the role of active deformation on aerodynamic performance of flap-

ping wings remains poorly addressed. A general conclusion is that such morphing may enhance

efficiency at the cost of lower force production, for both hovering conditions24,25,31 and low-speed

forward flight26. Yet, there is no general consensus on the mechanisms that drive these changes

in aerodynamic performance. Therefore, in this paper, we systematically evaluate the influence

of dynamic wing twist over a wide range of pitch angles and show that aerodynamic performance

scales, to leading order, with the time-averaged pitch angle at 2/3 span. Furthermore, we pro-
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vide a detailed analysis of the correlation between changes in aerodynamic performance and flow

topology. For that purpose, we adapt the force and moment partitioning method (FMPM) to the

analysis of force generating and power consuming structures (that we refer to as the force and

power partitioning method (FPPM)), which helps explain in an unambiguous way the increase in

efficiency without loss of force production in some specific cases.

II. NUMERICAL METHODS

We consider a three-dimensional flapping wing under hovering flight conditions. The wing

profile is a NACA0012 airfoil and the aspect ratio AR is R/c = 4, which was found to be the

optimal lift aspect ratio for a revolving wing at low Reynolds number32. The wing chord c= 0.01m

is constant along the span. The setup is similar to that in our previous studies23,30,33, where rigid

wings, actively bending wings and passively deforming wings have been considered. Here, we

focus on actively twisting wings and compare their aerodynamic performance to that of rigid

wings. In rigid wing cases, the flapping kinematics consist in combined, sinusoidal revolving

and pitching motions. Their respective angular speeds are denoted by φ̇ and α̇ , as illustrated in

Figure 2 (bottom right). The wing flaps along a horizontal plane, over a revolving amplitude

φ0 = 120° during half a flapping period T/2 (with T ≈ 0.098s). The same, minimum, pitch angle

α0 is attained at mid-downstroke and mid-upstroke, as shown in Figure 2 (top right), rendering

the motion symmetric. The pitch axis is positioned one quarter chord away from the leading edge,

i.e. between the leading edge and the mid-chord line, which has been shown to be the optimal

range for pitch axis location34. In actively twisting wing cases, a sinusoidal dynamic twist motion

is added to the revolving and pitching motions. Linear spanwise twist is considered, which has

been observed in natural species such as mosquitoes35. The twist axis is located on the pitch axis

(one quarter chord away from the leading edge). Dynamic twist is here in phase with the pitching

motion. In other words, the morphing wing position coincides with that of the rigid wing at stroke

reversal and undergoes maximum twist at mid-downstroke and mid-upstroke. The twist angle ε is

defined such that the wing tip pitch angle is αtip = α + ε . This way, αtip can be both greater or

lower than α depending on the sign of ε . ε0 (amplitude of the dynamic twist motion) is bounded

such that αtip can not be lower than 0° or exceed 90°. Figure 2 (bottom right) illustrates a morphing

wing flapping motion with α0 = 45° and ε0 = −25° (depicted in lightgrey). Note that, similarly

to rigid wing cases, the kinematics of the morphing wing case is symmetric. We further stress that
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FIG. 2. Sketch of the computational domain (left), revolving and pitching speeds for both downstroke

(white area) and upstroke (grey area) phases in a reference α0 = 45° case (top right) and kinematics of the

flapping wing during the downstroke phase (bottom right). Grey and lightgrey colours in the bottom right

plot are used for the rigid and morphing wings, respectively.

wing morphing is here prescribed and does not result from a fluid-structure interaction problem.

In all cases, the Reynolds number based on the chord length c and the mean velocity over a

stroke U re f = 1.221m.s−1 at the r = 0.72R radial position is set to 840.

The flow is computed by directly solving the incompressible Navier-Stokes equations using

StarCCM+ ver. 17.06. This solver uses a cell-centered finite volume method. An overset mesh

technique (see Appendix A for further details) is employed where the wing is positioned within a

small cylindrical domain, which undergoes the flapping motion within a larger, fixed background

cylindrical domain. Figure 2 (left) displays the computational domain considered here. The wing

is treated as a non-slip wall and flaps along an horizontal plane that is parallel to the top and bottom

boundaries of the background cylindrical domain. The top boundary is modeled as a stagnation

inlet while the bottom boundary is modeled as a pressure outlet. Lateral boundaries are treated as

slip walls. Table I gives an overview of the boundary conditions used in the present study. Second-

order schemes are employed for both spatial and temporal discretizations. A co-located variable

arrangement and a Rhie-and-Chow-type pressure-velocity coupling combined with a SIMPLE-

type algorithm are used.
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TABLE I. Boundary conditions for the numerical domain considered in the present study.

Boundary Prescribed condition

Wing Non-slip wall

Top boundary Stagnation inlet

Bottom boundary Pressure outlet

Lateral boundaries Slip walls

Low resolution cases are first considered to conduct the parametric study. These cases exhibit

typical cell dimensions of ∆xs = 0.02c and ∆xv = 0.04c at the wing surface and in the small

moving domain, respectively and a time-step of ∆t = T/250. After identification of configurations

of interest (i.e. parametric study), higher fidelity numerical simulations (∆xs = 0.005c and ∆t =

T/1000) are used to analyze and correlate aerodynamic performance to flow topology. Previous

works on a similar setup23,30,33 (i.e. similar geometry and solver) have shown that an increase in

spatial and temporal resolutions from ∆xs = 0.02c and ∆t = T/250 do not yield significant changes

in period-averaged lift coefficient CL. Furthermore, it has been shown that initial transients have

sufficienctly decayed after three flapping cycles. Nonetheless, a convergence study is performed

here for the active twisting wing case. Similar conclusions can be drawn from the results, reported

in Appendix B (Figure 20), where it is shown that, once initial transients have passed, decreasing

∆xs from 0.02c to 0.01c yields changes in period-averaged lift CL below 2.2%, and decreasing ∆xs

from 0.01c to 0.005c yields changes below 1.1% (similarly, changes in CL as ∆t decreases from

T/250 to T/500 and from T/500 to T/1000 are below 2% and 0.4% respectively).

Finally, it is worth mentionning that the solver has been previously validated on a variety of

low Reynolds number flows such as that past axisymmetric bluff bodies36, revolving wings37 and

perching airfoils38.

In what follows, results are analyzed in terms of both mean and instantaneous lift coefficient

CL, power coefficient CP, lift-to-power coefficient ratio CL/CP and power associated to revolving

motion coefficient CPrev . These coefficients are defined as follows:

CL = 2L/(ρSU2
re f ), (1)

CP =−2P/(ρSU3
re f ), (2)

CPrev =−2Prev/(ρSU3
re f ). (3)
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FIG. 3. (a) Computational domain and defintions used to compute auxiliary potential fields (not at scale)

and (b) example of the φey field in a cross-section of the wing.

Where S is the wing surface area, ρ is the fluid density, and L, P and Prev are the wing lift, global

power and power associated to revolving motion respectively. The global power is computed tak-

ing into account the three revolving, pitching and twisting (for the morphing wing cases) torques.

Mean values are obtained by time-averaging instantaneous values over the 3rd flapping period,

following conclusions from Appendix B.

III. FORCE AND POWER PARTITIONING METHOD

As previously discussed, vortices generated by the flapping motion of a wing play a crucial

role in aerodynamic force production. The analysis of aerodynamic performance hence benefits

from correlating aerodynamic loads and vortical structures. To achieve this goal, we employ a

force-moment partitioning method (FMPM). This method is based on the work of Quartapelle and

Napolitano39, who demonstrated that by projecting the Navier-Stokes equations onto the gradient

of a suitably constructed auxiliary potential field, the pressure-induced forces and moments acting

on an immersed body can be expressed in terms of velocity-field gradients.

More specifically, we adopt the formulation derived by Menon and colleagues40–43 where

FMPM was applied to various 2D pitching and oscillating airfoil configurations. Note that this

method has also been applied to 3D cases, for example by Zhang et al.44 on data from a 3D

flapping wing simulation, and by Zhu and Breuer45 on PIV data from 3D pitching swept wings

experiments. Here, in addition to force partitioning, we propose to partition the power with the

aim of highlighting power-consuming structures in the flow past flapping wings.

The method is based on the resolution of auxiliary potentials φi, ψk with i and k the direction
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of the force and power to be partitioned, respectively. The auxiliary potentials for the force and

power are defined as:

∇
2
φi = 0 in Vf , and

n̂ ·∇φi =

ni, on the profile B

0 on the domain boundaries Σ

with i = ex,ey,ez,

(4)

and:
∇

2
ψk = 0 in Vf , and

n̂ ·∇ψk =


[
(X⃗ − X⃗C)×Ωkn̂

]
· êk, on B

0 on Σ

with k = ex,ey,ez,

(5)

where X⃗ is the position vector of a point on the surface of the immersed body and X⃗C is the point

about which the moment is computed. Ωk is the angular velocity in the direction k. The velocity

of the immersed body U⃗B is shown in Figure 3(a). Figure 3(b) displays an example of the φey field

computed in a section of the fluid volume Vf .

As derived by Menon and Mittal40, the instantaneous pressure-induced force on a wing can be

expressed as:

Fp,i =−ρ

∫∫
B

n⃗ ·

(
dU⃗B

dt
φi

)
dS︸ ︷︷ ︸

I

−ρ

∫∫∫
V f

2QφidV︸ ︷︷ ︸
II

+µ

∫∫∫
V f

∇⃗
2⃗u · ∇⃗φidV︸ ︷︷ ︸
III

−ρ

∫∫
Σ

n⃗ ·
(

du⃗
dt

φi

)
dS︸ ︷︷ ︸

IV

, i = ex,ey,ez.

(6)

Similarly, the instantaneous pressure-induced power can be expressed as:

Pp,k =−ρ

∫∫
B

n⃗ ·

(
dU⃗B

dt
ψk

)
dS︸ ︷︷ ︸

I

−ρ

∫∫∫
V f

2QψkdV︸ ︷︷ ︸
II

+µ

∫∫∫
V f

∇⃗
2⃗u · ∇⃗ψkdV︸ ︷︷ ︸
III

−ρ

∫∫
Σ

n⃗ ·
(

du⃗
dt

ψk

)
dS︸ ︷︷ ︸

IV

, k = ex,ey,ez.

(7)
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We note that the auxiliary potential fields φi and ψk only depends on the instantaneous shape,

position and velocity of the wing during the flapping motion. We further note that these potentials

are computed at each time-step.

The first term (I) in equations 6 and 7 is related to added-mass effects. The second term (II)

is the vortex-related term, as evidenced by its relation to the Q-criterion. Recall that Q is the

second-invariant of the velocity-gradient tensor, defined as :

Q =
1
2
(
∥Ω∥2 −∥S∥2) , (8)

where Ω and S are the anti-symmetric and symmetric parts of the velocity-gradient tensor re-

spectively. Q > 0 identifies regions where rotation dominates over shear, referred to as vortices

following the definition from Hunt et al.46. The third term (III) in equations 6 and 7 is the viscous

diffusion term. Finally, the fourth term (IV ) is related to flow acceleration at the outer boundary

of the computational domain and is negligible in our case (because of the large domain and the

hovering flight condition).

The global force coefficient CF can be decomposed into two contributions, namely the pressure-

induced CF,p and shear-induced CF,s contributions:

CF =CF,p +CF,s. (9)

Using FPM, the global force coefficient CF can be expressed as a function of the contributions

described in equation 6:

CF =CF,κ +CF,ω +CF,σ +CF,s, (10)

with CF,κ the added-mass-induced force coefficient, CF,ω the vortex-induced force coefficient and

CF,σ the viscous-induced force coefficient. Note that CF,s is negligible in most cases and is thus

not shown in plots displaying quantities computed with the FPM. CF,κ , CF,ω and CF,σ are then the

force coefficients related to term I, II and III presented in equation 6, respectively.

IV. RESULTS

In this section, we report our results obtained from the parametric study of the influence of

dynamic twist on aerodynamic performance of 3D flapping wings under hovering flight conditions.
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FIG. 4. CL as a function of CL/CP for different pitch (α0) and twist (ε0) angles. Data obtained for positive

and negative ε0 are shown in (a) and (b), respectively. White squares show rigid wing performance. Light-

grey, dark grey and black squares show performance obtained with ε0 =±15°, 30° and 45°, respectively.

A. Overall performance

Figure 4 shows the mean lift coefficient CL as a function of the mean lift coefficient to mean

power coefficient ratio CL/CP obtained for different pitch (α0) and twist (ε0) angles (similar plots

showing CL as a function of CP are provided in Appendix D). White squares depict cases without

twist (i.e. rigid wing) and with α0 varying from 0° to 90° (5° step between 0° to 75°). Recall

that α0 = 0° corresponds to the wing being horizontal at mid-downstroke (and mid-upstroke).

Similarly, α0 = 90° corresponds to the wing being vertical during the whole simulation (no pitch

motion). Light grey, dark grey and black squares depict twisted wing cases with ε0 =± 15°, 30°

and 45°, respectively. Cases with positive ε0 are shown in Figure 4 (a) while cases with negative ε0

are shown in Figure 4 (b) to ease the reading. Plain black lines are used to connect cases without

twist and dashed lines are used to connect cases with similar α0.

First, for cases without twist, it is observed that CL increases with α0 from α0 = 0° to 45°

and then drops as α0 further increases to 90°. On the other hand, CL/CP increases with α0 from

α0 = 0° to 15° and then drops as α0 further increases. That is, CL/CP reaches its maximum

(around 1.15 at 15°) well before that of CL (around 1.2 at 45°). The maximum lift pitch angle

is consistent with previous data from the literature2,33. Although the effective angle-of-attack of

the wing is lower than 45° due to the downwash induced as a reaction to vertical force production

during previous strokes, stall (in the time-averaged sense) is delayed to larger pitch angles than

those conventionally observed on 2D wings. According to previous studies6,8, the attachment of
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the leading edge vortex (LEV) which forms on the suction side of the wing is promoted by strong

rotational effects. This LEV, comparable to that observed on delta wings, supports a low pressure

region that contributes to generating a strong, normal aerodynamic force. The strength of the

LEV increases with α0, hence the normal force. However, CL decreases at some point, here after

α0 = 45°, because the relative contribution of the normal force to the vertical force decreases with

α0.

Second, it is shown that a positive twist (Figure 4 (a)), when applied in-phase with the pitch-

ing motion, does not benefit aerodynamic performance because none of the twisted wing cases

outperforms rigid wing cases in either CL or CL/CP. In other words, positive wing twist does not

help in reaching the portion of the (CL, CL/CP) space located on the right and above the plain

lines that connect α0 = 15° to 45° (indicated by the shaded region). Nonetheless, positive twist

can significantly affect CL and CL/CP and can hence be used to adapt aerodynamic performance

during flight. For example, it can be seen that twisting the α0 =30° wing with ε0 =15° yields

comparable changes in aerodynamic performance to those obtained by pitching the whole wing

to 45°. The overall increase in lift and reduction in lift-to-power coefficient ratio observed as ε0

increases corroborates previous observations24,25,31 and can here be correlated with a general in-

crease in angle of attack along the span and hence an increase in LEV strength, which results in a

larger normal force on the wing. However, as previously mentionned, the increase in lift is limited

since, concommitantly, the projection of the normal force on the vertical axis decreases with ε0.

Conversely, it is shown that a negative twist (Figure 4 (b)), again when applied in-phase with

the pitching motion, helps increase aerodynamic performance when compared to rigid wing cases.

Maximum CL/CP is here obtained for α0 = 45° and ε0 =−45° and reaches 1.22 i.e. 5.07% larger

than that obtained for α0 = 15° and ε0 = 0°. In addition to the α0 = 45° and ε0 =−45° case, two

other twisted wing cases lie within the shaded region in Figure 4 (b) (i.e. improving performance

with respect to rigid wing cases, ε0 = 0°): the α0 = 45° and ε0 = −30° case, and the α0 = 30°

and ε0 = −15° case. More generally, and similarly to that observed for positive twist, negative

twist can significantly affect aerodynamic performance and can thus help in adjusting lift during

flight. Here again, it is observed, for example, that twisting the α0 =45° wing with ε0 =-15°

yields comparable changes in aerodynamic performance to those obtained by pitching the whole

wing to 35°. Similarly to what has been discussed for rigid wings and wings with positive twist,

changes in lift and lift-to-power coefficient ratio with decreasing, negative twist angle ε0 can be

correlated with changes in LEV strength, hence normal force, and the increasing contribution of
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FIG. 5. Aerodynamic performance as a function of mid-stroke pitch angle at the r = 2/3R radial position

α2/3 for positive ε0 cases. CL and CL/CP as a function of α2/3 are shown in (a) and (b), respectively.

Symbols are similar to those used in Figure 4.

FIG. 6. Same plots as in Figure 5 but for negative ε0 cases.

the projection of the normal force on the vertical axis.

These trends will be further discussed in the next sections following two perspectives. First,

it will be shown that data are driven, to leading order, by a characteristic angle of attack along

the span, providing further evidence for the correlation between wing twist and normal force pro-

duction. Second, relevant cases will be discussed in detail using the force and power partitioning

method to further highlight the correlation between vortical structures and force production.

B. Scaling

Figures 5 (a) and (b) present CL and CL/CP as functions of the mid-stroke pitch angle at the

r = 2/3R radial position, α2/3 (for rigid wings, α2/3 = α0), for positive ε0 values, respectively.
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Note that this radial position approximately corresponds to that where
∫ r

0 Ldr =
∫ R

r Ldr, as verified

at mid-downtroke for the reference, rigid wing case with α0 = 45° (not shown here for the sake

of conciseness). The same colors and symbols as in previous plots are used for consistency with

the previous subsection, i.e. rigid wing performance is indicated using white squares, while light

grey, dark grey, and black squares depict positive values ε0 = 15°, 30° and 45°, respectively.

It is observed from Figure 5 (a) that data generally collapse onto a single curve, with some

exceptions, typically for α0 =15° and ε0 = 45°, α0 =30° and ε0 =30°, and α0 =30° and ε0 =45°.

In these cases, the pitch angle passes from below to above 45° along the span. That is, an increase

in pitch angle will promote lift coefficient in inboard sections while being detrimental in outboard

sections (see Figure 4). The evolution of wing lift with pitch angle is thus different to that obtained

for cases where the pitch angle is either always below or always above 45° along the span. A

similar observation can be made from Figure 5 (b), where cases with similar α2/3 generally yield

similar CL/CP. Again, this is true for most cases except for α0 =0° and ε0 =30°, and α0 =0°

and ε0 =45°, for example. In these cases, the pitch angle passes from below to above 15° along

the span. That is, an increase in pitch angle promotes efficiency in inboard sections while being

detrimental in outboard sections (see Figure 4). The evolution of wing efficiency with pitch angle

is thus different to that obtained for cases where the pitch angle is either always below or always

above 15° along the span. Finally, it is again visible from those plots that wings with positive twist

applied in-phase with the pitching motion never outperform rigid wings, both in CL and CL/CP.

Similar to Figure 5, Figure 6 (a) and (b) show CL and CL/CP as functions of the mid-stroke

pitch angle at the r = 2/3R radial position α2/3 for negative ε0 values, respectively. Again, most

data are found to collapse onto a single curve, with some exceptions. In Figure 6 (a) these include,

for example, cases with α0 =90° and ε0 =-45°, and α0 =75° and ε0 =-45°, where the pitch angle

along the span passes from above to below 45°. In Figure 6 (b), there is no clear outliers. Only

small data scattering is observed near maximum CL/CP (around α2/3 =15°) where cases with

negative twist are found to outperform rigid wing cases.

The physical reasons behind these changes in aerodynamic performance with α0 and ε0 will be

discussed in the next subsections.
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FIG. 7. Surface-integral and FPM-computed CL as a function of non-dimensional time t/T for the rigid

wing case with α0 = 45°. Added-mass CL,κ , vortex-induced CL,ω and viscous CL,σ contributions to lift from

FPM are also shown.

C. Analysis at maximum CL

We first focus on the flapping wing case for which maximum CL is obtained, i.e. rigid wing

with mid-stroke pitch angle α0 = 45°. The analysis relies on the time history of lift and power

coefficients, correlated with flow topology using the force partioning method (FPM) described in

section III.

1. Lift and lift-producing structures

Figure 7 shows the instantaneous lift coefficient CL as a function of the non-dimensional time

t/T obtained during the fourth downstroke phase. Both CL computed by integrating pressure and

shear at the wing surface and from FPM are shown, using plus symbols and plain line respectively.

First, it is verified that the lift computed using FPM is similar to that obtained through wing sur-

face integration. We thus leverage the use of FPM to decompose lift into different contributions as-

sociated with various terms in equation (6). Accordingly, added-mass, vortex and viscous-induced

lift are displayed in Figure 7 using dotted, dashed and dashdotted lines respectively. Recall that

the shear stress contribution is not displayed because it is small compared to other contributions.

The lift induced by added-mass, denoted as CL,κ , exhibits a sinusoidal behavior in line with the

sinusoidal kinematics of the wing. CL,κ is approximately zero at the start of the motion and then

increases until reaching its maximum value at t/T = 3.12. Following this peak, CL,κ decreases

to negative values, with the minimum observed at t/T = 3.40. Eventually, CL,κ increases again
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until reaching approximately zero at the end of the downstroke phase. The lift induced by viscous

diffusion, denoted as CL,σ , is of comparable magnitude to that of CL,κ . It is also null at the start

of the motion and then increases to reach its maximum around midstroke before decreasing back

to zero at the end of the stroke. Conversely, the vortex-induced lift, denoted as CL,ω , has a much

larger magnitude than that of the added-mass and viscous diffusion terms and largely dominates

lift production. It exhibits a nearly sinusoidal shape, in phase with the viscous diffusion lift. That

is, it globally increases from 0 at t/T = 3.00 to its maximum at t/T = 3.28, and decreases back to

zero at t/T = 3.50. The evolution during the first half-stroke is however not strictly monotonous,

with a small kink observed around t/T = 3.12.

Because CL,ω is found to dominate lift production, we correlate the evolution of lift with flow

topology by plotting a time-sequence of Q-criterion isosurfaces Qc2/U2
re f = 10 colored by the

amplitude of the vortex lift term of equation (6)
(
−2ρQφey

)
in Figure 8. That is, we show vortex

structures in the flow and how they locally contribute to lift.

At t/T = 3.00, the flow is characterized by small-scale structures shed in the wake during

the previous upstroke phase. As will be shown thereafter, these are the traces of the leading edge

vortex (LEV) and tip vortex (TV) that formed during previous instants. Their white color indicates

that their contribution to lift, at this instant, is negligible. This is in line with the zero lift force

observed at t/T = 3.00 on Figure 7. From this instant, the wing starts to revolve about its root

from left to right and thus interacts with wake structures. By t/T = 3.05, the detrimental effect of

this interaction becomes apparent as wake structures sweeping on the lower surface of the wing

support negative values of −2ρQφey (blue contours). Moving to t/T = 3.10, this detrimental effect

intensifies due to wing orientation which contributes to increasing φey on the lower surface (the y

projection of the normal to the surface increases in magnitude). That is, relatively intense vortices

(with large Q values) interact with regions of relatively large positive φey . On the other hand, a

new LEV starts forming on the wing’s upper surface, contributing to lift production (as shown

by red contours). Similarly to the mechanism described above, the LEV is a region of large Q

values interacting with regions of large negative φey . The LEV is the main contributor to lift and

is responsible for the increase in lift observed on Figure 7. However, it is slightly counterbalanced

by wing-wake interactions such that, although the LEV continues to grow between t/T = 3.10

and t/T = 3.15, a kink in the lift curve is observed near t/T = 3.12. At t/T = 3.15 both red

and blue contours are observed on the upper and lower surface of the wing, respectively. At

t/T = 3.20, the newly formed LEV and a tip vortex (TV) are clearly visible, with the TV seemingly
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FIG. 8. Q-criterion isosurfaces Qc2/U2
re f = 10 colored by the contribution to the vortex-induced lift(

−2ρQφey

)
for the rigid wing case with α0 = 45°. The wing surface is shown in grey and the wing outline

is shown using dotted lines on the snapshot at t/T = 3.05.
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having minimal influence on lift production. At mid-downstroke (t/T = 3.25), it is observed

that both structures connect. The connection, or merging, of the LEV and TV is known to be

associated with the interaction of the LEV core flow (directed outboard) with the tip vortex flow

(directed inboard)47, and the subsequent bursting of these structures into small scale structures

near the tip. These small structures are observed to advect in the wake of the wing. This instant

coincides with maximum lift production. Interestingly, the unbursted, conical part of the LEV

inboard supports larger −2ρQφey values than its bursted part near the tip. This provides evidence

that LEV burst (due to its interaction with the TV) is detrimental to lift production (i.e. with respect

to the coherent, unbursted region of the LEV). By t/T = 3.30, as the wing begins decelerating,

the LEV is found to burst over a wider spanwise region. In other words, deceleration contributes

to LEV burst and to the extent of the bursted region inboard. The LEV continues to grow due

to the revolving motion but the conical portion that contributes the most to lift is reduced. In

addition, the wing starts to pitch up (back to 90° at t/T = 3.50) and hence the y projection of

the normal to the surface decreases in magnitude, reducing the magnitude of φey . The lift thus

starts to decrease (see Figure 7). At t/T = 3.35, the pitch angle is large and the wing continues

to decelerate, which contributes to further decreasing lift. Moving to t/T = 3.40, LEV burst is

observed over a significant portion of the wing. Because of the large pitch angle, φey is low and

the contribution of the LEV to lift drastically decreases, in line with the evolution of CL. Finally,

at t/T = 3.45, as the wing approaches stroke reversal, the LEV has a very weak contribution to

lift, as evidenced by its white contours.

In further elucidating the relationship between the structure of the LEV and global lift produc-

tion, Figure 9 shows the pressure lift coefficient CL,p as a function of the non-dimensional span-

wise location r/R and non-dimensional time t/T for the rigid wing case (ε0 =0°) with α0 = 45°.

Positive and negative contours are depicted by plain and dashed lines, respectively.

During early stages, CL,p increases with t/T for all spanwise sections. Near the tip, this in-

crease rapidly saturates and CL,p then exhibits an unsteady behavior. The first evidence of a local

maximum in the CL,p map as t/T increases, which marks the onset of unsteady flow and sectional

lift oscillations, is observed at r/R= 0.975 (indicated with the white dot). The spanwise portion of

the wing that supports an unsteady flow then extends inboard with time. For example, local max-

ima in CL,p are observed at r/R = 0.87, 0.79 and 0.715 at t/T = 3.16, 3.21 and 3.252, respectively.

Those locations are indicated using white stars. This is in line with the occurence and the extent of

LEV burst observed previously on Figure 8. For spanwise locations lower than r/R= 0.70, there is
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FIG. 9. Pressure-induced lift coefficient CL,p as a function of non-dimensional spanwise location r/R and

non-dimensional time t/T for the rigid wing case with α0 = 45°. Plain and dashed lines display positive

and negative CL,p isolines respectively. White dot and stars indicate first maxima in CL,p obtained in four

cross sections r/R = 0.975, 0.87, 0.79 and 0.715.

no evidence of lift oscillations. In this inboard region, the flow reaches a quasi-steady state, which

is in line with the quasi-steady, conical LEV shape observed on Figure 8. With this representation,

it is visible that, at a given instant, the LEV has maximum contribution to lift immediately before

bursting (as r/R increases) and that bursting is detrimental to lift production, again corroborating

previous results from Figure 8.

2. Power and power-consuming structures

Figure 10 displays the time-history of total and revolving power coefficients, CP and CPrev re-

spectively, obtained by integrating pressure and viscous stresses at the wing surface. It is shown

that the revolving power accounts for most of the total power and that pitching power is compar-

atively negligible. Therefore, we focus our attention on the revolving power and further plot the

time-history of CPrev computed from the power partitioning method (PPM). Again, good agree-

ment is observed between both CPrev (obtained from wing surface integration and PPM) and we

thus leverage the use of PPM to decompose revolving power into different contributions associ-

ated with various terms in equation 7. Specifically, revolving power arising from added-mass,

vortex and viscous terms are displayed in Figure 10 using dotted, dashed and dashdotted lines
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FIG. 10. Surface-integral and PPM-computed CPrev as a function of non-dimensional time t/T for the rigid

wing case with α0 = 45°. Surface-integral CP as well as added-mass CPrev,κ , vortex-induced CPrev,ω and

viscous CPrev,σ contributions to revolving power from PPM are also shown.

respectively. The time evolution of the different contributions mirror those observed for the lift.

That is, the added-mass-induced power CPrev,κ exhibits a sinusoidal shape in phase with the pitch-

ing motion. Similarly, the viscous-induced power CPrev,σ also manifests a sinusoidal shape, albeit

with a phase shift relative to CPrev,κ . Again, CPrev,κ and CPrev,σ have comparable, relatively weak

magnitudes. Conversely, the vortex-induced power CPrev,ω dominates power consumption and dic-

tates the overall trend in the time-evolution of CPrev for most of the downstroke phase.

Again, because CPrev,ω is found to dominate power consumption, we correlate the evolution of

power with flow topology by plotting a time-sequence of Q-criterion isosurfaces Qc2/U2
re f = 10

colored by −2ρQψey in Figure 11. That is, we show vortex structures in the flow and how they

locally contribute to power consumption. We do not show the whole sequence displayed in Figure

8 but rather focus on 4 relevant instants.

At t/T = 3.00, the vortical structures have negligible impact on power consumption, as indi-

cated by their white contours. At this instant, the revolving speed is null and hence ψey is weak

(but not null because of the pitch velocity). At t/T = 3.10, the development of the new LEV on

the suction side of the wing is identified as a power consuming structure (red contours), while

strong interactions between the wing and its own wake are characterized by power recovery (blue

contours). At t/T = 3.20, the LEV continues to grow both in strength and size, resulting in the

interaction between large Q values and relatively large positive ψey values. It is observed that

−2ρQψey slightly drops near the very tip of the wing but that there is no clear drop with LEV

burst, contrasting previous observations from Figure 8. Here, ψey increases with the radial loca-
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FIG. 11. Q-criterion isosurfaces Qc2/U2
re f = 10 colored by the contribution to the vortex-induced revolving

power
(
−2ρQψey

)
for the rigid wing case with α0 = 45°.

tion r (see Figure 22) which favors power consuming structures outboard. Accordingly, power

consumption continues to increase, as previously discussed from Figure 10. By t/T = 3.30, the

burst has expanded inboard. It is again clearly visible that the bursted portion of the LEV has a

significant contribution to power consumption. Because it was shown that, on the other hand, it is

not conducive to high lift production, this suggests that LEV burst is detrimental to aerodynamic

efficiency.

D. Analysis at maximum CL/CP

We now focus on the flapping motion for which maximum CL/CP is obtained, i.e. twisted

wing with mid-stroke pitch angle α0 = 45° and twist angle ε0 =−45°. This configuration is also

compared with the maximum CL/CP obtained for a rigid wing, i.e. wing with mid-stroke pitch

angle α0 = 15°. The analysis relies on the time history of lift and power coefficients, correlated

with flow topology using the force partitioning method described in section III and already used

in the previous subsection.
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FIG. 12. Surface-integral and FPM-computed CL as a fuction of non-dimensional time t/T for the rigid

wing case with α0 = 15° (a) and the twisted wing case with α0 = 45° and ε0 =−45° (b). Added-mass CL,κ ,

vortex-induced CL,ω and viscous CL,σ contributions to lift from FPM are also shown.

1. Unsteady lift and power

Figures 12 (a) and 12 (b) show the time history of CL computed from surface integration and

FPM, as well as its added-mass CL,κ , vortex CL,ω and viscous diffusion CL,σ contributions obtained

from FPM for the rigid α0 = 15° and twisted α0 = 45°, ε0 =−45° wing cases, respectively.

We first note that both cases exhibit very similar CL,κ and CL,σ contributions, and that differ-

ences in CL mainly arises from differences in vortex-induced lift CL,ω .

During initial stages, from t/T = 2.00 to t/T = 2.05, CL increases in both cases due to added-

mass effects (CL,κ , as further discussed thereafter). Then, CL decreases until t/T = 2.12. At this

instant, the rigid wing experiences negative lift, while the twisted wing case exhibits positive lift.

This time interval (from t/T = 2.05 to t/T = 2.12, i.e immediately following stroke reversal)

typically involves interactions between the wing and the wake from the previous stroke. Hence,

differences in CL between rigid and twisted wing cases at those instants may result from differences

in wing-wake interactions. This point will be discussed on the basis of the evolution of CL,ω and

of the flow topology presented in the next subsection. After t/T = 2.12, CL increases again for

both cases. This increase can again be associated with (i) the development of a LEV on the upper

surface of the wing as previously discussed for the α0 = 45° case and/or (ii) a reduced negative

effect of the interaction of the wing with its wake on the lower surface. The increase is stronger

in the rigid wing case such that the corresponding lift becomes larger than that of the twisted

wing case near t/T = 2.22. CL being almost exclusively driven by CL,ω at this time, this indicates
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a larger LEV on the suction side of the rigid wing with respect to that of the twisted wing case.

Maxima in CL are reached around t/T = 2.35 for both cases, with the rigid wing experiencing 14%

more lift than the twisted wing case. Finally, CL rapidly drops to zero from the time of maximum

lift to the end of the stroke (t/T = 2.50).

As already mentionned, the increase in CL at the beginning of the stroke is driven by added-

mass effects for both rigid and morphing wing cases. Accordingly, CL,κ increases from t/T =

2.00 to t/T = 2.08. This increase is due to the combination of the pitch-down motion about

the quarter-chord and revolving acceleration. Specifically, revolving acceleration is maximum at

t/T = 0 and the corresponding normal force is thus maximum, but its projection on the vertical

axis is around zero. As t/T increases, the revolving acceleration decreases but the projection

of the corresponding added-mass force on the vertical axis increases, leading to the increase in

CL,κ . The added-mass induced lift then decreases and becomes negative slightly after t/T = 2.25,

where the revolving acceleration becomes negative. It reaches minimum value at t/T ≈ 2.42 and

increases again until reaching zero (no lift production) at the end of the stroke, where the revolving

deceleration is maximum but the projection of the corresponding normal force on the vertical axis

is zero.

CL,ω is also zero at t/T = 2.00 because of the orientation of the wing (i.e. projection of the

vortex-induced normal force on the vertical axis is zero). The vortex-induced lift then drops for

both cases, from t/T = 2.00 to t/T ≈ 2.12. This drop is related to the wing experiencing inter-

actions with its own wake, resulting in negative vortex-lift production. The negative influence of

wake interactions on lift production have been observed on Figure 8. On the other hand, a new

LEV starts forming on the upper side of the wing. However, this new LEV is not strong enough

yet to counterbalance the negative impact of wing-wake interactions. Interestingly, the actively

twisted wing experiences larger CL,ω , yet still negative. This indicates a different flow topology

between both configurations which will be detailed later. After t/T ≈ 2.12, both CL,ω increase,

indicating the development of a strong LEV on the wing’s suction side. Moreover, as observed for

the α0 = 45° case, after this time, the wing has passed over most of the vortical structures formed

during the previous stroke. In other words, the influence of wing-wake interactions decreases as

the wing revolves. The maximum in CL,ω is reached around t/T = 2.38 for both configurations.

Vortex-induced lift then drops as the wing approaches stroke-reversal because the leading edge

vortex structure loses coherency and the wing pitches up such that the projection of the corre-

sponding normal force on the vertical axis decreases.
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FIG. 13. Surface-integral CL and CP (a) and CL/CP (b) as a function of non-dimensional time t/T for the

rigid wing case with α0 = 15° and the twisted wing case with α0 = 45°, ε0 =−45°.

Finally, CL,σ slowly increases from t/T = 2.00 to 2.37. The viscous diffusion induced lift is

correlated with the formation of the LEV, that is with CL,ω between t/T = 2.20 and 2.50. Differ-

ences between both CL,σ from rigid and twisted wing cases are however weak and do not influence

the overall differences in CL. Again, CL,σ is around zero at the beginning and end of the stroke

because of the corresponding normal force projection on the vertical axis.

Overall, the lower lift observed near t/T = 2.12 in the rigid wing case slightly compensates for

the larger lift observed near t/T = 2.35, such that differences in time-averaged lift between both

rigid and twisted wing cases remain relatively weak, as previously observed on Figure 4. On the

contrary, differences in time-averaged lift-to-power ratio are substantial and we thus now analyze

both unsteady lift and power coefficients in Figure 13 (a) and unsteady lift-to-power coefficients

ratio in Figure 13 (b).

From Figure 13 (a), it is observed that CP values from both rigid and twisted wing cases are

similar from t/T = 2.00 to t/T = 2.25. During this interval, they both smoothly increase from

approximately 0 to 0.5. Conversely, as previously shown, CL from the twisted wing case exceeds

that of the rigid wing case, which leads to the significantly larger CL/CP ratio displayed in Figure

13 (b). After t/T = 2.25, CP from both cases increase more strongly until reaching a maximum

near t/T = 2.38 and then drop to approximately zero at the end of the stroke. The increase is

however more pronounced in the rigid wing case such that the corresponding CP is significantly

larger than that of the twisted wing case during this time interval. On the other hand, similar

differences are observed on CL, such that CL/CP from both cases are relatively similar, see Figure

13 (b).
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These observations demonstrate that the time interval between t/T = 2.05 and t/T = 2.20

is crucial in explaining the larger CL/CP obtained for the twisted wing case compared to the

rigid wing case. Specifically, while CP from both configurations exhibit similar trends and values

during this interval, the larger CL from the twisted wing, compared to the rigid one, is responsible

for the larger CL/CP. As previously discussed, differences in lift between both cases arise from

differences in vortex-induced lift. We thus focus on the analysis of vortex-induced lift in the next

subsection.

2. Lift producing structures

The left column of Figure 14 shows a time sequence of Q-criterion isosurfaces Qc2/U2
re f = 10

colored by vortex-induced lift
(
−2ρQφey

)
, obtained for the rigid wing case with α0 = 15°.

At t/T = 2.00, the flow is characterized by the LEV and TV from the previous stroke. A

root vortex (RV) is also visible near the wing root. Their white contour indicates that they have

negligible contribution to lift at this instant. As already discussed for the rigid wing case with

α0 = 45°, this is due to the orientation of the wing and the resulting weak φey field. At t/T = 2.10,

the LEV from the previous stroke clearly appears as a source of negative lift (blue contours) as

it sweeps on the lower surface of the wing. Similarly, the TV and the RV also act as sources of

negative lift near the wing tip and root, respectively. On the other hand, the development of a

new LEV, extending from midspan to the wing tip (i.e., from r/R = 1/2 to r/R = 1) on the upper

surface of the wing, counteracts those negative contributions. This is further highlighted on Figure

15 which shows the corresponding pressure-induced lift coefficient CL,p as a function of non-

dimensional spanwise location r/R and non-dimensional time t/T . At this instant (t/T = 2.10),

negative CL,p is observed inboard, highlighting the interaction between the wing and the LEV from

the previous stroke. On the contrary, positive CL,p is observed outboard, highlighting the role of

the new LEV in counteracting this negative contribution. Negative and positive contributions from

inboard and outboard regions cancel out such that CL is equal to 0, see Figure 13. At t/T = 2.15,

as the wing continues to revolve, the new LEV grows and the orientation of the wing favors

large φey values, hence interacting with relatively large Q values. Accordingly, CL,p increases in

the outboard region, see Figure 15. The negative CL,p region observed inboard is still significant,

again highlighting strong interactions between the wing and the LEV from the previous stroke. The

following snapshots on Figure 14, at t/T = 2.175 and t/T = 2.20, show similar flow topology.
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FIG. 14. Q-criterion isosurfaces Qc2/U2
re f = 10 colored by the contribution to the vortex-induced lift

−2ρQφey for the rigid wing case with α0 = 15° (left column) and the twisted wing case with α0 = 45°,

ε0 =−45° (right column).
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FIG. 15. Pressure-induced lift coefficient CL,p as a function of non-dimensional spanwise location r/R and

non-dimensional time t/T for the rigid wing case with α0 = 15°. Plain and dashed lines display positive

and negative isolines respectively.

FIG. 16. Pressure-induced lift coefficient CL,p as a function of non-dimensional spanwise location r/R and

non-dimensional time t/T for the twisted α0 = 45°, ε0 =−45° case. Plain and dashed lines display positive

and negative isolines respectively.

Specifically, the LEV continues to expand inboard and strengthen outboard, resulting in larger

CL,ω , and consequently, larger CL,p (Figure 15) and CL (Figure 13). The wing has passed over

the structures from the previous stroke and hence the impact of wing wake interactions on lift has

decayed.

The right column of Figure 14 shows similar snapshots of Q-criterion isosurfaces colored by
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−2ρQφey , obtained for the twisted wing case with α0 = 45° and ε0 =−45°.

At t/T = 2.00, the flow is relatively similar to that observed for the rigid wing case, with the

presence of a LEV and a TV that formed during the previous stroke. However, there is no clear

evidence of a RV. At t/T = 2.10, as the wing revolves and pitches down, the LEV from the previous

stroke acts as a source of negative lift and a new LEV forms on the upper side of the wing, acting

as a source of positive lift. This is again very similar to what has been observed for the rigid wing

case. However, slight differences exist between both cases. In addition to the absence of a RV,

the LEV in the twisted wing case extends slightly more inboard than that in the rigid wing case.

This is visible from the close-up view at t/T = 2.15 and 2.175. As previously addressed in section

IV A, the LEV supports a low pressure region on the wing upper surface which contributes to

generating a strong, normal aerodynamic force pointing upward (i.e. generating lift). That is, the

extended leading-edge vortex in the twisted wing configuration lead to enhanced, instantaneous

lift with respect to the rigid wing case. Similarly, the presence of the RV in the rigid wing case

is associated with a low pressure region near the wing lower surface which induces a normal

aerodynamic force pointing downward. This results in the negative contribution to lift observed

near the wing root in Figure 15 for the rigid wing case. As a consequence, for the twisted wing

configuration, there is no negative contribution from RV and more positive contribution from LEV

to lift in the inboard region, which leads to a reduced negative CL,p region in Figure 16. This

reduced negative lift region explains the difference in CL observed between both cases on Figure

13 (a), in the time interval t/T ∈ [2.05;2.20], and hence the difference in CL/CP observed on

Figure 13 (b) and the difference in CL/CP observed on Figure 4.

We stress that this reasoning also relies on the observation that power coefficients from both

cases are similar during this time interval, see Figure 13 (a). In the next subsection, we thus briefly

analyze power consumption to provide physical explanations for this similarity.

3. Power consuming structures

Figures 17 (a) and 17 (b) show the time history of CPrev computed from surface integration

and PPM, as well as added-mass CPrev,κ , vortex CPrev,ω and viscous diffusion CPrev,σ contributions

obtained from PPM for the rigid wing case with α0 = 15° and twisted wing case with α0 = 45°

and ε0 =−45°, respectively.

It is observed that both cases exhibit very similar CPrev,κ and CPrev,σ contributions during the
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FIG. 17. Surface-integral and PPM-computed CP,rev as a fuction of non-dimensional time t/T for the rigid

wing case with α0 = 15° (a) and twisted wing case with α0 = 45°, ε0 = −45° (b). Added-mass CPrev,κ ,

vortex-induced CPrev,ω and viscous CPrev,σ contributions to revolving power are also shown.

whole downstroke phase. Moreover, vortex-induced power are also very similar for both cases

during the majority of the stroke. Specifically, the only difference is observed on the magnitude

of the peak around t/T ≈ 2.38 which accounts for the difference in CPrev observed at this instant.

Therefore, it is observed that, during the time interval t/T ∈ [2.05;2.20], differences in flow topol-

ogy observed in the previous subsection do not significantly impact power consumption.

The left column on Figure 18 shows a time-sequence of Q-criterion isosurfaces Qc2/U2
re f = 10

colored by the contribution of vortex structures to the vortex-induced revolving power
(
−2ρQψey

)
for the rigid wing case with α0 = 15°. The right column on Figure 18 displays the same quantity

but for the twisted wing case with α0 = 45° and ε0 =−45°. It can be seen that the RV in the rigid

wing case has a negligible contribution to power CPrev,ω , as indicated by its white contour. This is

due to the amplitude of ψey , which is low in the inboard region (see Appendix C). For the same

reason, it can also be seen that the extended LEV in the twisted wing case does not significantly

contribute to power consumption. Hence, during the time interval t/T ∈ [2.05;2.20], differences in

flow topology do not significantly affect power consumption, while they do affect lift production.

Therefore, the inboard region of the twisted wing case with α0 = 45°, ε0 = −45° is more

efficient than that of the rigid wing case and this ultimately explains the enhanced efficiency of the

twisted wing case observed on Figure 4.
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FIG. 18. Q-criterion isosurfaces Qc2/U2
re f = 10 colored by the contribution to the vortex-induced revolving

power
(
−2ρQψey

)
for the rigid wing case with α0 = 15° (left column) and twisted wing case with α0 = 45°,

ε0 =−45° (right column).

V. CONCLUSION

Flapping wings have fostered the interest of both biologists and aerodynamicists these past

three decades. Works were mainly focused on rigid wings for the purpose of understanding lift-

ing mechanisms allowing insect and bird flight. Researches have revealed the key role of vortex

dynamics generated by the flapping motion of the wing on lift production. Further drawing inspi-
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ration from natural flyers, flexibility was then introduced as an additional parameter in flapping

wing kinematics. Wing flexibility induces deformation of the wing which can be decomposed into

three mechanisms: spanwise bending, twisting and chordwise cambering. While passive defor-

mation of the wing are now relatively well documented, active wing deformation remains poorly

addressed. Yet, active wing deformation allows decoupling deformation mechanisms, which can

help understand their independant role on aerodynamic performance. Furthermore, it can be used

to enhance aerodynamic performance and actively control instantaneous forces for enhanced ma-

neuverability. The present study focused on the effect of active dynamic in-phase twisting on the

aerodynamic performance of a three-dimensional wing undergoing a flapping motion (revolving

and pitching) under hovering flight conditions. The twist amplitude was systematically varied for

different pitch angles.

Overall, it was shown that active twist yields comparable changes to pitching the whole wing.

That is, a change in wing twist generally led to time-averaged lift and lift-to-power ratio obtained

without twist but at a different pitch angle, clarifying previous works where it was observed that

twist generally leads to an increase in efficiency at the cost of lower force production24,25,31. Ac-

cordingly, most data obtained within this study were found to collapse onto a single curve when

plotted as a function of the mid-stroke pitch angle at 2/3 wing radius. The scaling of the forces

with this characteristic pitch angle can be directly related to LEV strength and LEV induced nor-

mal force.

Although data were found to scale, to leading order, with the mid-stroke pitch angle at 2/3 wing

radius, additional physical mechanisms that tend to enhance efficiency were identified. Specifi-

cally, positive wing twist (i.e. the wingtip angle of attack is larger than that of the wingroot) does

not lead to enhanced lift coefficient or efficiency when compared to most lift producing and most

efficient rigid wing motions. However, some cases with negative wing twist (i.e. the wingtip

angle of attack is lower than that of the wingroot) lead to enhanced efficiency with respect to

the most efficient rigid motions. The physical mechanisms behind this enhanced efficiency have

been identified and discussed using the force-power partitioning method (FPPM, an adaptation

of FMPM). Overall, it was shown that enhancement in efficiency arises from (i) the absence of

vortical structures near the wing root lower surface and (ii) the presence of an extended leading

edge vortex, when compared to the most efficient rigid wing case. In particular, these differences

in flow topology lead to enhanced lift during the early phase of the strokes without changes in

power consumption, which ultimately results in enhanced efficiency in the active twisting wing
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configuration.

As a conclusion, it was found that dynamic wing twist can be used as an alternative to wing

pitch to adapt both instantaneous and time-averaged lift and lift-to-power ratio. Furthermore, while

morphing wings do not outperform rigid wings in terms of mean lift production, it was shown that

they do provide enhanced efficiency. Future studies should explore to what extent those results are

relevant for forward flight conditions, for lower and higher Reynolds numbers and for wings with

larger aspect ratio where the LEV is known to be (partly) unstable.
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Appendix A: Overset mesh technique

Similarly to Diaz-Arriba et al.33, the inner cylindrical domain, in which the wing is embedded,

is designed such that most of the vorticity remains inside of it. In our case, this is made possible

by the fact that the LEV remains attached to the wing along most of the wing span and during

the whole flapping motion. This way, interpolations between the inner, moving, domain and outer,

fixed, domain have only a limited influence on flow dynamics. Nonetheless, some vortex structures

do pass through the interpolation region that connects the solutions of the inner and outer meshed

regions. Figure 19 shows vorticity contours obtained in the r = 0.72R section at different instants

for the rigid α0 = 45° case. Black line depicts the position of the interpolation region. It can be

observed that vortex structures that pass through this line do not suffer from significant numerical

dissipation due to the interpolation scheme. Note that the latter relies on a distance weighted
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FIG. 19. Spanwise vorticity contours in the r = 0.72R spanwise cross-section at different instants t/T for

the rigid α0 = 45° case. The black line depicts the position of the interpolation region between the inner

moving and background fixed meshes.

approach with a typical ratio of two between inner and outer domain cell sizes.

Appendix B: Meshgrid and timestep convergence

Figure 20 presents the period-averaged lift coefficient CL as a function of the number Nb of

the flapping period for different spatial (a) and temporal (b) resolutions. Results are obtained

for the twisted wing configuration with α0 = 45° and ε0 = −45°. Horizontal lines represent ±

3% of the CL value obtained over the 10th flapping period with resolutions ∆xs = 0.005c and

∆t = T/1000 (largest spatial resolution for convegence tests on spatial resolution) in (a) and with

resolutions ∆xs = 0.02c and ∆t = T/1000 (largest temporal resolution for convegence tests on

temporal resolution) in (b). Similarly to rigid wing configurations, it is shown that CL is not

severely affected by an increase in spatial and temporal resolutions with respect to the case with

∆xs = 0.02c and ∆t = T/250. Furthermore, it is observed that initial transients have sufficiently

decayed after two flapping cycles.

Appendix C: Auxiliary potentials fields

Figures 21 and 22 show the three-dimensional auxiliary potentials fields φey (used for lift com-

putation) and ψey (used for power associated with revolving motion), respectively. The distribu-

tion of φey highlights the fact that vortices in the vicinity of the wing will strongly affect lift (see

φey = −1.5e− 3 isosurface). Note that two vortices with the same topology and strength but lo-

cated one at wing root and the other at wing tip will have the same influence on lift production.

On the contrary, distribution of ψey highlights the fact that vortical structures located outboard will
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FIG. 20. Period-averaged lift coefficient CL as a function of the number Nb of the flapping period for

different spatial and temporal resolutions. Data are obtained for the twisted wing configuration with α0 =

45° and ε0 =−45°. (a) shows results obtained for different spatial resolutions ∆xs = 0.02c, 0.01c and 0.005c

for ∆t = T/1000. (b) presents CL for different temporal resolutions ∆t = T/1000, T/500 and T/250 for

∆xs = 0.02c. Horizontal lines represent ± 3% of the CL value obtained over the 10th period for the largest

spatial (a) and temporal (b) resolutions.

FIG. 21. 3D φey field obtained for the rigid wing case with α0 = 45°. 6 isosurfaces are used to illustrate the

distribution.
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FIG. 22. 3D ψey field obtained for the rigid wing case with α0 = 45°. 6 isosurfaces are used to illustrate the

distribution.

FIG. 23. CL as a function of CP for different pitch (α0) and twist (ε0) angles. Data obtained for positive and

negative ε0 are shown in (a) and (b), respectively. White squares show rigid wing performance. Lightgrey,

dark grey and black squares show performance obtained with ε0 =±15°, 30° and 45°, respectively.

more strongly affect revolving power than those located inboard.
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Appendix D: CL as a function of CP

Figure 23 shows the mean lift coefficient CL as a function of the mean power coefficient CP

obtained for different pitch (α0) and twist (ε0) angles. As observed on Figure 4 (a), positive

twist does not benefit aerodynamic performance. In other words, positive twist does not help in

reaching the large CL and/or low CP region indicated by the shaded region. Conversely, negative

twist (Figure 23 (b)) does help in reaching the shaded region. Specifically, cases with α0 = 45°

and ε0 = −45°, α0 = 45° and ε0 = −30°, α0 = 30° and ε0 = −15° and α0 = 30° and ε0 = −30°

are found to lie in the shaded region. Yet, it is worth mentioning that none of the twisted wing

cases exhibit CP lower than that of the rigid wing case with α0 = 0°.
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